Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Curr Issues Mol Biol ; 46(9): 9298-9311, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39329902

RESUMEN

Cacalol (C), a sesquiterpene isolated from Psacalium decompositum, has demonstrated anti-inflammatory and antioxidant activities. Its cytotoxic, antiproliferative, and pro-apoptotic effects have been previously shown in an in vitro breast cancer model. A derivative, cacalol acetate (CA), shows potential in regulating these processes, which has not been previously reported. This study focused on an in vitro cervical cancer model, assessing CA's antiproliferative, pro-apoptotic, cytostatic, and anti-migratory activities using the HeLa cell line. The natural anticancer agent indole-3-carbinol (I3C) was used as a control for comparison. CA demonstrated significant antitumor activities, including inhibiting cell growth, inducing apoptosis, arresting cells in the G2 phase of the cell cycle, and inhibiting cell migration. These effects were notably greater compared to I3C. I3C, while following a similar trend, did not induce Cas-3 expression, suggesting a different apoptotic pathway. Neither CA nor I3C increased p62 and LC3B levels, indicating they do not stimulate autophagy marker expression. Both compounds inhibited HeLa cell migration and induced cell cycle arrest. Despite both holding promise as anticancer agents for cervical cancer, CA's lower cytotoxicity and stronger regulation of tumor phenotypes make it a more promising agent compared to I3C.

2.
Int J Mol Sci ; 25(18)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39337327

RESUMEN

Polyploid Giant Cancer Cells (PGCCs) have been recognized as tumor cells that are resistant to anticancer therapies. However, it remains unclear whether their presence in the bloodstream can be consistently detected and utilized as a clinical marker to guide therapeutic anticancer regimens. To address these questions, we conducted a retrospective study involving 228 patients diagnosed with six different types of carcinomas (colon, gastric, NSCLC, breast, anal canal, kidney), with the majority of them (70%) being non-metastatic. Employing a highly sensitive liquid biopsy approach, ISET®, and cytopathological readout, we isolated and detected circulating PGCCs in the patients' blood samples. PGCCs were identified in 46 (20.18%) out of 228 patients, including in 14.47% of 152 non-metastatic and 29.85% of 67 metastatic cases. Patients were subsequently monitored for a mean follow up period of 44.74 months (95%CI: 33.39-55.79 months). Remarkably, the presence of circulating PGCCs emerged as a statistically significant indicator of poor overall survival. Our findings suggest that circulating PGCCs hold promise as a reliable prognostic indicator. They underscore the importance of further extensive investigations into the role of circulating PGCCs as a prognostic marker and the development of anti-PGCC therapeutic strategies to improve cancer management and patient survival.


Asunto(s)
Biomarcadores de Tumor , Células Gigantes , Células Neoplásicas Circulantes , Poliploidía , Humanos , Femenino , Masculino , Pronóstico , Biomarcadores de Tumor/sangre , Persona de Mediana Edad , Anciano , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Células Gigantes/patología , Estudios Retrospectivos , Adulto , Neoplasias/sangre , Neoplasias/patología , Neoplasias/diagnóstico , Carcinoma/sangre , Carcinoma/patología , Carcinoma/diagnóstico , Anciano de 80 o más Años
3.
Molecules ; 29(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39339471

RESUMEN

Lithium, a natural element, has been employed as a mental stabilizer in psychiatric treatments; however, some reports indicate it has an anticancer effect, prompting the consideration of repurposing lithium for cancer treatment. The potential anticancer use of lithium may depend on its form (salt type) and the type of cancer cells targeted. Little is known about the effects of Li2CO3 or LiCl on cancer cells, so we focused on exploring their effects on proliferation, apoptosis, migration, and cell cycle as part of the hallmarks of cancer. Firstly, we established the IC50 values on HeLa, SiHa, and HaCaT cells with LiCl and Li2CO3 and determined by crystal violet that cell proliferation was time-dependent in the three cell lines (IC50 values for LiCl were 23.43 mM for SiHa, 23.14 mM for HeLa, and 15.10 mM for HaCaT cells, while the IC50 values for Li2CO3 were 20.57 mM for SiHa, 11.52 mM for HeLa, and 10.52 mM for HaCaT cells.) Our findings indicate that Li2CO3 and LiCl induce DNA fragmentation and caspase-independent apoptosis, as shown by TUNEL, Western Blot, and Annexin V/IP assay by flow cytometry. Also, cell cycle analysis showed that LiCl and Li2CO3 arrested the cervical cancer cells at the G1 phase. Moreover, lithium salts displayed an anti-migratory effect on the three cell lines observed by the wound-healing assay. All these findings imply the viable anticancer effect of lithium salts by targeting several of the hallmarks of cancer.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Cloruro de Litio , Neoplasias del Cuello Uterino , Humanos , Cloruro de Litio/farmacología , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Movimiento Celular/efectos de los fármacos , Femenino , Células HeLa , Línea Celular Tumoral , Antineoplásicos/farmacología , Carbonato de Litio/farmacología , Ciclo Celular/efectos de los fármacos , Reposicionamiento de Medicamentos
4.
Nitric Oxide ; 151: 17-30, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39179197

RESUMEN

The gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) play important roles not only in maintaining physiological functions, but also in pathological conditions and events. Importantly, these molecules show a complex interplay in cancer biology, demonstrating both tumor-promoting and anti-tumor activities depending on their concentration, flux, and the environmental redox state. Additionally, various cell types respond differently to NO and H2S. These gasotransmitters can be synergistically combined with traditional anticancer treatments such as radiotherapy, immunotherapy, chemotherapy, and phototherapy. Notably, NO, and more recently H2S, have been shown to reverse multidrug resistance. Nanomaterials to deliver NO donors and, to a lesser extent, H2S donors, have emerged as a promising approach for targeted delivery of these gasotransmitters. Nanotechnology has advanced the delivery of anticancer drugs, enhancing efficiency and reducing side effects on non-cancerous cells. This review highlights recent progress in the design of NO and H2S-releasing nanomaterials for anticancer effects. It also explores the interactions between NO and H2S, which are crucial for developing combined therapies and nanomedicines with minimal side effects.


Asunto(s)
Antineoplásicos , Sulfuro de Hidrógeno , Nanoestructuras , Neoplasias , Óxido Nítrico , Transducción de Señal , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/química , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Óxido Nítrico/metabolismo , Nanoestructuras/química , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Antineoplásicos/química
5.
Cancer Metab ; 12(1): 24, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113152

RESUMEN

BACKGROUND: Prostate cancer (PCa) shows a rewired metabolism featuring increased fatty acid uptake and synthesis via de novo lipogenesis, both sharply related to mitochondrial physiology. The docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that exerts its antitumoral properties via different mechanisms, but its specific action on mitochondria in PCa is not clear. Therefore, we investigated whether the DHA modulates mitochondrial function in PCa cell lines. METHODS: Here, we evaluated mitochondrial function of non-malignant PNT1A and the castration-resistant (CRPC) prostate 22Rv1 and PC3 cell lines in response to DHA incubation. For this purpose, we used Seahorse extracellular flux assay to assess mitochondria function, [14C]-glucose to evaluate its oxidation as well as its contribution to fatty acid synthesis, 1H-NMR for metabolite profile determination, MitoSOX for superoxide anion production, JC-1 for mitochondrial membrane polarization, mass spectrometry for determination of phosphatidylglycerol levels and composition, staining with MitoTracker dye to assess mitochondrial morphology under super-resolution in addition to Transmission Electron Microscopy, In-Cell ELISA for COX-I and SDH-A protein expression and flow cytometry (Annexin V and 7-AAD) for cell death estimation. RESULTS: In all cell lines DHA decreased basal respiratory activity, ATP production, and the spare capacity in mitochondria. Also, the omega-3 induced mitochondrial hyperpolarization, ROS overproduction and changes in membrane phosphatidylglycerol composition. In PNT1A, DHA led to mitochondrial fragmentation and it increased glycolysis while in cancer cells it stimulated glucose oxidation, but decreased de novo lipogenesis specifically in 22Rv1, indicating a metabolic shift. In all cell lines, DHA modulated several metabolites related to energy metabolism and it was incorporated in phosphatidylglycerol, a precursor of cardiolipin, increasing the unsaturation index in the mitochondrial membrane. Accordingly, DHA triggered cell death mainly in PNT1A and 22Rv1. CONCLUSION: In conclusion, mitochondrial metabolism is significantly affected by the PUFA supplementation to the point that cells are not able to proliferate or survive under DHA-enriched condition. Moreover, combination of DHA supplementation with inhibition of metabolism-related pathways, such as de novo lipogenesis, may be synergistic in castration-resistant prostate cancer.

6.
Front Physiol ; 15: 1415037, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086932

RESUMEN

Background: Carbon dioxide (CO2), traditionally viewed as a mere byproduct of cellular respiration, plays a multifaceted role in human physiology beyond simple elimination through respiration. CO2 may regulate the tumor microenvironment by significantly affecting the release of oxygen (O2) to tissues through the Bohr effect and by modulating blood pH and vasodilation. Previous studies suggest hypercapnia (elevated CO2 levels) might trigger optimized cellular mechanisms with potential therapeutic benefits. The role of CO2 in cellular stress conditions within tumor environments and its impact on O2 utilization offers a new investigative area in oncology. Objectives: This study aims to explore CO2's role in the tumor environment, particularly how its physiological properties and adaptive responses can influence therapeutic strategies. Methods: By applying a structured translational approach using the Work Breakdown Structure method, the study divided the analysis into six interconnected work packages to comprehensively analyze the interactions between carbon dioxide and the tumor microenvironment. Methods included systematic literature reviews, data analyses, data integration for identifying critical success factors and exploring extracellular environment modulation. The research used SMART criteria for assessing innovation and the applicability of results. Results: The research revealed that the human body's adaptability to hypercapnic conditions could potentially inform innovative strategies for manipulating the tumor microenvironment. This could enhance O2 utilization efficiency and manage adaptive responses to cellular stress. The study proposed that carbon dioxide's hormetic potential could induce beneficial responses in the tumor microenvironment, prompting clinical protocols for experimental validation. The research underscored the importance of pH regulation, emphasizing CO2 and carbonic acid's role in modulating metabolic and signaling pathways related to cancer. Conclusion: The study underscores CO2 as vital to our physiology and suggests potential therapeutic uses within the tumor microenvironment. pH modulation and cellular oxygenation optimization via CO2 manipulation could offer innovative strategies to enhance existing cancer therapies. These findings encourage further exploration of CO2's therapeutic potential. Future research should focus on experimental validation and exploration of clinical applications, emphasizing the need for interdisciplinary and collaborative approaches to tackle current challenges in cancer treatment.

7.
Curr Pharm Des ; 30(30): 2345-2363, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38967070

RESUMEN

The incidence of breast cancer has been increasing over the last four decades, although the mortality rate has decreased. Endocrine therapy and chemotherapy are the most used options for cancer treatment but several obstacles are still attributed to these therapies. Smart materials, such as nanocarriers for targeting, delivery and release of active ingredients, sensitive to intrinsic-stimuli (pH-responsive, redox-responsive, enzyme- responsive, and thermo-responsive) and extrinsic-stimuli (ultrasound-responsive, magnetic-responsive, light-responsive) have been studied as a novel strategy in breast cancer therapy. Cyclodextrins (CDs) are used in the design of these stimuli-responsive drug carrier and delivery systems, either through inclusion complexes with hydrophobic molecules or covalent bonds with large structures to generate new materials. The present work aims to gather and integrate recent data from in vitro and in vivo preclinical studies of CD-based stimuli- responsive systems to contribute to the research in treating breast cancer. All drug carriers showed high in vitro release rates in the presence of a stimulus. The stimuli-responsive nanoplatforms presented biocompatibility and satisfactory results of IC50, inhibition of cell viability and antitumor activity against several breast cancer cell lines. Additionally, these systems led to a significant reduction in drug dosages, which encouraged possible clinical studies for better alternatives to traditional antitumor therapies.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Ciclodextrinas , Sistemas de Liberación de Medicamentos , Ciclodextrinas/química , Ciclodextrinas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Femenino , Portadores de Fármacos/química , Supervivencia Celular/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales
8.
Cell Biol Int ; 48(9): 1354-1363, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38894528

RESUMEN

Ecto-5'-nucleotidase (CD73) hydrolyses 5'AMP to adenosine and inorganic phosphate. Breast cancer cells (MDA-MB-231) express high CD73 levels, and this enzyme has been found to play a tumour-promoting role in breast cancer. However, no studies have sought to investigate whether CD73 has differential affinity or substrate preferences between noncancerous and cancerous breast cells. In the present study, we aimed to biochemically characterise ecto-5'-nucleotidase in breast cancer cell lines and assess whether its catalytic function and tumour progression are correlated in breast cancer cells. The results showed that compared to nontumoral breast MCF-10A cells, triple-negative breast cancer MDA-MB-231 cells had a higher ecto-5'-nucleotidase expression level and enzymatic activity. Although ecto-5'-nucleotidase activity in the MDA-MB-231 cell line showed no selectivity among monophosphorylated substrates, 5'AMP was preferred by the MCF-10A cell line. Compared to the MCF-10A cell line, the MDA-MB-231 cell line has better hydrolytic ability, lower substrate affinity, and high inhibitory potential after treatment with a specific CD73 inhibitor α,ß­methylene ADP (APCP). Therefore, we demonstrated that a specific inhibitor of the ecto-5-nucleotidase significantly reduced the migratory and invasive capacity of MDA-MB-231 cells, suggesting that ecto-5-nucleotidase activity might play an important role in metastatic progression.


Asunto(s)
5'-Nucleotidasa , Neoplasias de la Mama Triple Negativas , Humanos , 5'-Nucleotidasa/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Femenino , Proteínas Ligadas a GPI/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Movimiento Celular , Adenosina/metabolismo , Adenosina/análogos & derivados
9.
Nat Prod Res ; 38(11): 1956-1960, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38739565

RESUMEN

Magonia pubescens is a natural species from the Brazilian cerrado biome. Its fruits and seeds are used in the treatment of seborrheic dermatitis, a common inflammatory skin disease. In this work, the known compounds lapachol, stigmasterol, maniladiol and scopoletin were isolated from hexane and dichloromethane extracts of M. pubescens branches. The aqueous extract of this material was fractioned through a liquid-liquid partition and the obtained fractions were analyzed by UHPLC-MS/MS. The results obtained were compared with data from three databases, leading to the putative identification of 51 compounds from different classes, including flavonoids, saponins and triterpenes. The cytotoxicity of aqueous fractions was assayed against breast cancer (MDA-MB-231) and leukemia (THP-1 and K562) cells. The best activity was observed for fraction AE3 against MDA-MB-231 cells (IC50 30.72 µg.mL-1).


Asunto(s)
Antineoplásicos Fitogénicos , Neoplasias de la Mama , Fitoquímicos , Extractos Vegetales , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Femenino , Fitoquímicos/farmacología , Fitoquímicos/química , Triterpenos/farmacología , Triterpenos/química , Brasil , Leucemia/tratamiento farmacológico , Flavonoides/farmacología , Flavonoides/química , Células K562 , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Saponinas/farmacología , Saponinas/química , Células THP-1 , Estructura Molecular
10.
Food Chem ; 451: 139506, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703733

RESUMEN

This study aimed to characterize and evaluate the in vitro bioactive properties of green banana pulp (GBPF), peel (GBPeF), and mixed pulp/peel flours M1 (90/10) and M2 (80/20). Lipid concentration was higher in GBPeF (7.53%), as were the levels of free and bound phenolics (577 and 653.1 mg GAE/100 g, respectively), whereas the resistant starch content was higher in GBPF (44.11%). Incorporating up to 20% GBPeF into the mixed flour had a minor effect on the starch pasting properties of GBPF. GBPeF featured rutin and trans-ferulic acid as the predominant free and bound phenolic compounds, respectively. GBPF presented different major free phenolics, though it had similar bound phenolics to GBPeF. Both M1 and M2 demonstrated a reduction in intracellular reactive oxygen species (ROS) generation. Consequently, this study validates the potential of green banana mixed flour, containing up to 20% GBPeF, for developing healthy foods and reducing post-harvest losses.


Asunto(s)
Harina , Frutas , Musa , Valor Nutritivo , Fenoles , Musa/química , Harina/análisis , Frutas/química , Fenoles/análisis , Fenoles/química , Extractos Vegetales/química , Extractos Vegetales/análisis , Especies Reactivas de Oxígeno/metabolismo , Almidón/química , Almidón/análisis
11.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38569484

RESUMEN

A significant modification in photoinduced energy transfer in cancer cells is reported by the assistance of a dynamic modulation of the beam size of laser irradiation. Human lung epithelial cancer cells in monolayer form were studied. In contrast to the quantum and thermal ablation effect promoted by a standard focused Gaussian beam, a spatially modulated beam can caused around 15% of decrease in the ablation threshold and formation of a ring-shaped distribution of the photothermal transfer effect. Optical irradiation was conducted in A549 cells by a 532 nm single-beam emerging from a Nd:YVO4 system. Ablation effects derived from spatially modulated convergent waves were controlled by an electrically focus-tunable lens. The proposed chaotic behavior of the spatial modulation followed an Arneodo chaotic oscillator. Fractional dynamic thermal transport was analyzed in order to describe photoenergy in propagation through the samples. Immediate applications of chaos theory for developing phototechnology devices driving biological functions or phototherapy treatments can be considered.


Asunto(s)
Neoplasias Pulmonares , Dinámicas no Lineales , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Células A549 , Rayos Láser , Células Epiteliales/efectos de la radiación , Células Epiteliales/metabolismo , Terapia por Láser/métodos , Línea Celular Tumoral
12.
Chem Biodivers ; 21(2): e202301840, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38088493

RESUMEN

Resistance to antimicrobial drugs has been considered a public health problem. Likewise, the increasing resistance of cancer cells to drugs currently used in therapy has also become a problem. Therefore, the research and development of synthetic peptides bring a new perspective on the emergence of new drugs for treating this resistance since bioinformatics provides a means to optimize these molecules and save time and costs in research. Peptides have several mechanisms of action, such as forming pores on the cell membrane and inhibiting protein synthesis. Some studies report the use of antimicrobial peptides with the potential for action against cancer cells, suggesting a repositioning of antimicrobial peptides to fight back cancer resistance. There is an alteration in the microenvironment, making its net charge negative for the survival and growth of cancer cells. The changes in glycoproteins favor the membrane to have a more negative charge, favoring the interaction between the cells and the peptide, thus making possible the repositioning of these antimicrobial peptides against cancer. Here, we will discuss the mechanism of action, targets and effects of peptides, comparison between microbial and cancer cells, and proteomic changes caused by the interaction of peptides and cells.


Asunto(s)
Antiinfecciosos , Neoplasias , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Antimicrobianos , Reposicionamiento de Medicamentos , Proteómica , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Neoplasias/tratamiento farmacológico
13.
Anticancer Agents Med Chem ; 24(2): 117-124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37957873

RESUMEN

BACKGROUND: Breast cancer is the most commonly diagnosed cancer among women worldwide with limited treatment options. Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) is one of the main constituents of Brazilian propolis presenting different activities, including antitumoral effects against various types of cancer. OBJECTIVE: We evaluated the antitumoral potential and mechanisms of action of artepillin C against two distinct human breast cancer cell lines, MCF-7 and MDA-MB-231, to explore a new therapeutic candidate. METHODS: Cell viability was assessed by MTT assay and the long-term cytotoxicity was performed by clonogenic assay. The morphological changes were observed by light microscopy, analysis of cell death pathway by Annexin V FITC/propidium iodide (PI), lactate dehydrogenase (LDH) by colorimetry, DNA fragmentation by agarose gel and senescence by ß-galactosidase. Detection of total reactive oxygen species (ROS) by fluorescence microscopy and determination of mitochondrial transmembrane potential by flow cytometry were also performed. RESULTS: Artepillin C presented a strong and dose-time-dependent cytotoxic effect on MCF-7 and MDA-MB-231 cell lines, with cytotoxicity more evident in MCF-7. In both cancer cell lines, the clonogenic potential was significantly reduced and the morphology of the cells was changed. The treatment also induced death by necrosis and late apoptosis in MCF-7 and MDA-MB-231 and induced cell senescence in MCF-7. Also, artepillin C increased total ROS in both cancer cells and decreased mitochondrial membrane potential in MDA-MB-231 cells. CONCLUSION: Artepillin C presented antitumoral potential in two human breast cancer cell lines, MCF-7, and MDA-MB-231, suggesting a new promising option for the treatment and/or chemopreventive strategy for breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Fenilpropionatos , Própolis , Humanos , Femenino , Células MCF-7 , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Própolis/farmacología , Especies Reactivas de Oxígeno/metabolismo , Brasil , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Proliferación Celular
14.
J Toxicol Environ Health A ; 87(3): 91-107, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37927232

RESUMEN

Croton heliotropiifolius Kunth, popularly known as "velame," is a shrub that resides in northeastern Brazil. The essential oil of C. heliotropiifolius contains high concentrations of volatile compounds in the leaves and is widely used in folk medicine for many purposes as an antiseptic, analgesic, sedative, and anti-inflammatory agent. Due to the apparent limited amount of information, the aim of this study was to determine the cytotoxic potential of essential oil extracted from leaves of C. heliotropiifolius, utilizing different human cancer cell lines (HL-60, leukemia; HCT-116, colon; MDA-MB435, melanoma; SF295, glioblastoma) and comparison to murine fibroblast L929 cell line. The chemical characterization of the essential oil revealed the presence of large amounts of monoterpenes and sesquiterpenes, the majority of which were aristolene (22.43%), germacrene D (11.38%), ɣ-terpinene (10.85%), and limonene (10.21%). The essential oil exerted significant cytotoxicity on all cancer cells, with low activity on murine L929 fibroblasts, independent of disruption of cell membranes evidenced by absence of hemolytic activity. The cytotoxicity identified was associated with oxidative stress, which culminated in mitochondrial respiration dysfunction and direct or indirect DNA damage (strand breaks and oxidative damage), triggering cell death via apoptosis. Our findings suggest that extracts of essential oil of C. Heliotropiifolius may be considered as agents to be used therapeutically in treatment of certain cancers.


Asunto(s)
Antineoplásicos , Croton , Aceites Volátiles , Sesquiterpenos , Humanos , Animales , Ratones , Aceites Volátiles/farmacología , Croton/química , Línea Celular Tumoral , Sesquiterpenos/análisis , Hojas de la Planta/química
15.
Braz. j. biol ; 842024.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469377

RESUMEN

Abstract Reports from popular medicine usually act as a basis for the development of new drugs from natural compounds with therapeutic actions for serious diseases and prevalence such as cancer. Bromelia antiacantha Bertol. is a species of the Bromeliaceae family, considered an unconventional food plant, found in the south and midwest regions of Brazil. Despite the high nutritional content and pharmacological potential of its fruits, few scientific studies report its biological actions. Thus, this study evaluates the phytochemical profile of aqueous and ethanol extracts obtained from B. antiacantha fruits, as well as their possible antioxidant, antitumor, and cytotoxic activities. The aqueous extract exhibited phenolic compounds and flavonoids, while ethanol extracts indicated the presence of flavonoids and coumarin in their composition, regardless of the region of collection. The ethanolic extract demonstrated a more promising antioxidant effect than the aqueous extract and also induced a significant inhibition in the viability of human cervical cancer cells of the SiHa strain. In addition, treatment with both extracts did not alter the viability of non-tumor cells of the immortalized human keratinocyte lineage (HaCaT). These results bring new data about extracts obtained from a native plant, edible and traditionally used in popular medicine, opening new perspectives for its possible therapeutic application.


Resumo Relatos da medicina popular costumam atuar como referencial para o desenvolvimento de novos fármacos a partir de moléculas naturais com ações terapêuticas para doenças de alta gravidade e prevalência como o câncer. Bromelia antiacantha Bertol. é uma espécie da família Bromeliaceae, considerada uma planta alimentícia não convencional (PANC), encontrada nas regiões sul e centro-oeste do Brasil. Apesar do alto teor nutritivo e potencial farmacológico de seus frutos, poucos estudos científicos relatam suas ações biológicas. Desta forma, este estudo avalia o perfil fitoquímico de extratos aquoso e etanólico obtidos de frutos de B. antiacantha, bem como a sua possível ação antioxidante, antitumoral e citotóxica. O extrato aquoso apresentou compostos fenólicos e flavonoides, enquanto os extratos etanólicos apontam a presença de flavonóides e cumarina em sua composição, independente da região de coleta. O extrato etanólico demonstrou efeito antioxidante mais promissor do que o extrato aquoso e também induziu uma inibição significativa na viabilidade de células humanas de câncer cervical da linhagem SiHa. Além disso, o tratamento com ambos extratos não alterou a viabilidade de células não tumorais da linhagem de queratinócitos humanos imortalizados (HaCaT). Estes dados trazem novas informações sobre extratos obtidos de uma espécie vegetal nativa, comestível e já utilizada tradicionalmente, mas abrindo novas perspectivas quanto a possíveis aplicações terapêuticas.

16.
Braz. j. biol ; 84: e255529, 2024. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1364534

RESUMEN

Reports from popular medicine usually act as a basis for the development of new drugs from natural compounds with therapeutic actions for serious diseases and prevalence such as cancer. Bromelia antiacantha Bertol. is a species of the Bromeliaceae family, considered an unconventional food plant, found in the south and midwest regions of Brazil. Despite the high nutritional content and pharmacological potential of its fruits, few scientific studies report its biological actions. Thus, this study evaluates the phytochemical profile of aqueous and ethanol extracts obtained from B. antiacantha fruits, as well as their possible antioxidant, antitumor, and cytotoxic activities. The aqueous extract exhibited phenolic compounds and flavonoids, while ethanol extracts indicated the presence of flavonoids and coumarin in their composition, regardless of the region of collection. The ethanolic extract demonstrated a more promising antioxidant effect than the aqueous extract and also induced a significant inhibition in the viability of human cervical cancer cells of the SiHa strain. In addition, treatment with both extracts did not alter the viability of non-tumor cells of the immortalized human keratinocyte lineage (HaCaT). These results bring new data about extracts obtained from a native plant, edible and traditionally used in popular medicine, opening new perspectives for its possible therapeutic application.


Relatos da medicina popular costumam atuar como referencial para o desenvolvimento de novos fármacos a partir de moléculas naturais com ações terapêuticas para doenças de alta gravidade e prevalência como o câncer. Bromelia antiacantha Bertol. é uma espécie da família Bromeliaceae, considerada uma planta alimentícia não convencional (PANC), encontrada nas regiões sul e centro-oeste do Brasil. Apesar do alto teor nutritivo e potencial farmacológico de seus frutos, poucos estudos científicos relatam suas ações biológicas. Desta forma, este estudo avalia o perfil fitoquímico de extratos aquoso e etanólico obtidos de frutos de B. antiacantha, bem como a sua possível ação antioxidante, antitumoral e citotóxica. O extrato aquoso apresentou compostos fenólicos e flavonoides, enquanto os extratos etanólicos apontam a presença de flavonóides e cumarina em sua composição, independente da região de coleta. O extrato etanólico demonstrou efeito antioxidante mais promissor do que o extrato aquoso e também induziu uma inibição significativa na viabilidade de células humanas de câncer cervical da linhagem SiHa. Além disso, o tratamento com ambos extratos não alterou a viabilidade de células não tumorais da linhagem de queratinócitos humanos imortalizados (HaCaT). Estes dados trazem novas informações sobre extratos obtidos de uma espécie vegetal nativa, comestível e já utilizada tradicionalmente, mas abrindo novas perspectivas quanto a possíveis aplicações terapêuticas.


Asunto(s)
Flavonoides , Neoplasias del Cuello Uterino , Bromeliaceae , Bromelia , Usos Terapéuticos , Fitoquímicos , Fitoterapia
17.
Nat Prod Res ; : 1-7, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38126137

RESUMEN

Quinones are chemical compounds produced from the oxidation of phenols. Among the quinones, naphthoquinones stand out as potential antitumor agents. Bladder tumour is the tenth most diagnosed in the world. Based on this, using a urothelial carcinoma cell line (T24), two naphthoquinones had their cytotoxicity tested by the MTT colorimetric method and were submitted to assays of clonogenic survival, morphology, cell cycle, cell migration and species reactive oxygen. The results showed 8-methoxy-α-lapachone and lausone presented selectivity indexes (19.5 and 28.0, respectively) for T24 cells. Moreover, the two naphthoquinones reduced the cell viability, interfered with the process of cell migration, changed the cell cycle kinectics and induced the production of species reactive oxygen (ROS). Additionaly, 8-methoxy-α-lapachone altered the morphology of the cells. In conclusion, the studied naphthoquinones showed potential antiproliferative effects in bladder cancer cells, interfering in cellular processes, possibly through oxidative stress.

18.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894866

RESUMEN

Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana) contains bioactive flavonoids that may have antioxidant and/or anti-cancer properties. This study investigated the potential anti-cancer properties of a newly identified chalcone isolated from the inflorescences of the plant Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana). The chalcone structure was determined using HPLC/MS (QTOF), UV, and NMR spectroscopy. The compound cytotoxicity and selectivity were evaluated on prostate, cervical, and breast cancer cell lines using the MTT assay. Apoptosis and autophagy induction were assessed through flow cytometry by detecting annexin V/7-AAD, active Casp3/7, and LC3B proteins. These results were supported by Western blot analysis. Mitochondrial effects on membrane potential, as well as levels of pro- and anti-apoptotic proteins were analyzed using flow cytometry, fluorescent microscopy, and Western blot analysis specifically on a triple-negative breast cancer (TNBC) cell line. Furthermore, molecular docking (MD) and molecular dynamics (MD) simulations were performed to evaluate the interaction between the compounds and pro-survival proteins. The compound identified as 2',3,4-trihydroxy-4',6'-dimethoxy chalcone inhibited the cancer cell line proliferation and induced apoptosis and autophagy. MDA-MB-231, a TNBC cell line, exhibited the highest sensitivity to the compound with good selectivity. This activity was associated with the regulation of mitochondrial membrane potential, activation of the pro-apoptotic proteins, and reduction of anti-apoptotic proteins, thereby triggering the intrinsic apoptotic pathway. The chalcone consistently interacted with anti-apoptotic proteins, particularly the Bcl-2 protein, throughout the simulation period. However, there was a noticeable conformational shift observed with the negative autophagy regulator mTOR protein. Future studies should focus on the molecular mechanisms underlying the anti-cancer potential of the new chalcone and other flavonoids from Ch. tacotana, particularly against predominant cancer cell types.


Asunto(s)
Chalcona , Chalconas , Chromolaena , Neoplasias de la Mama Triple Negativas , Humanos , Chalcona/farmacología , Chalconas/farmacología , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Neoplasias de la Mama Triple Negativas/metabolismo , Proliferación Celular , Apoptosis
19.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37569780

RESUMEN

Breast cancer treatments are limited by the cancer subtype and its selectivity towards tumor cells, hence the importance of finding compounds that increase the survival of healthy cells and target any subtype. Incomptine A (IA) is a sesquiterpene lactone with demonstrated cytotoxic activity. In this study, through in vitro assays, it was observed that IA has similar cytotoxic activity between the subtypes triple negative, HER2+, and luminal A of the breast cancer cell lines. IA cytotoxic activity is higher in cancer than in nontumorigenic cells, and its selectivity index for cancer cells is more than that of the drug doxorubicin. Molecular docking and its in silico comparison with the 2-Deoxyglucose inhibitor suggest that IA could bind to Hexokinase II (HKII), decreasing its expression. Since we did not find changes in the expression of the glycolytic pathway, we suppose that IA could affect the antiapoptotic function of HKII in cancer cells. The IA-HKII union would activate the voltage-gated anion channel 1 (VDAC1), resuming apoptosis. Therefore, we suggest that IA could be used against almost any subtype and that its cytotoxic effect could be due to the reactivation of apoptosis in breast cancer cells.

20.
Methods Mol Biol ; 2709: 263-276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37572287

RESUMEN

RNA nanoparticles are promising therapeutic platforms to improve radiotherapy since they can be functionalized with multiple small interfering RNAs (RNAi) to simultaneously silence critical radioresistance genes. Here we describe the transfer of RNA rings to mammalian cancer cells through reverse transfection, followed by in vitro irradiation and biological assays as surrogates' endpoints for radiotherapy efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA