Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 131(1): 71-86, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34559179

RESUMEN

BACKGROUND AND AIMS: Reproductive isolation and local establishment are necessary for plant speciation. Polyploidy, the possession of more than two complete chromosome sets, creates a strong postzygotic reproductive barrier between diploid and tetraploid cytotypes. However, this barrier weakens between polyploids (e.g. tetraploids and hexaploids). Reproductive isolation may be enhanced by cytotype morphological and environmental differentiation. Moreover, morphological adaptations to local conditions contribute to plant establishment. However, the relative contributions of ploidy level and the environment to morphology have generally been neglected. Thus, the extent of morphological variation driven by ploidy level and the environment was modelled for diploid, tetraploid and hexaploid cytotypes of Campanula rotundifolia agg. Cytotype distribution was updated, and morphological and environmental differentiation was tested in the presence and absence of natural contact zones. METHODS: Cytotype distribution was assessed from 231 localities in Central Europe, including 48 localities with known chromosome counts, using flow cytometry. Differentiation in environmental niche and morphology was tested for cytotype pairs using discriminant analyses. A structural equation model was used to explore the synergies between cytotype, environment and morphology. KEY RESULTS: Tremendous discrepancies were revealed between the reported and detected cytotype distribution. Neither mixed-ploidy populations nor interploidy hybrids were detected in the contact zones. Diploids had the broadest environmental niche, while hexaploids had the smallest and specialized niche. Hexaploids and spatially isolated cytotype pairs differed morphologically, including allopatric tetraploids. While leaf and shoot morphology were influenced by environmental conditions and polyploidy, flower morphology depended exclusively on the cytotype. CONCLUSIONS: Reproductive isolation mechanisms vary between cytotypes. While diploids and polyploids are isolated postzygotically, the environmental niche shift is essential between higher polyploids. The impact of polyploidy and the environment on plant morphology implies the adaptive potential of polyploids, while the exclusive relationship between flower morphology and cytotype highlights the role of polyploidy in reproductive isolation.


Asunto(s)
Campanulaceae , Tetraploidía , Ploidias , Poliploidía , Diploidia
2.
Evolution ; 74(10): 2281-2292, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32776511

RESUMEN

When differentiated lineages come into contact, their fates depend on demographic and reproductive factors. These factors have been well-studied in taxa of the same ploidy, but less is known about sympatric lineages that differ in ploidy, particularly with respect to demographic factors. We assessed prezygotic, postzygotic, and total reproductive isolation in naturally pollinated arrays of diploid-tetraploid and tetraploid-hexaploid population mixes of Campanula rotundifolia by measuring pollinator transitions, seed yield, germination rate, and proportion of hybrid offspring. Four frequencies of each cytotype were tested, and pollinators consistently overvisited rare cytotypes. Seed yield and F1 hybrid production were greater in 4X-6X arrays than 2X-4X arrays, whereas germination rates were similar, creating two distinct patterns of reproductive isolation. In 2X-4X arrays, postzygotic isolation was near complete (3% hybrid offspring), and prezygotic isolation associated with pollinator preference is expected to facilitate the persistence of minority cytotypes. However, in 4X-6X arrays where postzygotic isolation permitted hybrid formation (44% hybrids), pollinator behavior drove patterns of reproductive isolation, with rare cytotypes being more isolated and greater gene flow expected from rare into common cytotypes. In polyploid complexes, both the specific cytotypes in contact and local cytotype frequency, likely reflecting spatial demography, will influence likelihood of gene exchange.


Asunto(s)
Campanulaceae/genética , Insectos , Ploidias , Polinización , Aislamiento Reproductivo , Animales , Conducta Animal
3.
AoB Plants ; 12(2): plaa011, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32284842

RESUMEN

The distribution and genetic structure of most plant species in Britain and Ireland bear the imprint of the last ice age. These patterns were largely shaped by random processes during recolonization but, in angiosperms, whole-genome duplication may also have been important. We investigate the distribution of cytotypes of Campanula rotundifolia, considering DNA variation, postglacial colonization, environmental partitioning and reproductive barriers. Cytotypes and genome size variation from across the species' range were determined by flow cytometry and genetic variation was assessed using cpDNA markers. A common garden study examined growth and flowering phenology of tetraploid, pentaploid and hexaploid cytotypes and simulated a contact zone for investigation of reproductive barriers. Irish populations were entirely hexaploid. In Britain, hexaploids occurred mostly in western coastal populations which were allopatric with tetraploids, and in occasional sympatric inland populations. Chloroplast markers resolved distinct genetic groups, related to cytotype and geographically segregated; allopatric hexaploids were distinct from tetraploids, whereas sympatric hexaploids were not. Genome downsizing occurred between cytotypes. Progeny of open-pollinated clones from the contact zone showed that maternal tetraploids rarely produced progeny of other cytotypes, whereas the progeny of maternal hexaploids varied, with frequent pentaploids and aneuploids. The presence of distinctive hexaploid chloroplast types in Ireland, Scottish islands and western mainland Britain indicates that its establishment preceded separation of these land masses by sea-level rise c. 16 000 years BP. This group did not originate from British tetraploids and probably diverged before postglacial invasion from mainland Europe. The combination of cytotype, molecular, contact zone and common garden data shows an overall pattern reflecting postglacial colonization events, now maintained by geographic separation, together with more recent occasional local in situ polyploidisation. Reproductive barriers favour the persistence of the tetraploid to the detriment of the hexaploid.

4.
Am J Bot ; 105(2): 249-256, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29578295

RESUMEN

PREMISE OF THE STUDY: Angiosperm species often shift from self-incompatibility to self-compatibility following population bottlenecks. Across the range of a species, population bottlenecks may result from multiple factors, each of which may affect the geographic distribution and magnitude of mating-system shifts. We describe how intercontinental dispersal and genome duplication facilitate loss of self-incompatibility. METHODS: Self and outcross pollinations were performed on plants from 24 populations of the Campanula rotundifolia polyploid complex. Populations spanned the geographic distribution and three dominant cytotypes of the species (diploid, tetraploid, hexaploid). KEY RESULTS: Loss of self-incompatibility was associated with both intercontinental dispersal and genome duplication. European plants were largely self-incompatible, whereas North American plants were intermediately to fully self-compatible. Within both European and North American populations, loss of self-incompatibility increased as ploidy increased. Ploidy change and intercontinental dispersal both contributed to loss of self-incompatibility in North America, but range expansion did not affect self-incompatibility within Europe or North America. CONCLUSIONS: When species are subject to population bottlenecks arising through multiple factors, each factor can contribute to self-incompatibility loss. In a widespread polyploid complex, the loss of self-incompatibility can be predicted by the cumulative effects of whole-genome duplication and intercontinental dispersal.


Asunto(s)
Campanulaceae/genética , Polinización/genética , Poliploidía , Autoincompatibilidad en las Plantas con Flores/genética , Campanulaceae/fisiología , Diploidia , Duplicación de Gen/genética , Genética de Población , Genoma de Planta/genética , Autofecundación/genética , Tetraploidía
5.
Glob Chang Biol ; 22(4): 1644-54, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26546275

RESUMEN

The effects of climate change on species interactions are poorly understood. Investigating the mechanisms by which species interactions may shift under altered environmental conditions will help form a more predictive understanding of such shifts. In particular, components of climate change have the potential to strongly influence floral volatile organic compounds (VOCs) and, in turn, plant-pollinator interactions. In this study, we experimentally manipulated drought and herbivory for four forb species to determine effects of these treatments and their interactions on (1) visual plant traits traditionally associated with pollinator attraction, (2) floral VOCs, and (3) the visitation rates and community composition of pollinators. For all forbs tested, experimental drought universally reduced flower size and floral display, but there were species-specific effects of drought on volatile emissions per flower, the composition of compounds produced, and subsequent pollinator visitation rates. Moreover, the community of pollinating visitors was influenced by drought across forb species (i.e. some pollinator species were deterred by drought while others were attracted). Together, these results indicate that VOCs may provide more nuanced information to potential floral visitors and may be relatively more important than visual traits for pollinator attraction, particularly under shifting environmental conditions.


Asunto(s)
Sequías , Flores/metabolismo , Herbivoria , Magnoliopsida/metabolismo , Polinización , Compuestos Orgánicos Volátiles/metabolismo , Animales , Flores/crecimiento & desarrollo , Lepidópteros , Magnoliopsida/crecimiento & desarrollo , Fitoquímicos/metabolismo , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA