Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Macromol ; 278(Pt 3): 134940, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173806

RESUMEN

The patterns of formation of chitosan nanoparticles doped with vancomycin and coatings based on them in carbonate solutions have been investigated for the first time in this study. Using a technique of radioactive indicators, it was found that at a CO2 pressure of 30 MPa, the yield of the nanoparticles was ∼85 %, and a maximum antibiotic encapsulation efficiency of ∼30 % was achieved. By spectrophotometric and high-resolution microscopy, it was found that the coating of stabilized xenopericardial tissue of bioprosthetic heart valve, based on chitosan nanoparticles doped with vancomycin with a zeta potential |ζ| ∼20 mV completely covers collagen fibers by depositing about 60 nm nanoparticles onto them under direct deposition from carbonic acid at a pressure of 30 MPa CO2. The coating preserves the mechanical strength characteristics of collagen tissue and completely suppresses the growth of S. aureus pathogenic biofilm. This is consistent with the observed increase in antibiotic release of 15 % when the medium was acidified. Histological study demonstrated that the structure of pericardial tissues was not significantly altered by the deposition nanoparticles from carbonic acid. It was found that the rate of biodegradation of polymers and vancomycin in the coating differs by half (16 weeks for the rat model). A significantly lower degradation rate of antibiotics (∼50 % of vancomycin total remaining mass and ∼25 % of chitosan) was associated with its reliable encapsulation into nanoparticles.

2.
Chemphyschem ; : e202400274, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031477

RESUMEN

Against the general belief that carbonic acid is too unstable for synthesis, it was possible to synthesize the solid as well as gas-phase carbonic acid. It was suggested that solid carbonic acid might exist in Earth's upper troposphere and in the harsh environments of other solar bodies, where it undergoes a cycle of synthesis, decomposition, and dimerization. To provide spectroscopic data for probing the existence of extraterrestrial carbonic acid, matrix-isolation infrared (MI-IR) spectroscopy has shown to be essential. However, early assignments within the harmonic approximation using scaling factors impeded a full interpretation of the rather complex MI-IR spectrum of H2CO3. Recently, carbonic acid was detected in the Galactic center molecular cloud and triggered new interest in the anharmonic spectrum. In this regard, we substantially reassign our Argon MI-IR spectra relying on accurate anharmonic calculations. We calculate a four-mode potential energy surface (PES) at the explicitly correlated coupled-cluster theory using up to triple-zeta basis sets, i.e., CCSD(T)-F12/cc-pVTZ-F12. On this PES, we perform vibrational self-consistent field and configuration interaction (VSCF/VCI) calculations to obtain accurate vibrational transition frequencies and resonance analysis of the fundamentals, first overtones, and combination bands.

3.
Temperature (Austin) ; 11(2): 123-136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846527

RESUMEN

This study compared the effects of precooling via whole-body immersion in 25°C CO2-enriched water (CO2WI), 25°C unenriched water (WI) or no cooling (CON) on 10-km cycling time trial (TT) performance. After 30 min of precooling (CO2WI, CON, WI) in a randomized, crossover manner, 11 male cyclists/triathletes completed 30-min submaximal cycling (65%VO2peak), followed by 10-km TT in the heat (35°C, 65% relative humidity). Average power output and performance time during TT were similar between conditions (p = 0.387 to 0.833). Decreases in core temperature (Tcore) were greater in CO2WI (-0.54 ± 0.25°C) than in CON (-0.32 ± 0.09°C) and WI (-0.29 ± 0.20°C, p = 0.011 to 0.022). Lower Tcore in CO2WI versus CON was observed at 15th min of exercise (p = 0.050). Skin temperature was lower in CO2WI and WI than in CON during the exercise (p < 0.001 to 0.031). Only CO2WI (1029 ± 305 mL) decreased whole-body sweat loss compared with CON (1304 ± 246 mL, p = 0.029). Muscle oxygenation by near-infrared spectroscopy (NIRS), thermal sensation, and thermal comfort were lower in CO2WI and WI versus CON only during precooling (p < 0.001 to 0.041). NIRS-derived blood volume was significantly lower in CO2WI and WI versus CON during exercise (p < 0.001 to 0.022). Heart rate (p = 0.998) and rating of perceived exertion (p = 0.924) did not differ between conditions throughout the experiment. These results suggested that CO2WI maybe more effective than WI for enhanced core body cooling and minimized sweat losses.

4.
Angew Chem Int Ed Engl ; 63(22): e202403953, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536217

RESUMEN

Carbon dioxide (CO2) is widespread in astrochemically relevant environments, often coexisting with water (H2O) ices and thus triggering a great interest regarding the possible formation of their adducts under various thermodynamic conditions. Amongst them, solid carbonic acid (H2CO3) remains elusive, yet being widely studied. Synthetic routes followed for its production have always been characterised by drastic irradiation on solid ice mixtures or complex procedures on fluid samples (such as laser heating at moderate to high pressures). Here we report about a simpler yet effective synthetic route to obtain two diverse carbonic acid crystal structures from the fast, cold compression of pristine clathrate hydrate samples. The two distinct polymorphs we obtained, differing in the water content, have been deeply characterised via spectroscopic and structural techniques to assess their composition and their astonishing pressure stability, checked up to half a megabar, also highlighting the complex correlations between them so to compile a detailed phase diagram of this system. These results may have a profound impact on the prediction and modelisation of the complex chemistry which characterises many icy bodies of our Solar System.

5.
Heliyon ; 10(3): e25587, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38371983

RESUMEN

In this study, a simple in-situ preparation method for coating on Mg-Zn alloy in a carbonic acid solution was investigated. The formation of a precursor carbonate layer on the alloy surface was observed. As the soaking time increased, the solution gradually turned alkaline, leading to the transformation of the precursor into a basic carbonate coating with a layered hydroxide structure. The corrosion potential (Ecorr) of the coated samples initially decreased and then increased with increasing the soaking time. After 2 h of soaking, the lowest corrosion potential observed was approximately -1.5105 V. At 12 h, the corrosion potential reached around -1.4645 V, which was comparable to that of the ZK61M magnesium alloy. After 48 h, the corrosion potential was measured to be approximately -1.3507 V.

6.
Magn Reson Chem ; 62(2): 114-120, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38258899

RESUMEN

NMR spectroscopy has become a standard technique in studies both on carbon capture and storage. 13 C NMR allows the detection of two peaks for carbonated aqueous samples: one for CO2(aq) and another one for the species H2 CO3 , HCO3 - , and CO3 2- -herein collectively named Hx CO3 x-2 . The chemical shift of this second peak depends on the molar fraction of the three species in equilibrium and has been used to assess the equilibrium between HCO3 - and CO3 2- . The detection of H2 CO3 at low pH solutions is hindered, because of the concurrent liberation of CO2 when the medium is acidified. Herein, a valved NMR tube facilitates the detection of the Hx CO3 x-2 peak across a wide pH range, even at pH 1.8 where the dominant species is H2 CO3 . The method employed the formation of frozen layers of NaH13 CO3 and acid solutions within the tube, which are mixed as the tube reaches room temperature. At this point, the tube is already securely sealed, preventing any loss of CO2 to the atmosphere. A spectrophotometry approach allowed the measurement of the actual pH inside the pressurized NMR tube. The chemical shift for H2 CO3 was determined as 160.33 ± 0.03 ppm, which is in good agreement with value obtained by DFT calculations combined with Car-Parrinello molecular dynamics. The H2 CO3 pKa value determined by the present method was 3.41 ± 0.03, for 15% D2 O aqueous medium and 0.8 mol/L ionic strength. The proposed method can be extended to studies about analogs such as alkyl carbonic and carbamic acids.

7.
Mar Environ Res ; 192: 106219, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37848362

RESUMEN

Based on observations in China's east coastal oceans, we conducted a preliminary assessment of 16 sets of carbonic acid dissociation constants (K1* and K2*) by comparing spectrophotometrically measured pH values at 25 °C with those calculated from total alkalinity and dissolved inorganic carbon. We obtained that K1* and K2* often performed differently within different salinity ranges, and that the constants of Millero et al. (2002) (M02) demonstrated the best performance for the salinity range of 24-35. In contrast, the often recommended constants of Mehrbach et al. (1973) refit by Dickson and Millero (1987) (DM87-M) and Lucker et al. (2000) (L00) would underestimate pH at salinities of 24-30. This was mainly associated with the higher product of K1* and K2* by DM87-M and L00 than by M02 at this salinity range. Also, we found almost no differences between pH values calculated with DM87-M and L00.


Asunto(s)
Carbono , Ácido Carbónico , Océanos y Mares , Carbono/análisis , Salinidad , China
8.
Sci Total Environ ; 903: 166127, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572905

RESUMEN

Carbonate alkalinity is crucial in regulating the pH and buffering capacity of natural water systems. Thus, its accurate measurement is essential to understand various water environments that affect water quality and ecosystem health. However, conventional potentiometric titration has some limitations. It results in inaccurate measurements of carbonate alkalinity when the alkalinity levels are low or when high dissolved organic matter or inorganic ion levels exist. Herein, we propose a novel approach to accurately measure carbonate alkalinity using a total organic carbon (TOC) analyzer. An extensive study comparing the accuracy and reliability of the conventional potentiometric titration method with those of the newly developed TOC method was conducted to develop and verify highly accurate measurements of carbonate alkalinity. The TOC method has several advantages over the conventional potentiometric titration methods, such as its ability to accurately measure carbonate alkalinity in the presence of high dissolved organic matter or inorganic ion levels and its ability to provide rapid and automated measurements with high reproducibility. Because, the limit of detection, limit of quantification, and the variation coefficient of the measurements was 0.016 mM (0.2 mgC/L), 0.050 mM (0.6 mgC/L), and 3.68 % respectively. Thus, the development of a novel TOC method has significant environmental implications as it provides a reliable and accurate means to measure carbonate alkalinity in solutions containing various organic matter types.

9.
Food Microbiol ; 115: 104324, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567633

RESUMEN

In dairy industry, filamentous fungi are used as adjunct cultures in fermented products for their technological properties but they could also be responsible for food spoilage and mycotoxin production. The consumer demands about free-preservative products has increased in recent years and lead to develop alternative methods for food preservation. Modified Atmosphere Packaging (MAP) can inhibit fungal growth and therefore increase the food product shelf-life. This study aimed to evaluate radial growth as a function of CO2 and more particularly carbonic acid for fourteen adjuncts and/or fungal spoiler isolated from dairy products or dairy environment by using predictive mycology tools. The impact of the different chemical species linked to CO2 (notably carbonic acid) were study because it was reported previously that undissociated carbonic acid impacted bacterial growth and bicarbonates ions were involved in modifications of physiological process of fungal cells. A significant diversity in the responses of selected strains was observed. Mucor circinelloides had the fastest growth rates (µ > 11 mm. day-1) while Bisifusarium domesticum, Cladosporium herbarum and Penicillium bialowiezense had the slowest growth rates (µ < 1 mm. day-1). Independently of the medium pH, the majority of strains were sensitive to total carbonic acid. In this case, it was not possible to conclude if CO2 active form was gaseous or aqueous so modeling were performed as a function of CO2 percentage. Only Geotrichum candidum and M. circinelloides strains were sensitive to undissociated carbonic acid. Among the fourteen strains, P. bialowiezense was the less sensitive strain to CO2, no growth was observed at 50% of CO2 only for this strain. M. lanceolatus was the less sensitive strain to CO2, the CO250 which reduce the growth rates by 50% was estimated at 138% of CO2. Low CO2 percentage improved the growth of Penicillium expansum, Penicillium roqueforti and Paecilomyces niveus. Mathematical models (without and with optimum) were suggested to describe the impact of CO2 percentage or undissociated carbonic acid concentration on fungal growth rate.


Asunto(s)
Dióxido de Carbono , Ácido Carbónico , Dióxido de Carbono/farmacología , Hongos , Productos Lácteos/microbiología , Conservación de Alimentos/métodos
10.
Bone ; 169: 116684, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36709914

RESUMEN

Carbonic anhydrase II deficiency (OMIM # 259730), initially called "osteopetrosis with renal tubular acidosis and cerebral calcification syndrome", reveals an important role for the enzyme carbonic anhydrase II (CA II) in osteoclast and renal tubule function. Discovered in 1972 and subsequently given various names, CA II deficiency now describes >100 affected individuals encountered predominantly from the Middle East and Mediterranean region. In 1983, CA II deficiency emerged as the first osteopetrosis (OPT) understood metabolically, and in 1991 the first understood molecularly. CA II deficiency is the paradigm OPT featuring failure of osteoclasts to resorb bone due to inability to acidify their pericellular milieu. The disorder presents late in infancy or early in childhood with fracturing, developmental delay, weakness, short stature, and/or cranial nerve compression and palsy. Mental retardation is common. The skeletal findings may improve by adult life, and CA II deficiency can be associated with a normal life-span. Therefore, it has been considered an "intermediate" type of OPT. In CA II deficiency, OPT is uniquely accompanied by renal tubular acidosis (RTA) of proximal, distal, or combined type featuring hyperchloremic metabolic acidosis, rarely with hypokalemia and paralysis. Cerebral calcification uniquely appears in early childhood. The etiology is bi-allelic loss-of-function mutations of CA2 that encodes CA II. Prenatal diagnosis requires mutational analysis of CA2. Although this enzymopathy reveals how CA II is important for the skeleton and kidney tubule, the pathogenesis of the mental subnormality and cerebral calcification is less well understood. Several mouse models of CA II deficiency have shown growth hormone deficiency, yet currently there is no standard pharmacologic therapy for patients. Treatment of the systemic acidosis is often begun when growth is complete. Although CA II deficiency is an "osteoclast-rich" OPT, and therefore transplantation of healthy osteoclasts can improve the skeletal disease, the RTA and central nervous system difficulties persist.


Asunto(s)
Acidosis Tubular Renal , Calcinosis , Anhidrasa Carbónica II , Anhidrasas Carbónicas , Discapacidad Intelectual , Osteopetrosis , Trastornos Innatos del Ciclo de la Urea , Animales , Preescolar , Femenino , Humanos , Ratones , Embarazo , Acidosis Tubular Renal/complicaciones , Acidosis Tubular Renal/genética , Calcinosis/genética , Anhidrasas Carbónicas/genética , Discapacidad Intelectual/genética , Osteopetrosis/genética , Trastornos Innatos del Ciclo de la Urea/complicaciones , Anhidrasa Carbónica II/deficiencia
11.
Int J Biol Macromol ; 222(Pt B): 2761-2774, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36252623

RESUMEN

The tightly bonded shielding coating on biomatrix significantly enhances the functionality of medical devices, bioprostheses in particular. In our work we have obtained a polyelectrolyte coating on a biomatrix by sequentially depositing chitosan and hyaluronic acid (HA) from solutions in carbonic acid under pressure. This approach makes it possible to obtain hybrid biomatrix with a firmly bonded polymer screen due to the electrostatic bonding of polyions. High-precision analysis using a tritium label shows a 3-fold increase in quantity of HA in carbonic acid under pressure compared to the conventional method. The presence of the chitosan layer increases the HA adsorption by 15-20 % due to electrostatic interaction of differently charged polymers. Antimicrobial results show the possibility of implementing an induced antimicrobial response, due to the lysis of the upper layer of the coating (HA) and the release of antimicrobial agents in the case of growth of pathogens on the bioprosthesis.


Asunto(s)
Antiinfecciosos , Quitosano , Ácido Hialurónico , Ácido Carbónico , Polielectrolitos , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Válvulas Cardíacas , Carbono
12.
Angew Chem Int Ed Engl ; 60(14): 7860-7865, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33393709

RESUMEN

Carbonic acid, H2 CO3 , is of fundamental importance in nature both in living and non-living systems. Providing direct spectroscopic evidence for carbonic acid formation is however a challenge. Here we provide clear evidence by in situ attenuated total reflection IR spectroscopy combined with modulation excitation spectroscopy and phase-sensitive detection that CO2 adsorption on ice surfaces is accompanied by carbonic acid formation. We demonstrate that carbonic acid can be formed from CO2 on ice in the absence of high-energy irradiation and without protonation by strong acids. The formation of carbonic acid is favored at low temperature, whereas at high temperature it rapidly dissociates to form bicarbonate (HCO3 - ) and carbonate (CO3 2- ). The direct formation of carbonic acid from adsorption of CO2 on ice could play a role in the upper troposphere in cirrus clouds, where all the necessary ingredients to form carbonic acid, that is, low temperature, CO2 gas, and ice, are present.

13.
Molecules ; 27(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35011240

RESUMEN

Carbonic acid is an important species in a variety of fields and has long been regarded to be non-existing in isolated state, as it is thermodynamically favorable to decompose into water and carbon dioxide. In this work, we systematically studied a novel ionic complex [H2CO3·HSO4]- using density functional theory calculations, molecular dynamics simulations, and topological analysis to investigate if the exotic H2CO3 molecule could be stabilized by bisulfate ion, which is a ubiquitous ion in various environments. We found that bisulfate ion could efficiently stabilize all the three conformers of H2CO3 and reduce the energy differences of isomers with H2CO3 in three different conformations compared to the isolated H2CO3 molecule. Calculated isomerization pathways and ab initio molecular dynamics simulations suggest that all the optimized isomers of the complex have good thermal stability and could exist at finite temperatures. We also explored the hydrogen bonding properties in this interesting complex and simulated their harmonic infrared spectra to aid future infrared spectroscopic experiments. This work could be potentially important to understand the fate of carbonic acid in certain complex environments, such as in environments where both sulfuric acid (or rather bisulfate ion) and carbonic acid (or rather carbonic dioxide and water) exist.

14.
Res Q Exerc Sport ; 92(3): 537-548, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32657642

RESUMEN

High intensity exercise can lead to depletion of CO2 from the body (hypocapnia). This disturbance becomes more noticeable during recovery or between seasons of intermittent exercise, putting the subject in a neural fatigue state. Objectives: A possible hypothesis to address this condition would be to provide high CO2 mixtures (hypercapnic) during the recovery period from exercise in order to relieve hypocapnia. Methods: Eight men (23.8 ± 1.2 yrs, VO2max = 45 ± 1.9 ml▪kg-1▪min-1) performed cycling exercise at 80%VO2max for 6-7 min. During recovery (23 min) they inhaled hypercapnic air (EXP-21%O2, 3%CO2, and 76%N2) or normal air (CON-21%O2, 0.003%CO2, and 79%N2). Respiratory parameters were collected with open spirometry and heart rate was measured. Results: Exercise caused mild hypocapnia {9.9 mmHg drop of CO2 end-expiratory partial pressure (PETCO2)} in CON condition after exercise (p < .005). PETCO2 elevated close to the rest values during the three hypercapnic phases in EXP condition (main effect of condition p < .001 between EXP and CON), but after hypercapnic breathing it returned to hypocapnia similarly with CON. The ventilatory response (VE▪PETCO2-1) and the exhaled volume of CO2 (VCO2) progressively increased during and also after ventilatory manipulations in EXP compared to CON condition (VE▪PETCO2-1: post hoc p < .001, VCO2: pVCO2: p < .05-.001), and VO2 became lower after the end of second hypercapnic manipulation (p < .05 between EXP and CON). Conclusion: It seems that hypercapnic breathing after exercise is not a good strategy to reverse exercise hypocapnia, because of great hyperventilation caused by CO2 and exercise mechanisms during the recovery period leading to increased CO2 removal from body. This intervention may also decrease O2 supply and muscles blood flow.


Asunto(s)
Administración por Inhalación , Ciclismo/fisiología , Dióxido de Carbono/administración & dosificación , Dióxido de Carbono/metabolismo , Ejercicio Físico/fisiología , Adulto , Humanos , Masculino , Oxígeno/administración & dosificación , Adulto Joven
15.
Dokl Biochem Biophys ; 494(1): 222-226, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33119821

RESUMEN

Using the patch-clamp method in the whole cell configuration, it was shown that new conjugates of 2-aminothiophene-3-carboxylic acid with adamantane derivatives exhibit the ability to modulate CaCC activity in the single Purkinje neurons of rat cerebellum. It was noted that, depending on the nature of the substitution in the thiophene fragment, the nature of the effect on CaCC varies from inhibition to potentiation of CaCC currents. The described compounds are also blockers of the NMDA receptor ifenprodile site, which may have an additional neuroprotective contribution to the spectrum of biological activity of these compounds.


Asunto(s)
Adamantano/farmacología , Canales de Cloruro/antagonistas & inhibidores , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Tiofenos/farmacología , Animales , Células Cultivadas , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
16.
J Physiol Anthropol ; 39(1): 2, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019602

RESUMEN

BACKGROUND: This study examined the effects of immersion in stirred, high-concentration, artificial carbonic acid water on body cooling. METHODS: Seven healthy male students (23 ± 2 years old) participated in the experiment. Signed informed consent was obtained from all subjects before the experiment. The subjects changed into shorts and T-shirts and entered an experimental room (with room temperature controlled at 30 °C and relative humidity maintained at 70%) at least 30 min before starting the experiment. After starting the experiment, the subjects were asked to rest on an exercise bike for 5 min and then pedal for 20 min. The exercise load was set to reach 50% of each subject's presumed maximum oxygen intake at 5 min after starting exercise. Subjects then continued pedaling for 1 min to cool down. After this exercise, subjects sat on a chair and immersed forearms in tap water or artificial carbonic acid water (CO2 water) at 25 °C for 20 min. During immersion, tap water or CO2 water was stirred slowly with a pump. After immersion, subjects rested for 10 min. Skin temperature and skin blood flow (left forearm), as well as heart rate and ear canal temperature, were measured continuously. Thermal sensation and thermal comfort were measured intermittently. RESULTS: Skin blood flow of the immersed forearms was higher in CO2 water than in tap water during immersion. The blood flow in the last 5 min (average at rest was 100%) was significantly higher in CO2 water (290.85 ± 84.81%) than in tap water (104.80 ± 21.99%). Thermal sensation and thermal comfort were not different between conditions. Ear canal temperature significantly declined more in CO2 water (- 0.56 ± 0.31 °C) than in tap water (- 0.48 ± 0.30 °C) during immersion. CONCLUSIONS: Our study suggests that immersion of the forearms in slowly stirred CO2 water at 25 °C reduces core temperature elevated by heat stress or exercise more effectively than does tap water at the same temperature. Immersion of the forearms in stirred CO2 water at 25 °C could be useful as a preventive measure against heat stroke from summer work or exercise.


Asunto(s)
Temperatura Corporal/fisiología , Ácido Carbónico , Frío , Antebrazo/fisiología , Adulto , Crioterapia , Golpe de Calor , Humanos , Masculino , Piel/irrigación sanguínea , Adulto Joven
17.
Regen Ther ; 14: 103-110, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31989000

RESUMEN

INTRODUCTION: Achilles tendinopathy is characterized by scar formation or ectopic ossification, both of which result in pain and worsened physical function in athletes and older people. Although cell therapy using adipose-derived stem cells (ASCs) has been shown to be effective for tendinopathy, the underlying mechanisms by which ASCs result in tendon healing in vivo have not yet been fully clarified. METHODS: ASCs were obtained from the fat pads of EGFP transgenic mice by collagenase digestion. C57BL/6 mice were used in a collagenase-induced injury model. ASCs were transplanted into injury sites at 1 week after injury. Tendons were harvested at 9 days, 2 weeks, and 4 weeks after transplantation, and analyzed by histological examination and µCT scanning. RESULTS: Histological analysis and µCT scanning revealed greater recovery of collagen fibers and suppression of ectopic ossification in the ASC-treated group than in the control group at 2 and 4 weeks after injury. Immunohistochemical analysis identified transplanted ASCs in the tendon core close to peritenon and connective tissue at 2 days and 1 week after transplantation, but not at 3 weeks. Furthermore, while the expression levels of IL-1ß, GLUT1, and CA9 were significantly reduced in the ASC group compared to the control group at 9 days after injury, those of VEGF and the number of CD31 positive vessels were significantly increased. CONCLUSION: The efficacy of ASCs for tendon repair and the prevention of ectopic ossification in Achilles tendinopathy were demonstrated. Our data suggest that ASCs can modulate inflammation and induce neovascularization in the early stage of tendon injury.

18.
Chemistry ; 26(1): 285-305, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31593601

RESUMEN

In this work, earlier studies reporting α-H2 CO3 are revised. The cryo-technique pioneered by Hage, Hallbrucker, and Mayer (HHM) is adapted to supposedly prepare carbonic acid from KHCO3 . In methanolic solution, methylation of the salt is found, which upon acidification transforms to the monomethyl ester of carbonic acid (CAME, HO-CO-OCH3 ). Infrared spectroscopy data both of the solid at 210 K and of the evaporated molecules trapped and isolated in argon matrix at 10 K are presented. The interpretation of the observed bands on the basis of carbonic acid [as suggested originally by HHM in their publications from 1993-1997 and taken over by Winkel et al., J. Am. Chem. Soc. 2007 and Bernard et al., Angew. Chem. Int. Ed. 2011] is inferior compared with the interpretation on the basis of CAME. The assignment relies on isotope substitution experiments, including deuteration of the OH- and CH3 - groups as well as 12 C and 13 C isotope exchange and on variation of the solvents in both preparation steps. The interpretation of the single molecule spectroscopy experiments is aided by a comprehensive calculation of high-level ab initio frequencies for gas-phase molecules and clusters in the harmonic approximation. This analysis provides evidence for the existence of not only single CAME molecules but also CAME dimers and water complexes in the argon matrix. Furthermore, different conformational CAME isomers are identified, where conformational isomerism is triggered in experiments through UV irradiation. In contrast to earlier studies, this analysis allows explanation of almost every single band of the complex spectra in the range between 4000 and 600 cm-1 .

19.
Proc Natl Acad Sci U S A ; 116(42): 20837-20843, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570591

RESUMEN

Carbonic acid H2CO3 (CA) is a key constituent of the universal CA/bicarbonate/CO2 buffer maintaining the pH of both blood and the oceans. Here we demonstrate the ability of intact CA to quantitatively protonate bases with biologically-relevant pKas and argue that CA has a previously unappreciated function as a major source of protons in blood plasma. We determine with high precision the temperature dependence of pKa(CA), pKa(T) = -373.604 + 16,500/T + 56.478 ln T. At physiological-like conditions pKa(CA) = 3.45 (I = 0.15 M, 37 °C), making CA stronger than lactic acid. We further demonstrate experimentally that CA decomposition to H2O and CO2 does not impair its ability to act as an ordinary carboxylic acid and to efficiently protonate physiological-like bases. The consequences of this conclusion are far reaching for human physiology and marine biology. While CA is somewhat less reactive than (H+)aq, it is more than 1 order of magnitude more abundant than (H+)aq in the blood plasma and in the oceans. In particular, CA is about 70× more abundant than (H+)aq in the blood plasma, where we argue that its overall protonation efficiency is 10 to 20× greater than that of (H+)aq, often considered to be the major protonating agent there. CA should thus function as a major source for fast in vivo acid-base reactivity in the blood plasma, possibly penetrating intact into membranes and significantly helping to compensate for (H+)aq's kinetic deficiency in sustaining the large proton fluxes that are vital for metabolic processes and rapid enzymatic reactions.


Asunto(s)
Análisis Químico de la Sangre , Ácido Carbónico/química , Agua de Mar/química , Sangre/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Ácido Carbónico/metabolismo , Humanos , Hidrógeno/química , Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Hidrogenación , Cinética , Protones
20.
J Mech Behav Biomed Mater ; 94: 213-221, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30913517

RESUMEN

Chitosan coatings of biological heart-valve prostheses enhance their biocompatibility, resistance to pathogenic microflora and lifetime. Collagen tissues can be coated with chitosan in aqueous solution acidified, to make chitosan soluble, with H2CO3 formed from a coexisting liquid CO2 phase under pressure. The advantage of H2CO3 is that it can be easily removed after the coating procedure. This study assessed the effects of 6-50 MPa CO2 pressure during the coating procedure on the structure and mechanical properties of the resulting biocomposite matrices. The dependence of chitosan adsorption on CO2 pressure was bell-shaped, reaching a maximum adsorption of 0.8 mass % at 40 MPa. Tissue surface became highly porous upon pressure treatment. At 50 MPa, the pores merged to form furrows with lengths of several hundred micrometers, accompanied by collagen fibril reorganisation. Chitosan coating did not affect tissue tensile strength in the axial direction, but increased it by 75% in the radial direction in the tissue coated at 50 MPa pressure. Strain at break, a measure of elasticity, increased in both directions by up to 100% upon coating with chitosan. CO2 pressure of 30-50 MPa seems thus optimal in terms of chitosan incorporation and tissue mechanical properties.


Asunto(s)
Dióxido de Carbono/química , Quitosano/química , Materiales Biocompatibles Revestidos/química , Colágeno/química , Presión , Andamios del Tejido/química , Agua/química , Animales , Bovinos , Materiales Biocompatibles Revestidos/farmacología , Pericardio/citología , Pericardio/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA