RESUMEN
Cancer stem cells (CSC), a small population of neoplastic cells, are associated with worse prognosis. The aim of this study was to evaluate the expression of ALDH1, CD117, CD133 and OCT4; potential markers of CSC; and their associations with the prognosis of women diagnosed with cervical cancer. This retrospective cohort study included 126 women diagnosed with cervical cancer whose biopsies were analyzed by immunohistochemistry. Median values of marked cells were used to define cutoff points for low and high expression. For specific survival, multivariate analyses showed statistical significance for lymph node metastases (HR 8.15; 95% CI 3.00-22.18) and borderline significance for high CD133 expression (p = 0.058). For overall survival, multivariate analyses showed statistical significance for IIA-IVB staging (HR 4.60; 95% CI 1.46-14.56), lymph node metastases (HR 5.13; 95% CI 12.02-13.03) and high CD133 expression (2.67; 95% CI 1.11-6.43). Considering only women with SCC, the same clinicopathological variables were associated with worse specific and overall survival in univariate analyses. However, higher expression of CD 133 (HR 11.10; 95% CI 2.42-50.94 and 6.00; 95% CI 2.02-17.87) and staging IIA-IVB (HR 5.96; 95% CI 1.30-27.34 and HR 12.47; 95% CI 2.45-63.54) respectively impacted negatively specific and overall survival, as multivariate analyses showed. Secondarily, it was observed that ALDH1 expression was associated with adenocarcinoma and CD117 expression with squamous cells carcinoma. Higher expression of CD133 was associated with worse specific and overall survival, indicating that it could have relevance as a clinical marker and therapeutic target.
RESUMEN
The success of chemotherapy regimens in patients with non-small cell lung cancer (NSCLC) could be restricted at least in part by cancer stem cells (CSC) niches within the tumor microenvironment (TME). CSC express CD133, CD44, CD47, and SOX2, among other markers and factors. Analysis of public data revealed that high expression of hyaluronan (HA), the main glycosaminoglycan of TME, correlated positively with CSC phenotype and decreased disease-free interval in NSCLC patients. We aimed to cross-validate these findings on human and murine lung cancer cells and observed that CD133 + CSC differentially expressed higher levels of HA, HAS3, ABCC5, SOX2, and CD47 (p < 0.01). We modulated HA expression with 4-methylumbelliferone (4Mu) and detected an increase in sensitivity to paclitaxel (Pa). We evaluated the effect of 4Mu + chemotherapy on survival, HA metabolism, and CSC profile. The combination of 4Mu with Pa reduced the clonogenic and tumor-forming ability of CSC. Pa-induced HAS3, ABCC5, SOX2, and CD47 expression was mitigated by 4Mu. Pa + 4Mu combination significantly reduced in vivo tumor growth, enhancing animal survival and restoring the CSC profile in the TME to basal levels. Our results suggest that HA is involved in lung CSC phenotype and chemosensitivity, and its modulation by 4Mu improves treatment efficacy to inhibit tumor progression.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Ácido Hialurónico , Himecromona , Neoplasias Pulmonares , Células Madre Neoplásicas , Paclitaxel , Microambiente Tumoral , Ácido Hialurónico/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Animales , Ratones , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Himecromona/farmacología , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patologíaRESUMEN
Hepatic cancer is one of the main causes of cancer-related death worldwide. Cancer stem cells (CSCs) are a unique subset of cancer cells that promote tumour growth, maintenance, and therapeutic resistance, leading to recurrence. In the present work, the ability of a ruthenium complex containing 1,3-thiazolidine-2-thione (RCT), with the chemical formula [Ru(tzdt)(bipy)(dppb)]PF6, to inhibit hepatic CSCs was explored in human hepatocellular carcinoma HepG2 cells. RCT exhibited potent cytotoxicity to solid and haematological cancer cell lines and reduced the clonogenic potential, CD133+ and CD44high cell percentages and tumour spheroid growth of HepG2 cells. RCT also inhibited cell motility, as observed in the wound healing assay and transwell cell migration assay. RCT reduced the levels of Akt1, phospho-Akt (Ser473), phospho-Akt (Thr308), phospho-mTOR (Ser2448), and phospho-S6 (Ser235/Ser236) in HepG2 cells, indicating that interfering with Akt/mTOR signalling is a mechanism of action of RCT. The levels of active caspase-3 and cleaved PARP (Asp214) were increased in RCT-treated HepG2 cells, indicating the induction of apoptotic cell death. In addition, RCT modulated the autophagy markers LC3B and p62/SQSTM1 in HepG2 cells and increased mitophagy in a mt-Keima-transfected mouse embryonic fibroblast (MEF) cell model, and RCT-induced cytotoxicity was partially prevented by autophagy inhibitors. Furthermore, mutant Atg5-/- MEFs and PentaKO HeLa cells (human cervical adenocarcinoma with five autophagy receptor knockouts) were less sensitive to RCT cytotoxicity than their parental cell lines, indicating that RCT induces autophagy-mediated cell death. Taken together, these data indicate that RCT is a novel potential anti-liver cancer drug with a suppressive effect on CSCs.
Asunto(s)
Apoptosis , Muerte Celular Autofágica , Neoplasias Hepáticas , Células Madre Neoplásicas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Apoptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Transducción de Señal/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Células Hep G2 , Muerte Celular Autofágica/efectos de los fármacos , Tiazolidinas/farmacología , Animales , Ratones , Movimiento Celular/efectos de los fármacos , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/químicaRESUMEN
Cancer stem cells (CSCs) are a group of tumor cells with high tumorigenic ability and self-renewal potential similar to those of normal stem cells. CSCs are the key "seeds" for tumor development, metastasis, and recurrence. A better insight into the key mechanisms underlying CSC survival improves the efficiency of cancer therapy via specific targeting of CSCs. Insulin-like growth factor (IGF)/IGF-1 receptor (IGF-1R) signaling plays an important role in the maintenance of cancer stemness. However, the effect of IGF/IGF-1R signaling on stemness and CSCs and the underlying mechanisms are still controversial. Based on the similarity between CSCs and normal stem cells, this review discusses emerging data on the functions of IGF/IGF-1R signaling in normal stem cells and CSCs and dissects the underlying mechanisms by which IGF/IGF-1R signaling is involved in CSCs. On the other hand, this review highlighted the role of IGF/IGF-1R signaling blockade in multiple CSCs as a potential strategy to improve CSC-based therapy.
RESUMEN
Identifying marker combinations for robust prognostic validation in primary tumour compartments remains challenging. We aimed to assess the prognostic significance of CSC markers (ALDH1, CD44, p75NTR, BMI-1) and E-cadherin biomarkers in OSCC. We analysed 94 primary OSCC and 67 metastatic lymph node samples, including central and invasive tumour fronts (ITF), along with clinicopathological data. We observed an increase in ALDH1+/CD44+/BMI-1- tumour cells in metastatic lesions compared to primary tumours. Multivariate analysis highlighted that elevated p75NTR levels (at ITF) and reduced E-cadherin expression (at the tumour centre) independently predicted metastasis, whilst ALDH1high exhibited independent predictive lower survival at the ITF, surpassing the efficacy of traditional tumour staging. Then, specifically at the ITF, profiles characterized by CSChighE-cadherinlow (ALDH1highp75NTRhighE-cadherinlow) and CSCintermediateE-cadherinlow (ALDH1 or p75NTRhighE-cadherinlow) were significantly associated with worsened overall survival and increased likelihood of metastasis in OSCC patients. In summary, our study revealed diverse tumour cell profiles in OSCC tissues, with varying CSC and E-cadherin marker patterns across primary tumours and metastatic sites. Given the pivotal role of reduced survival rates as an indicator of unfavourable prognosis, the immunohistochemistry profile identified as CSChighE-cadherinlow at the ITF of primary tumours, emerges as a preferred prognostic marker closely linked to adverse outcomes in OSCC.
Asunto(s)
Familia de Aldehído Deshidrogenasa 1 , Biomarcadores de Tumor , Cadherinas , Carcinoma de Células Escamosas , Neoplasias de la Boca , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Familia de Aldehído Deshidrogenasa 1/metabolismo , Biomarcadores de Tumor/metabolismo , Cadherinas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/mortalidad , Receptores de Hialuranos/metabolismo , Inmunohistoquímica , Metástasis Linfática , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/mortalidad , Neoplasias de la Boca/diagnóstico , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas del Tejido Nervioso/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 1/genética , Pronóstico , Receptores de Factor de Crecimiento Nervioso/metabolismo , Retinal-Deshidrogenasa/metabolismoRESUMEN
OBJECTIVES: To isolate cancer stem cells (CSC) from a metastatic oral squamous cell carcinoma (OSCC) cell line and investigate their in vitro and in vivo phenotypic characteristics. MATERIALS AND METHODS: Subpopulations with individual staining intensities for CD44 and CD326 were isolated from the OSCC cell line LN-1A by FACS: CD44Low/CD326- (CSC-M1), CD44Low/CD326High (CSC-E), and CD44High/CD326- (CSC-M2). Proliferation, clonogenic potential, adhesion, migration, epithelial-mesenchymal transition markers, and sensitivity to cisplatin and TVB-3166 were analyzed in vitro. Tumor formation and metastasis were assessed by subcutaneous and orthotopic inoculations into BALB/c mice. RESULTS: E-cadherin levels were higher in CSC-E cells while vimentin and Slug more produced by CSC-M2 cells. CSC-M1 and CSC-M2 subpopulations showed higher proliferation, produced more colonies, and have stronger adhesion to the extracellular matrix. All cell lines established tumors; however, CSC-E and CSC-M2 formed larger masses and produced more metastases. CONCLUSION: The CSC subpopulations here described show increased cancer capabilities in vitro, tumorigenic and metastatic potential in vivo, and may be exploited in the search for novel therapeutic targets for OSCC.
RESUMEN
Cancer Stem Cells presumably drive tumor growth and resistance to conventional cancer treatments. From a previous computational model, we inferred that these cells are not uniformly distributed in the bulk of a tumorsphere. To confirm this result, we cultivated tumorspheres enriched in stem cells, and performed immunofluorescent detection of the stemness marker SOX2 using confocal microscopy. In this article, we present an image processing method that reconstructs the amount and location of the Cancer Stem Cells in the spheroids. Its advantage is the use of a statistical criterion to classify the cells in Stem and Differentiated, instead of setting an arbitrary threshold. Moreover, the analysis of the experimental images presented in this work agrees with the results from our computational models, thus enforcing the notion that the distribution of Cancer Stem Cells in a tumorsphere is non-homogeneous. Additionally, the method presented here provides a useful tool for analyzing any image in which different kinds of cells are stained with different markers.
Asunto(s)
Células Madre Neoplásicas , Esferoides Celulares , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Humanos , Esferoides Celulares/patología , Esferoides Celulares/metabolismo , Factores de Transcripción SOXB1/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal , Línea Celular TumoralRESUMEN
BACKGROUND: Cancer stem cells (CSCs) represent a potential mechanism contributing to tumorigenesis, metastasis, recurrence, and drug resistance. The objective of this study is to investigate the status quo and advancements in CSC research utilizing bibliometric analysis. METHODS: Publications related to CSCs from 2010 to 2022 were collected from the Web of Science Core Collection database. Various analytical tools including CiteSpace, VOSviewer, Scimago Graphica, and GraphPad Prism were used to visualize aspects such as co-authorship, co-occurrence, and co-citation within CSC research to provide an objective depiction of the contemporary status and developmental trajectory of the CSC field. RESULTS: A total of 22,116 publications were included from 1942 journals written by 95,992 authors. Notably, China emerged as the country with the highest number of publications, whereas the United States exerted the most significant influence within the field. MD Anderson Cancer Center emerged as the institution making the most comprehensive contributions. Wicha M.S. emerged as the most prolific and influential researcher. Among journals, Cancers emerged as a focal point for CSC research, consistently publishing a wealth of high-quality papers. Furthermore, it was observed that most journals tended to approach CSC research from molecular, biological, and immunological perspectives. The research into CSCs encompassed a broad array of topics, including isolation and enrichment techniques, biomarkers, biological characteristics, cancer therapy strategies, and underlying biological regulatory mechanisms. Notably, exploration of the tumor microenvironment and extracellular vesicles emerged as burgeoning research frontiers for CSCs. CONCLUSION: The research on CSCs has garnered growing interest. A trend toward multidisciplinary homogeneity is emerging within the realm of CSCs. Further investigation could potentially center on the patients of extracellular vesicles and the tumor microenvironment in relation to CSCs.
Asunto(s)
Bibliometría , Células Madre Neoplásicas , Células Madre Neoplásicas/patología , Humanos , Investigación Biomédica , Neoplasias/patología , Neoplasias/terapiaRESUMEN
Mammary cancer is a frequent disease in female dogs, where a high proportion of cases correspond to malignant tumors that may exhibit drug resistance. Within the mammary tumor microenvironment, there is a cell subpopulation called cancer stem cells (CSCs), which are capable of forming spheres in vitro and resisting anti-tumor treatments, partly explaining the recurrence of some tumors. Previously, it has been described that spheres derived from canine mammary carcinoma cells CF41.Mg and REM 134 exhibit stemness characteristics. Melatonin has shown anti-tumor effects on mammary tumor cells; however, its effects have been poorly evaluated in canine mammary CSCs. This study aimed to analyze the effect of melatonin on the chemoresistance exhibited by stem-like neoplastic cells derived from canine mammary carcinoma to cytotoxic drugs such as doxorubicin and mitoxantrone. CF41.Mg and REM 134 cells were cultured in high-glucose DMEM supplemented with fetal bovine serum and L-glutamine. The spheres were cultured in ultra-low attachment plates in DMEM/F12 medium without fetal bovine serum and with different growth factors. The CD44+/CD24-/low phenotype was analyzed by flow cytometry. The viability of sphere-derived cells (MTS reduction) was studied in the presence of melatonin (0.1 or 1 mM), doxorubicin, mitoxantrone, and luzindole. In addition, the gene (RT-qPCR) of the multidrug resistance bombs MDR1 and ABCG2 were analyzed in the presence of melatonin. Both cell types expressed the MT1 gene, which encodes the melatonin receptor MT1. Melatonin 1 mM does not modify the CD44+/CD24-/low phenotype; however, the hormone reduced viability (p < 0.0001) only in CF41.Mg spheres, without inducing an additive effect when co-incubated with cytotoxic drugs. These effects were independent of the binding of the hormone to its receptor MT1, since, by pharmacologically inhibiting them, the effect of melatonin was not blocked. In CF41.Mg spheres, the relative gene expression of ABCG2 and MDR1 was decreased in response to the hormone (p < 0.001). These results indicate that melatonin negatively modulates the cell survival of spheres derived from CF41.Mg cells, in a way that is independent of its MT1 receptor. These effects did not counteract the resistance to doxorubicin and mitoxantrone, even though the hormone negatively regulates the gene expression of MDR1 and ABCG2.
RESUMEN
BACKGROUND: Deregulating cellular metabolism is one of the prominent hallmarks of malignancy, with a critical role in tumor survival and growth. However, the role of reprogramming aspartate metabolism in hepatocellular carcinoma (HCC) are largely unknown. METHODS: The multi-omics data of HCC patients were downloaded from public databases. Univariate and multivariate stepwise Cox regression were used to establish an aspartate metabolism-related gene signature (AMGS) in HCC. The Kaplan-Meier and receiver operating characteristic curve analyses were performed to evaluate the predictive ability for overall survival (OS) in HCC patients. Gene set enrichment analysis and immune infiltration analysis were operated to determine the potential mechanisms underlying the AMGS. Single-cell RNA sequencing (scRNA-seq) data of liver cancer stem cells were visualized by t-SNE algorithm. In vivo and in vitro experiments were implemented to investigate the biological function of CAD in HCC. In addition, a nomogram based on the AMGS and clinicopathologic characteristics was constructed by univariate and multivariate Cox regression analyses. RESULTS: Patients in the high-AMGS subgroup exerted advanced tumor status and poor prognosis. Mechanistically, the high-AMGS subgroup patients had significantly enhanced proliferation and stemness-related pathways, increased infiltration of regulatory T cells and upregulated expression levels of suppressive immune checkpoints in the tumor immune microenvironment. Notably, scRNA-seq data revealed CAD, one of the aspartate metabolism-related gene, is significantly upregulated in liver cancer stem cells. Silencing CAD inhibited proliferative capacity and stemness properties of HCC cells in vitro and in vivo. Finally, a novel nomogram based on the AMGS showed an accurate prediction in HCC patients. CONCLUSIONS: The AMGS represents a promising prognostic value for HCC patients, providing a perspective for finding novel biomarkers and therapeutic targets for HCC.
Asunto(s)
Ácido Aspártico , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Ácido Aspártico/metabolismo , Pronóstico , Femenino , Nomogramas , Masculino , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Estimación de Kaplan-Meier , Curva ROC , Animales , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Ratones , Regulación Neoplásica de la Expresión GénicaRESUMEN
PURPOSE: De novo synthesis of cholesterol and its rate-limiting enzyme, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMGCR), is deregulated in tumors and critical for tumor cell survival and proliferation. However, the role of HMGCR in the induction and maintenance of stem-like states in tumors remains unclear. METHODS: A compiled public database from breast cancer (BC) patients was analyzed with the web application SurvExpress. Cell Miner was used for the analysis of HMGCR expression and statin sensitivity of the NCI-60 cell lines panel. A CRISPRon system was used to induce HMGCR overexpression in the luminal BC cell line MCF-7 and a lentiviral pLM-OSKM system for the reprogramming of MCF-7 cells. Comparisons were performed by two-tailed unpaired t-test for two groups and one- or two-way ANOVA. RESULTS: Data from BC patients showed that high expression of several members of the cholesterol synthesis pathway were associated with lower recurrence-free survival, particularly in hormone-receptor-positive BC. In silico and in vitro analysis showed that HMGCR is expressed in several BC cancer cell lines, which exhibit a subtype-dependent response to statins in silico and in vitro. A stem-like phenotype was demonstrated upon HMGCR expression in MCF-7 cells, characterized by expression of the pluripotency markers NANOG, SOX2, increased CD44 +/CD24low/ -, CD133 + populations, and increased mammosphere formation ability. Pluripotent and cancer stem cell lines showed high expression of HMGCR, whereas cell reprogramming of MCF-7 cells did not increase HMGCR expression. CONCLUSION: HMGCR induces a stem-like phenotype in BC cells of epithelial nature, thus affecting tumor initiation, progression and statin sensitivity.
Asunto(s)
Neoplasias de la Mama , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Femenino , Neoplasias de la Mama/patología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Oxidorreductasas , ColesterolRESUMEN
Hepatocellular carcinoma (HCC) is one of the most common cancers with a high mortality rate. HCC development is associated with its underlying etiologies, mostly caused by infection of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV), alcohol, non-alcoholic fatty liver disease, and exposure to aflatoxins. These variables, together with human genetic susceptibility, contribute to HCC molecular heterogeneity, including at the cellular level. HCC initiation, tumor recurrence, and drug resistance rates have been attributed to the presence of liver cancer stem cells (CSC). This review summarizes available data regarding whether various HCC etiologies may be associated to the appearance of CSC biomarkers. It also described the genetic variations of tumoral tissues obtained from Western and Eastern populations, in particular to the oncogenic effect of HBV in the human genome.
Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Hepatitis B , Hepatitis C , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Hepatitis B Crónica/complicaciones , Recurrencia Local de Neoplasia , Hepatitis C/complicaciones , Hepatitis C/epidemiología , Virus de la Hepatitis B/genética , Hepatitis B/complicacionesRESUMEN
Tumor resistance remains an obstacle to successfully treating oral squamous cell carcinoma (OSCC). Cisplatin is widely used as a cytotoxic drug to treat solid tumors, including advanced OSCC, but with low efficacy due to chemoresistance. Therefore, identifying the pathways that contribute to chemoresistance may show new possibilities for improving the treatment. This work explored the role of the tumor necrosis factor-alpha (TNF-alpha)/NFkB signaling in driving the cisplatin resistance of OSCC and its potential as a pharmacological target to overcome chemoresistance. Differential accessibility analysis demonstrated the enrichment of opened chromatin regions in members of the TNF-alpha/NFkB signaling pathway, and RNA-Seq confirmed the upregulation of TNF-alpha/NFkB signaling in cisplatin-resistant cell lines. NFkB was accumulated in cisplatin-resistant cell lines and in cancer stem cells (CSC), and the administration of TNF-alpha increased the CSC, suggesting that TNF-alpha/NFkB signaling is involved in the accumulation of CSC. TNF-alpha stimulation also increased the histone deacetylases HDAC1 and SIRT1. Cisplatin-resistant cell lines were sensitive to the pharmacological inhibition of NFkB, and low doses of the NFkB inhibitors, CBL0137, and emetine, efficiently reduced the CSC and the levels of SIRT1, increasing histone acetylation. The NFkB inhibitors decreased stemness potential, clonogenicity, migration, and invasion of cisplatin-resistant cell lines. The administration of the emetine significantly reduced the tumor growth of cisplatin-resistant xenograft models, decreasing NFkB and SIRT1, increasing histone acetylation, and decreasing CSC. TNF-alpha/NFkB/SIRT1 signaling regulates the epigenetic machinery by modulating histone acetylation, CSC, and aggressiveness of cisplatin-resistant OSCC and the NFkB inhibition is a potential strategy to treat chemoresistant OSCC.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Emetina/metabolismo , Emetina/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Histonas/metabolismo , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Células Madre Neoplásicas/patología , Sirtuina 1/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia ArribaRESUMEN
Despite significant efforts to control cancer progression and to improve oncology treatment outcomes, recurrence and tumor resistance are frequently observed in cancer patients. These problems are partly related to the presence of cancer stem cells (CSCs). Photodynamic therapy (PDT) has been developed as a therapeutic approach for solid tumors; however, it remains unclear how this therapy can affect CSCs. In this review, we focus on the effects of PDT on CSCs and the possible changes in the CSC population after PDT exposure. Tumor response to PDT varies according to the photosensitizer and light parameters employed, but most studies have reported the successful elimination of CSCs after PDT. However, some studies have reported that CSCs were more resistant to PDT than non-CSCs due to the increased efflux of photosensitizer molecules and the action of autophagy. Additionally, using different PDT approaches to target the CSCs resulted in increased sensitivity, reduction of sphere formation, invasiveness, stem cell phenotype, and improved response to chemotherapy. Lastly, although mainly limited to in vitro studies, PDT, combined with targeted therapies and/or chemotherapy, could successfully target CSCs in different solid tumors and promote the reduction of stemness, suggesting a promising therapeutic approach requiring evaluation in robust pre-clinical studies.
Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fotoquimioterapia/métodos , Células Madre NeoplásicasRESUMEN
Hepatocellular carcinoma (HCC) is a type of liver cancer, in which CD44 isoforms have been proposed as markers to identify cancer stem cells (CSCs). However, it is unclear what characteristics are associated with CSCs that exclusively express CD44 isoforms. The objective of the present study was to determine the expression of CD44 isoforms and their properties in CSCs. Analysis of transcriptomic data from HCC patient samples identified CD44v8-10 as a potential marker in HCC. In SNU-423 cells, CD44 expression was detected in over 99% of cells, and two CD44 isoforms, namely, CD44std and CD44v9, were identified in this cell line. CD44 subpopulations, including both CD44v9+ (CD44v9) and CD44v9- (CD44std) cells, were obtained by purification using a magnetic cell separation kit for human CD44v9+ cancer stem cells. CD44v9 cells showed greater potential for colony and spheroid formation, whereas CD44std cells demonstrated significant migration and invasion capabilities. These findings suggested that CD44std and CD44v9 may be used to identify features in CSC populations and provide insights into their roles in HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Biomarcadores de Tumor/metabolismo , Células Madre Neoplásicas/metabolismo , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Línea Celular Tumoral , Isoformas de Proteínas/metabolismoRESUMEN
Cancer is a widespread and incurable disease caused by genetic mutations, leading to uncontrolled cell proliferation and metastasis. Connexins (Cx) are transmembrane proteins that facilitate intercellular communication via hemichannels and gap junction channels. Among them, Cx46 is found mostly in the eye lens. However, in pathological conditions, Cx46 has been observed in various types of cancers, such as glioblastoma, melanoma, and breast cancer. It has been demonstrated that elevated Cx46 levels in breast cancer contribute to cellular resistance to hypoxia, and it is an enhancer of cancer aggressiveness supporting a pro-tumoral role. Accordingly, Cx46 is associated with an increase in cancer stem cell phenotype. These cells display radio- and chemoresistance, high proliferative abilities, self-renewal, and differentiation capacities. This review aims to consolidate the knowledge of the relationship between Cx46, its role in forming hemichannels and gap junctions, and its connection with cancer and cancer stem cells.
Asunto(s)
Neoplasias de la Mama , Cristalino , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Comunicación Celular , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Cristalino/metabolismoRESUMEN
Microfluidic platforms for clinical use are a promising translational strategy for cancer research specially for drug screening. Identifying cancer stem cells (CSC) using sphere culture techniques in microfluidic devices (MDs) showed to be better reproducing physiological responses than other in vitro models and allow the optimization of samples and reagents. We evaluated individual sphere proliferation and stemness toward chemotherapeutic treatment (CT) with doxorubicin and cisplatin in bladder cancer cell lines (MB49-I and J82) cultured in MDs used as CSC treatment response platform. Our results confirm the usefulness of this device to evaluate the CT effect in sphere-forming efficiency, size, and growth rate from individual spheres within MDs and robust information comparable to conventional culture plates was obtained. The expression of pluripotency genetic markers (Oct4, Sox2, Nanog, and CD44) could be analyzed by qPCR and immunofluorescence in spheres growing directly in MDs. MDs are a suitable platform for sphere isolation from tumor samples and can provide information about CT response. Microfluidic-based CSC studies could provide information about treatment response of cancer patients from small samples and can be a promising tool for CSC-targeted specific treatment with potential in precision medicine. KEY MESSAGES: We have designed a microfluidic platform for CSC enriched culture by tumor sphere formation. Using MDs, we could quantify and determine sphere response after CT using murine and human cell lines as a proof of concept. MDs can be used as a tumor-derived sphere isolation platform to test the effect of antitumoral compounds in sphere proliferation.
Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias , Humanos , Animales , Ratones , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo , Neoplasias/metabolismoRESUMEN
Head and neck cancer is a major health problem worldwide, with most cases arising in the oral cavity. Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, accounting for over 90% of all cases. Compared to other types of cancer, OSCC, has the worse prognosis, with a 5-year survival rate of 50%. Additionally, OSCC is characterized by a high rate of resistance to chemotherapy treatment, which may be partly explained by the presence of cancer stem cells (CSC) subpopulation. CSC can adapt to harmful environmental condition and are highly resistant to both chemotherapy and radiotherapy treatments, thus contributing to tumor relapse. The aim of this review is to highlight the role of mitochondria in oral CSC as a potential target for oral cancer treatment. For this purpose, we reviewed some fundamental aspects of the most validated protein markers of stemness, autophagy, the mitochondrial function and energy metabolism in oral CSC. Moreover, a discussion will be made on why energy metabolism, especially oxidative phosphorylation in CSC, may offer such a diverse source of original pharmacological target for new drugs. Finally, we will describe some drugs able to disturb mitochondrial function, with emphasis on those aimed to interrupt the electron transport chain function, as novel therapeutic strategies in multidrug-resistant oral CSC. The reutilization of old drugs approved for clinical use as new antineoplastics, in cancer treatment, is also matter of revision.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello , Mitocondrias , Células Madre NeoplásicasRESUMEN
Background: Colorectal cancer (CRC) is a leading cause of death worldwide. SRY-box transcription factor 9 (SOX9) participates in organogenesis and cell differentiation in normal tissues but has been involved in carcinogenesis development. Cancer stem cells (CSCs) are a small population of cells present in solid tumors that contribute to increased tumor heterogeneity, metastasis, chemoresistance, and relapse. CSCs have properties such as self-renewal and differentiation, which can be modulated by many factors. Currently, the role of SOX9 in the maintenance of the stem phenotype has not been well elucidated, thus, in this work we evaluated the effect of the absence of SOX9 in the stem phenotype of CRC cells. Methods: We knockout (KO) SOX9 in the undifferentiated CRC cell line HCT116 and evaluated their stemness properties using sphere formation assay, differentiation assay, and immunophenotyping. Results: SOX9-KO affected the epithelial morphology of HCT116 cells and stemness characteristics such as its pluripotency signature with the increase of SOX2 as a compensatory mechanism to induce SOX9 expression, the increase of KLF4 as a differentiation feature, as well as the inhibition of the stem cell markers CD44 and CD73. In addition, SOX9-KO cells gain the epithelial-mesenchymal transition (EMT) phenotype with a significant upregulation of CDH2. Furthermore, our results showed a remarkable effect on first- and second-sphere formation, being SOX9-KO cells less capable of forming high-size-resistant spheres. Nevertheless, CSCs surface markers were not affected during the differentiation assay. Conclusions: Collectively, our findings supply evidence that SOX9 promotes the maintenance of stemness properties in CRC-CSCs.
RESUMEN
Colorectal cancer (CRC) is the third most diagnosed cancer and the second most deadly type of cancer worldwide. In late diagnosis, CRC can resist therapy regimens in which cancer stem cells (CSCs) are intimately related. CSCs are a subpopulation of tumor cells responsible for tumor initiation and maintenance, metastasis, and resistance to conventional treatments. In this scenario, colorectal cancer stem cells (CCSCs) are considered an important key for therapeutic failure and resistance. In its turn, mitochondria is an organelle involved in many mechanisms in cancer, including chemoresistance of cytotoxic drugs due to alterations in mitochondrial metabolism, apoptosis, dynamics, and mitophagy. Therefore, it is crucial to understand the mitochondrial role in CCSCs regarding CRC drug resistance. It has been shown that enhanced anti-apoptotic protein expression, mitophagy rate, and addiction to oxidative phosphorylation are the major strategies developed by CCSCs to avoid drug insults. Thus, new mitochondria-targeted drug approaches must be explored to mitigate CRC chemoresistance via the ablation of CCSCs.