Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569417

RESUMEN

The aim of this study is to investigate the effect of dietary protein levels on flesh quality, oxidative stress, and autophagy status in the muscles of triploid crucian carp (Carassius carassius triploid), and the related molecular mechanisms. Six experimental diets with different protein levels (26%, 29%, 32%, 35%, 38%, 41%) were formulated. A total of 540 fish with an initial weight of 11.79 ± 0.09 g were randomly assigned to 18 cages and six treatments with three replicates of 30 fish each for 8 weeks feeding. It could be found that the whole-body ash content significantly increased in high protein level groups (p < 0.05). The 29% dietary protein level group exhibited the highest muscle moisture, although there was an inconspicuous decrease in the chewiness of the muscles when compared with the other groups. The dietary protein level influenced the content of free amino acids and nucleotides, especially the content of flavor amino acids, which exhibited an increasing tendency along with the increasing protein level, such as alanine and glutamic acid, while the flavor nucleotides showed different fluctuation trends. Moreover, the genes related to muscle development were shown to be influenced by the dietary protein level, especially the expression of MRF4, which was up-regulated with the increasing dietary protein levels. The 29% dietary protein level promoted the majority of analyzed muscle genes expression to the highest level when compared to other dietary levels, except the Myostain, whose expression reached its highest at 38% dietary protein levels. Furthermore, the effect of dietary protein levels on antioxidant signaling pathway genes were also examined. High protein levels would boost the expression of GSTα; GPX1 and GPX4α mRNA expression showed the highest level at the 32% dietary protein group. The increasing dietary protein level decreased both mRNA and protein expressions of Nrf2 by up-regulating Keap1. Autophagy-related gene expression levels reached the peak at 32% dietary protein level, as evidenced by a similar change in protein expression of FoxO1. In summary, muscle nutritional composition, antioxidative pathways, and autophagy levels were affected by the dietary protein levels. A total of 29-32% dietary protein level would be the appropriate level range to improve muscle quality and promote the antioxidant and autophagy capacity of triploid crucian carp muscles.

2.
Chemosphere ; 332: 138801, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37121290

RESUMEN

The purpose of this study was to evaluate the toxic effects of polyethylene microplastics (PE-MPs) by measuring the bioaccumulation, hematological parameters, and antioxidant responses in crucian carp (Carassius Carassius) exposed to waterborne 22-71 µm PE-MPs. C. carassius (mean weight, 24.0 ± 2.1 g; mean length, 13.1 ± 1.2 cm) were exposed to PE-MPs at concentration of 0, 4, 8, 16, 32, and 64 mg/L for 2 weeks. The accumulation of PE-MPs in each tissue of C. carassius was significantly increased in proportion to the PE-MPs concentration; the highest accumulation was observed in the intestine, followed by the gills and liver. Hematological parameters, plasma components and antioxidants responses were significantly affected by PE-MPs in a concentration-dependent manner. Exposure to ≥32 mg/L PE-MPs induced a significant decrease in red blood cells (RBCs), hemoglobin (Hb) content, and hematocrit values. However, exposure to ≥32 mg/L PE-MPs induced oxidative stress in the liver, gill, and intestine of C. carassius, thereby resulting in a significant increase in the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) and a decrease in glutathione (GSH) levels. The effects of interaction between the PE-MPs and exposure periods showed no significant changes in bioaccumulation, hematological parameters, plasma components and antioxidant responses. These finding indicate that the exposure to ≥32 mg/L PE-MPs could cause a significant accumulation in specific tissues of C. carassius, resulting in changes in hematological parameters, plasma components, and antioxidant responses. However, the interaction between PE-MPs and exposure periods had no significant effects, thereby suggesting the lack of toxicological interactions between PE-MPs and exposure periods in C. carassius.


Asunto(s)
Carpas , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Carpas/metabolismo , Plásticos/farmacología , Microplásticos/toxicidad , Polietileno/farmacología , Bioacumulación , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo , Glutatión/metabolismo
3.
Viruses ; 14(9)2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-36146873

RESUMEN

Cyprinid herpesvirus 2 (CyHV-2) is a causative factor of herpesviral hematopoietic necrosis (HVHN) in farmed crucian carp (Carassius carassius) and goldfish (Carassius auratus). In this study, we analyzed the genomic characteristics of a new strain, CyHV-2 SH-01, isolated during outbreaks in crucian carp at a local fish farm near Shanghai, China. CyHV-2 SH-01 exhibited a high sensitivity to goldfish and crucian carp in our previous research. The complete genome of SH-01 is 290,428 bp with 154 potential open reading frames (ORFs) and terminal repeat (TR) regions at both ends. Compared to the sequenced genomes of other CyHVs, Carassius auratus herpesvirus (CaHV) and Anguillid herpesvirus 1 (AngHV-1), several variations were found in SH-01, including nucleotide mutations, deletions, and insertions, as well as gene duplications, rearrangements, and horizontal transfers. Overall, the genome of SH-01 shares 99.60% of its identity with that of ST-J1. Genomic collinearity analysis showed that SH-01 has a high degree of collinearity with another three CyHV-2 isolates, and it is generally closely related to CaHV, CyHV-1, and CyHV-3, although it contains many differences in locally collinear blocks (LCBs). The lowest degree of collinearity was found with AngHV-1, despite some homologous LCBs, indicating that they are evolutionarily the most distantly related. The results provide new clues to better understand the CyHV-2 genome through sequencing and sequence mining.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Herpesviridae , Herpesviridae , Animales , China , Carpa Dorada , Herpesviridae/genética , Infecciones por Herpesviridae/veterinaria , Nucleótidos
4.
Aquat Toxicol ; 241: 105998, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34706309

RESUMEN

Tartrazine (TZ) is an azo dye widely used in foods, cosmetics, beverages, textile, and leather. In recent years, there are reports on detecting azo dyes in the aquatic environment, so the impact of these compounds on aquatic organisms could not be ignored. In this study, we aimed to evaluate the adverse effects of TZ exposure on teleosts' embryo development and juvenile's health by using crucian carp (Carassius carassius) as the experimental fish. The results showed that embryos exposed to TZ (0.19, 0.76 and 1.5 mM) exhibited a deformity, delayed egg resorption and decreased fertilization and hatching rate. When the juvenile fish were exposed to TZ at a level higher than those present in water for 30 days caused severe histopathological damages of the gill, intestine, kidney and liver. Antioxidant enzymes (CAT, SOD and GSH-Px) activities in the gill, intestine and liver, exhibited a decreasing trend after TZ exposure, while MDA contents elevated. TZ exposure also resulted in the upregulation of pro-inflammatory cytokines (il1 and il6), lysozymes (lyz), complement component 3 (c3), and ß-defensin 3 (defb3). In addition, TZ exposure also affected the intestinal microbiota structure. In summary, the data in the present study indicated that TZ exposure  reduce the embryo fertilization and hatching rate; cause histopathological damage of tissues, trigger oxidative stress, innate immune disorders and dysbiosis of gut microbiota in juvenile crucian carp. Therefore, it is necessary to be informed about the hazards of TZ exposure and the discharge of the dye into waters should be strictly administrated to prevent environmental pollution.


Asunto(s)
Carpas , Microbioma Gastrointestinal , Enfermedades del Sistema Inmune , Contaminantes Químicos del Agua , Animales , Disbiosis , Estrés Oxidativo , Tartrazina , Contaminantes Químicos del Agua/toxicidad
5.
Cells ; 10(9)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34571992

RESUMEN

The widely distributed ray-finned fish genus Carassius is very well known due to its unique biological characteristics such as polyploidy, clonality, and/or interspecies hybridization. These biological characteristics have enabled Carassius species to be successfully widespread over relatively short period of evolutionary time. Therefore, this fish model deserves to be the center of attention in the research field. Some studies have already described the Carassius karyotype, but results are inconsistent in the number of morphological categories for individual chromosomes. We investigated three focal species: Carassius auratus, C. carassius and C. gibelio with the aim to describe their standardized diploid karyotypes, and to study their evolutionary relationships using cytogenetic tools. We measured length (q+plength) of each chromosome and calculated centromeric index (i value). We found: (i) The relationship between q+plength and i value showed higher similarity of C. auratus and C. carassius. (ii) The variability of i value within each chromosome expressed by means of the first quartile (Q1) up to the third quartile (Q3) showed higher similarity of C. carassius and C. gibelio. (iii) The fluorescent in situ hybridization (FISH) analysis revealed higher similarity of C. auratus and C. gibelio. (iv) Standardized karyotype formula described using median value (Q2) showed differentiation among all investigated species: C. auratus had 24 metacentric (m), 40 submetacentric (sm), 2 subtelocentric (st), 2 acrocentric (a) and 32 telocentric (T) chromosomes (24m+40sm+2st+2a+32T); C. carassius: 16m+34sm+8st+42T; and C. gibelio: 16m+22sm+10st+2a+50T. (v) We developed R scripts applicable for the description of standardized karyotype for any other species. The diverse results indicated unprecedented complex genomic and chromosomal architecture in the genus Carassius probably influenced by its unique biological characteristics which make the study of evolutionary relationships more difficult than it has been originally postulated.


Asunto(s)
Carpas/genética , Carpa Dorada/genética , Animales , Mapeo Cromosómico/métodos , Cromosomas/genética , Diploidia , Femenino , Peces/genética , Variación Genética/genética , Genoma/genética , Hibridación Fluorescente in Situ/métodos , Cariotipo , Cariotipificación/métodos , Masculino , Filogenia , Poliploidía
6.
J Anim Ecol ; 90(11): 2651-2662, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34309851

RESUMEN

Novel trophic interactions between invasive and native species potentially increase levels of interspecific competition in the receiving environment. However, theory on the trophic impacts of invasive fauna on native competitors is ambiguous, as while increased interspecific competition can result in the species having constricted and diverged trophic niches, the species might instead increase their niche sizes, especially in omnivorous species. The competitive interactions between an omnivorous invasive fish, common carp Cyprinus carpio, and a tropically analogous native and threatened fish, crucian carp Carassius carassius, were tested using comparative functional responses (CFRs). A natural pond experiment then presented the species in allopatry and sympatry, determining the changes in their trophic (isotopic) niche sizes and positions over 4 years. These predictive approaches were complemented by assessing their trophic relationships in wild populations. Comparative functional responses revealed that compared to crucian carp, carp had a significantly higher maximum consumption rate. Coupled with a previous cohabitation growth study, these results predicted that competition between the species is asymmetric, with carp the superior competitor. The pond experiment used stable isotope metrics to quantify shifts in the trophic (isotopic) niche sizes of the fishes. In allopatry, the isotopic niches of the two species were similar sized and diverged. Conversely, in sympatry, carp isotopic niches were always considerably larger than those of crucian carp and were strongly partitioned. Sympatric crucian carp had larger isotopic niches than allopatric conspecifics, a likely response to asymmetric competition from carp. However, carp isotopic niches were also larger in sympatry than allopatry. In the wild populations, the carp isotopic niches were always larger than crucian carp niches, and were highly divergent. The superior competitive abilities of carp predicted in aquaria experiments were considered to be a process involved in sympatric crucian carp having larger isotopic niches than in allopatry. However, as sympatric carp also had larger niches than in allopatry, this suggests other ecological processes were also likely to be involved, such as those relating to fish prey resources. These results highlight the inherent complexity in determining how omnivorous invasive species integrate into food webs and alter their structure.


Asunto(s)
Carpas , Especies Introducidas , Animales , Ecosistema , Especies en Peligro de Extinción , Cadena Alimentaria
7.
Ecotoxicol Environ Saf ; 205: 111106, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32818877

RESUMEN

The uptake and depuration kinetics of diclofenac and carbamazepine alone at an environmentally relevant nominal concentration of 2 µg/L and in combination at a concentration ratio of 1:1 with total concentration of 4 µg/L were evaluated in Carassius carassius after 7 d uptake and depuration. Also, the biochemical effects of both drugs alone at nominal concentrations of 2 and 10 µg/L as well as in combination with total concentrations of 4 and 20 µg/L were investigated in Carassius carassius after 7 d exposure followed by 10 d recovery. In the single treatments, steady-state BCFs measured after the 7 d exposure were 73.05, 49.71, 38.01 and 24.93 L/kg for diclofenac and 9.25, 8.99, 5.29 and 4.11 L/kg for carbamazepine in the liver, brain, gill and muscle of Carassius carassius, respectively. Comparatively lower BCFs were measured in the tissues of Carassius carassius for both drugs in the combined treatments. Acetylcholinesterase activity in the brain was significantly induced by diclofenac while carbamazepine and the mixtures significantly inhibited it during all the exposure days as well as after the 10 d recovery in all treatments. This indicates that Carassius carassius could not recover from the neurotoxic effects caused by carbamazepine unlike the inductive effect caused by diclofenac which was recoverable after 10 days. A significant increase in the activities of 7-ethoxyresorufin O-deethylase and glutathione s-transferase for individual and mixed pharmaceuticals suggest that metabolism and detoxification of both drugs took place in the liver of Carassius carassius. Also, a significant increase in the activities of superoxide dismutase, catalase, glutathione reductase and malondialdehyde contents in the individual and mixture treatments mean that the antioxidant defence system of Carassius carassius was triggered to fight against oxidative stress but lipid peroxidation still occurred. However, Carassius carassius recovered from all these increases (superoxide dismutase, catalase, glutathione reductase and malondialdehyde) after the 10 d recovery, suggesting that oxidative damage is reversible. Our results indicate that both drugs at environmentally relevant concentrations might cause adverse effects in Carassius carassius and other fish species.


Asunto(s)
Carbamazepina/toxicidad , Carpas/metabolismo , Diclofenaco/toxicidad , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Antioxidantes/metabolismo , Carbamazepina/metabolismo , Catalasa/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Diclofenaco/metabolismo , Glutatión Transferasa/metabolismo , Inactivación Metabólica , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Malondialdehído/metabolismo , Oxidación-Reducción , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/metabolismo
8.
Comp Biochem Physiol B Biochem Mol Biol ; 243-244: 110430, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32105700

RESUMEN

To lend insight into the potential role of the gasotransmitter hydrogen sulfide (H2S) in facilitating anoxia survival of anoxia-tolerant vertebrates, we quantified the gene expression of the primary H2S-synthesizing enzymes, 3-mercaptopyruvate sulfurtransferase (3MST), cystathionine γ-lyase (CSE) and cystathionine ß-synthase (CBS), in ventricle and brain of normoxic, anoxic and reoxygenated 21 °C- and 5 °C-acclimated freshwater turtles (Trachemys scripta) and 10 °C-acclimated crucian carp (Carassius carassius). Semi-quantitative Western blotting analysis was also conducted to assess 3MST and CBS protein abundance in ventricle and brain of 5 °C turtles and 10 °C crucian carp subjected to normoxia, anoxia and reoxygenation. We hypothesized that if H2S was advantageous for anoxia survival, expression levels would remain unchanged or be upregulated with anoxia and/or reoxygenation. Indeed, for both species, gene and protein expression were largely maintained with anoxia exposure (24 h, 21 °C; 5 d, 10 °C; 14 d, 5 °C). With reoxygenation, 3MST expression was increased in turtle and crucian carp brain at the protein and gene level, respectively. Additionally, the effect of cold acclimation on gene expression was assessed in several tissues of the turtle. Expression levels were maintained in most tissues, but decreased in others. The maintenance of gene and protein expression of the H2S-producing enzymes with anoxia exposure and the up-regulation of 3MST with reoxygenation suggests that H2S may facilitate anoxic survival of the two champions of vertebrate anoxia survival. The differential effects of cold acclimation on H2S enzyme expression may influence blood flow to different tissues during winter anoxia.


Asunto(s)
Aclimatación/genética , Encéfalo/metabolismo , Carpas/metabolismo , Sulfuro de Hidrógeno/metabolismo , Hipoxia/metabolismo , Tortugas/metabolismo , Animales , Carpas/genética , Frío , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Hipoxia/enzimología , Sulfurtransferasas/metabolismo , Tortugas/genética
9.
Microsc Res Tech ; 83(4): 362-369, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31825143

RESUMEN

Fish erythrocytes are very sensitive to environmental pollution because they exhibit pathological alterations before appearance of other external symptoms, may be used as reliable toxicity bioindicators. Microscopic analysis can be a useful tool in early detection of alterations in erythrocyte morphology due to different environmental stressors, and in predicting organism's possible response ways. This study aims to evaluate the toxicity of a polluted freshwater lake on the erythrocytes of crucian carp fish, Carassius carassius, using digital light microscopy (DLM). Scanning DLM micrographs revealed the presence of nuclear and cytoplasmic abnormalities like micronucleus, nuclear buds, lobed nucleus, deformed nucleus, vacuolated cytoplasm, and echinocyte in the erythrocytes of crucian carp fish from a polluted lake. The obtained results substantiate that computation of erythrocyte morphological damages as biomarkers of exposure, through digital light microscopy software, can be effectively used as a toxicological tool.


Asunto(s)
Carpas/sangre , Eritrocitos/patología , Eritrocitos/ultraestructura , Microscopía/métodos , Programas Informáticos , Animales , Biomarcadores , Eritrocitos/efectos de los fármacos , Lagos/química , Contaminantes del Agua/toxicidad
10.
Front Immunol ; 10: 1991, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507599

RESUMEN

Temperature is one of the major factors that affect the outbreak of infectious disease. Lines of evidences have shown that virulence factors can be controlled by thermo-sensors in bacterial pathogens. However, how temperature influences host's responses to the pathogen is still largely unexplored, and the study of this might pave the way to develop strategies to manage pathogenic bacterial infection. In the present study, we show that finfish Carassius carassius, the crucian carp that is tolerant to a wide range of temperatures, is less susceptible to bacterial infection when grown in 20°C than in 30°C. The different responses of C. carassius to bacterial infection could be partially explained by the distinct metabolisms under the specific temperatures: C. carassius shows elevated tricarboxylic acid cycle (TCA cycle) but decreased taurine and hypotaurine metabolism as well as lower biosynthesis of unsaturated fatty acids at 30°C. The decreased abundance of palmitate, threonine, and taurine represents the most characteristic metabolic feature. Consistently, exogenous palmitate, threonine, or taurine enhances the survival of C. carassius to bacterial infection at 30°C in a dose-dependent manner. This effect could be attributed to the inhibition on the TCA cycle by the three metabolites. This notion is further supported by the fact that low concentration of malonate, a succinate dehydrogenase inhibitor, increases the survival of C. carassius at 30°C as well. On the other hand, addition of the three metabolites rescued the decreased expression of pro-inflammatory cytokines including TNF-α1, TNF-α2, IL-1ß1, IL-1ß2, and lysozyme at 30°C. Taken together, our results revealed an unexpected relationship between temperature and metabolism that orchestrates the immune regulation against infection by bacterial pathogens. Thus, this study shed light on the modulation of finfish physiology to fight against bacterial infection through metabolism.


Asunto(s)
Carpas/microbiología , Edwardsiella tarda , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/microbiología , Temperatura , Animales , Biomarcadores , Carpas/genética , Carpas/metabolismo , Ciclo del Ácido Cítrico , Biología Computacional/métodos , Susceptibilidad a Enfermedades , Enfermedades de los Peces/genética , Enfermedades de los Peces/mortalidad , Inmunidad Innata/genética , Metaboloma , Metabolómica/métodos , Pronóstico , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA