Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Trace Elem Res ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129053

RESUMEN

The present study investigates human health risks upon consumption of herbal medicines in terms of ten toxic metalloids in 20 plant-based anti-diabetic therapeutics. The analysis of metalloids was determined by an atomic absorption spectrometer after microwave-assisted digestion. The computation of hazard quotients (HQ) and hazard indexes (HI) of metalloids leads to the assessment of non-carcinogenic health risks. Carcinogenic risk was assessed based on cancer slope factor (CSF) and chronic daily intake (CDI) values. Comparison with WHO regulatory cut-off points for each metalloid: seven samples for Mn, 12 samples for Hg, three samples for Cu, eight samples for Ni, four samples for Cd, two samples for Pb, one sample for Cr, and eight samples for Zn are unsafe to consume. Non-carcinogenic human health risk is predicted for Mn in seven samples, Fe in one sample, Hg in ten samples, Cu in three samples, Ni in one sample, and Pb in two samples. HI values greater than 1 predict non-carcinogenic health risk in thirteen samples. Incremental lifetime cancer risk (ILCR) remains for As (inorganic) in 12 samples, Cr (+ 6) in one sample, and Pb in no samples. To guarantee consumer safety, the implementation of strict monitoring is suggested.

2.
Environ Sci Pollut Res Int ; 30(30): 75989-76001, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37233938

RESUMEN

The health risk and burden of disease induced by exposure to benzene, toluene, ethylbenzene, and xylene (BTEX) in the outdoor air in Tehran, 2019 were assessed based on the data of five fixed stations with weekly BTEX measurements. The non-carcinogenic risk, carcinogenic risk, and disease burden from exposure to BTEX compounds were determined by hazard index (HI), incremental lifetime cancer risk (ILCR), and disability-adjusted life year (DALY), respectively. The average annual concentrations of benzene, toluene, ethylbenzene, and xylene in the outdoor air in Tehran were 6.59, 21.62, 4.68, and 20.88 µg/m3, respectively. The lowest seasonal BTEX concentrations were observed in spring and the highest ones occurred in summer. The HI values of BTEX in the outdoor air in Tehran by district ranged from 0.34 to 0.58 (less than one). The average ILCR values of benzene and ethylbenzene were 5.37 × 10-5 and 1.23 × 10-5, respectively (in the range of probable increased cancer risk). The DALYs, death, DALY rate (per 100,000 people) and death rate (per 100,000 people) induced by BTEX exposure in the outdoor air in Tehran were determined to be 180.21, 3.51, 2.07, and 0.04, respectively. The five highest attributable DALY rates in Tehran by district were observed in the districts 10 (2.60), 11 (2.43), 17 (2.41), 20 (2.32), and 9 (2.32), respectively. The corrective measures such as controlling road traffic and improving the quality of vehicles and gasoline in Tehran could reduce the burden of disease from BTEX along with the health effects of other outdoor air pollutants.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias , Humanos , Benceno/análisis , Xilenos/análisis , Tolueno/análisis , Irán , Monitoreo del Ambiente , Derivados del Benceno/análisis , Contaminantes Atmosféricos/análisis , Medición de Riesgo
3.
Biol Trace Elem Res ; 200(8): 3854-3866, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34689300

RESUMEN

The release of a large quantity of heavy metals into the Dhaleswari River from the tannery, dyeing, and other industrial setups and their subsequent transfer to food chains through fish consumption have been an alarming issue in Bangladesh. To study the pollution level, a total of seven fish species, namely Heteropneustes fossillis, Channa punctata, Nandus nandus, Chanda nama, Anabas testudineus, Mystus gulio, and Colisa fasciata, were collected in winter from the Dhaleswari River and the total concentrations of Cr, Pb, Ni, and Zn in head and body tissues were analyzed separately. The concentrations of Cr, Pb, and Zn were found 300, 20, and 10 times higher, respectively, than the guideline value of the Food and Agriculture Organization (FAO)/World Health Organization (WHO), indicating possible health risks to humans. In most cases, bioaccumulation factors (BAFs) exceeded the highest limit, expressing that most of the species, especially C. nama, A. testudineus, and C. fasciata, were in the highly bioaccumulative state. The health risks associated with fish consumption were determined in terms of estimated daily intake (EDI), non-carcinogenic risks (THQ), and carcinogenic risk (TR) factors. The THQs for Cr and Pb crossed the maximum value of 1 in all the fish species except Pb in Mystus gulio, which might cause different non-carcinogenic diseases upon consumption of these fishes. In all the fish species, the carcinogenic risk factor for Cr exceeded the standard value (10-4), indicating chronic cancer risk to humans. Although the estimated daily intake (EDI) values did not cross the permissible limit, continuous consumption of contaminated fish from the target area may cause serious health complications. This study revealed that consumption of these fishes exposed people to a higher risk of non-carcinogenic and carcinogenic consequences in terms of human health.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Animales , Bangladesh , Bioacumulación , Monitoreo del Ambiente , Peces , Contaminación de Alimentos/análisis , Humanos , Plomo , Metales Pesados/análisis , Medición de Riesgo , Ríos , Contaminantes Químicos del Agua/análisis
4.
Chemosphere ; 266: 129150, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33310523

RESUMEN

The soil-rice system in rural and peri-urban areas of the lower Brahmaputra valley, northeast India was investigated for heavy metal(loid)s using Nemerow's pollution index (PIN) and potential ecological risk index (RI). Potential health risk due to rice consumption grown in the region was assessed in terms of carcinogenic and non-carcinogenic risks. Around 95% of the soil showed acidic nature that ranged from weakly acidic to strongly acidic soil. In terms of PIN, 27.3% of the sampling sites were heavily polluted (PIN≥3), 34.8% moderately, and 37.9% were slightly polluted. The Pb concentration was comparably higher in 57.1% of the rice grain samples and the mean As level (0.17 mg kg-1) was close to the WHO limit. The non-carcinogenic risk in terms of hazard quotient (HQ) was high primarily due to As (HQ > 1), whereas other metals had limited contribution (HQ < 1). The carcinogenic risk based on total cancer risk (TCR) values for adults and children ranged between 0.0039 - 0.019 and 0.0043-0.0211, respectively, exceeding the maximum acceptable level of 1 × 10-4. Among the rice varieties, for non-carcinogenic risks, the maximum hazard index (HI) was noticed for Bahadur and the minimum for Ranjit. Whereas for carcinogenic risks, the maximum TCR was observed for Mahsuri and the minimum for Moynagiri.


Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Adulto , Niño , China , Monitoreo del Ambiente , Humanos , India , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
5.
Ecotoxicol Environ Saf ; 189: 110038, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31812017

RESUMEN

Trace elements (TEs) concentration in groundwater is a key factor for health risk assessment (HRA). To achieve high level of accuracy in HRA, the present study performed Monte Carlo simulations, sensitivity analysis and uncertainty analysis to a total of 184 (N = 184) groundwater samples, collected during December 2016 from Birbhum district. TEs in samples were detected by anodic stripping voltammetry (ASV). The mean concentration of TEs were found as Fe (855.88 µg/L)> Zn (204.0 µg/L)> Cu(84.9 µg/L)> Ni(47.31 µg/L)> Pb(14.43 µg/L)> Co(10.58 µg/L)> Cd (7.88 µg/L). It indicated serious contamination by Fe, Cd. Pb and Ni according BIS, 2012. Pollution indicators such as heavy metal pollution index (HPI) revealed that study area is heavily contaminated by these TEs. Incremental lifetime cancer risk (ILCR) value of TEs showed that Cd is the main offender for cancer risk. Average value of total hazard index (THI), was found to be 2.48. THI through ingestion pathways was found to be more risky than dermal contacts accounting for 88% and 12% health hazard respectively. The sensitivity analysis indicated ingestion rate, exposure time, and TEs concentration were the most influential parameters for all groundwater associated health hazards. The TEs affected areas were mapped through Empirical Bayesian Kriging geostatistical model and health risk prone zones were projected. The study demonstrated that Monte Carlo simulation and EBK can provide better accuracy in health risks prediction and spatial distribution analysis of contaminants in any geographical area. The TEs and their hazard zonation mapping with geostatistical modelling will be helpful for the policy makers and researchers to improve groundwater quality management practices.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Subterránea/química , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Teorema de Bayes , Humanos , Metales Pesados/análisis , Método de Montecarlo , Medición de Riesgo
6.
Ecotoxicol Environ Saf ; 157: 276-284, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29627411

RESUMEN

The Yellow River Delta (YRD) is a typical region where oil fields generally overlap cities and towns, leading to complex soil contamination from both the oil fields and human activities. To clarify the distribution, speciation, potential sources and health risk of polycyclic aromatic hydrocarbons (PAHs) in soils of border regions between oil fields and suburbs of the YRD, 138 soil samples (0-20 cm) were collected among 12 sampling sites located around oil wells with different extraction histories. The 16 priority control PAHs (16PAHs), as selected by the United States Environmental Protection Agency (USEPA), were extracted via an accelerated solvent extraction and detected by GC-MS. The results showed that soils of the study area were generally polluted by the 16PAHs. Among these pollutions, chrysene and phenanthrene were the dominant components, and 4-ring PAHs were the most abundant. A typical temporal distribution pattern of the 16PAHs was revealed in soils from different sampling sites around oil wells with different exploitation histories. The concentrations of total 16PAHs and high-ring PAHs (HPAHs) both increased with the extraction time of the nearby oil wells. Individual PAH ratios and PCA method revealed that the 16PAHs in soil with newly developed oil wells were mainly from petroleum pollutants, whereas PAHs in soils around oil wells with a long exploitation history were probably from petroleum contamination; combustion of petroleum, fuel, and biomass; and degradation and migration of PAHs from petroleum. Monte Carlo simulation was used to evaluate the health risks of the 7 carcinogenic PAHs and 9 non-carcinogenic PAHs in the study area. The results indicated that ingestion and dermal contact were the predominant pathways of exposure to PAH residues in soils. Both the carcinogenic and non-carcinogenic burden of the 16PAHs in soils of the oil field increased significantly with exploitation time of nearby oil wells.


Asunto(s)
Monitoreo del Ambiente/métodos , Yacimiento de Petróleo y Gas , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Suelo/química , China , Ciudades , Humanos , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA