Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Cureus ; 16(6): e62721, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39036200

RESUMEN

Hamartoma of mature cardiac myocytes (HMCM) is a rare, benign cardiac tumor. We report a case of a 19-year-old female with an atypical presentation, including significant weight loss and abnormal electrocardiogram. A transthoracic echocardiogram (TTE) revealed a mass causing left ventricular outflow tract (LVOT) obstruction, confirmed by cardiac magnetic resonance (CMR) imaging showing a 5 x 3 cm mass contiguous with the right ventricular free wall and exhibiting heterogeneous, diffuse late gadolinium enhancement. The patient subsequently underwent sternotomy for surgical biopsy and septal myectomy, with histology of the mass being consistent with HMCM. The patient remained asymptomatic during her 6-month follow-up.

2.
Basic Res Cardiol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38890208

RESUMEN

Mitochondrial calcium (Ca2+) signals play a central role in cardiac homeostasis and disease. In the healthy heart, mitochondrial Ca2+ levels modulate the rate of oxidative metabolism to match the rate of adenosine triphosphate consumption in the cytosol. During ischemia/reperfusion (I/R) injury, pathologically high levels of Ca2+ in the mitochondrial matrix trigger the opening of the mitochondrial permeability transition pore, which releases solutes and small proteins from the matrix, causing mitochondrial swelling and ultimately leading to cell death. Pharmacological and genetic approaches to tune mitochondrial Ca2+ handling by regulating the activity of the main Ca2+ influx and efflux pathways, i.e., the mitochondrial Ca2+ uniporter and sodium/Ca2+ exchanger, represent promising therapeutic strategies to protect the heart from I/R injury.

3.
Korean J Physiol Pharmacol ; 28(4): 335-344, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38926841

RESUMEN

Diphenyleneiodonium (DPI) has been widely used as an inhibitor of NADPH oxidase (Nox) to discover its function in cardiac myocytes under various stimuli. However, the effects of DPI itself on Ca2+ signaling and contraction in cardiac myocytes under control conditions have not been understood. We investigated the effects of DPI on contraction and Ca2+ signaling and their underlying mechanisms using video edge detection, confocal imaging, and whole-cell patch clamp technique in isolated rat cardiac myocytes. Application of DPI suppressed cell shortenings in a concentration-dependent manner (IC50 of ≅0.17 µM) with a maximal inhibition of ~70% at ~100 µM. DPI decreased the magnitude of Ca2+ transient and sarcoplasmic reticulum Ca2+ content by 20%-30% at 3 µM that is usually used to remove the Nox activity, with no effect on fractional release. There was no significant change in the half-decay time of Ca2+ transients by DPI. The L-type Ca2+ current (ICa) was decreased concentration-dependently by DPI (IC50 of ≅40.3 µM) with ≅13.1%-inhibition at 3 µM. The frequency of Ca2+ sparks was reduced by 3 µM DPI (by ~25%), which was resistant to a brief removal of external Ca2+ and Na+. Mitochondrial superoxide level was reduced by DPI at 3-100 µM. Our data suggest that DPI may suppress L-type Ca2+ channel and RyR, thereby attenuating Ca2+-induced Ca2+ release and contractility in cardiac myocytes, and that such DPI effects may be related to mitochondrial metabolic suppression.

4.
Cardiovasc Pathol ; 73: 107660, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821230

RESUMEN

Hamartoma of mature cardiac myocytes (HMCM) is an extremely rare cardiac tumor characterized by benign growth of differentiated mature striated cardiac myocytes, and usually involves the ventricular myocardium. We describe the case of a 15-year-old female who presented with a short history of atrial fibrillation and a polypoid epicardial tumor that was attached to the interatrial groove by a short pedicle. The resected specimen showed features consistent with HMCM. Although these tumors are not associated with any known molecular or cytogenetic abnormalities, we identified fusions transcripts along with complex copy number anomalies of chromosome 7.

5.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 213-222, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38595236

RESUMEN

OBJECTIVE: To evaluate the developmental toxicity of Cry1Ab protein by studying its effects on cell proliferation and differentiation ability using a developmental toxicity assessment model based on embryonic stem-cell. METHODS: Cry1Ab protein was tested in seven dose groups (31.25, 62.50, 125.00, 250.00, 320.00, 1 000.00, and 2 000.00 µg/L) on mouse embryonic stem cells D3 (ES-D3) and 3T3 mouse fibroblast cells, with 5-fluorouracil (5-FU) used as the positive control and phosphate buffer saline (PBS) as the solvent control. Cell viability was detected by CCK-8 assay to calculate the 50% inhibitory concentration (IC50) of the test substance for different cells. Additionally, Cry1Ab protein was tested in five dose groups (125.00, 250.00, 320.00, 1 000.00, and 2 000.00 µg/L) on ES-D3 cells, with PBS as the solvent control and 5-FU used for model validation. After cell treatment, cardiac differentiation was induced using the embryonic bodies (EBs) culture method. The growth of EBs was observed under a microscope, and their diameters on the third and fifth days were measured. The proportion of EBs differentiating into beating cardiomyocytes was recorded, and the 50% inhibition concentration of differentiation (ID50) was calculated. Based on a developmental toxicity discrimination function, the developmental toxicity of the test substances was classified. Furthermore, at the end of the culture period, mRNA expression levels of cardiac differentiation-related markers (Oct3/4, GATA-4, Nkx2.5, and ß-MHC) were quantitatively detected using real-time quantitative polymerase chain reaction (qPCR) in the collected EBs samples. RESULTS: The IC50 of 5-FU was determined as 46.37 µg/L in 3T3 cells and 32.67 µg/L in ES-D3 cells, while the ID50 in ES-D3 cells was 21.28 µg/L. According to the discrimination function results, 5-FU was classified as a strong embryotoxic substance. There were no statistically significant differences in cell viability between different concentrations of Cry1Ab protein treatment groups and the control group in both 3T3 cells and ES-D3 cells (P>0.05). Moreover, there were no statistically significant differences in the diameter of EBs on the third and fifth days, as well as their morphology, between the Cry1Ab protein treatment groups and the control group (P>0.05). The cardiac differentiation rate showed no statistically significant differences between different concentrations of Cry1Ab protein treatment groups and the control group (P>0.05). 5-FU significantly reduced the mRNA expression levels of ß-MHC, Nkx2.5, and GATA-4 (P < 0.05), showing a dose-dependent trend (P < 0.05), while the mRNA expression levels of the pluripotency-associated marker Oct3/4 exhibited an increasing trend (P < 0.05). However, there were no statistically significant differences in the mRNA expression levels of mature cardiac marker ß-MHC, early cardiac differentiation marker Nkx2.5 and GATA-4, and pluripotency-associated marker Oct3/4 between the Cry1Ab protein treatment groups and the control group (P>0.05). CONCLUSION: No developmental toxicity of Cry1Ab protein at concentrations ranging from 31.25 to 2 000.00 µg/L was observed in this experimental model.


Asunto(s)
Células Madre Embrionarias , Miocitos Cardíacos , Animales , Ratones , Células Madre Embrionarias/metabolismo , Diferenciación Celular , Miocitos Cardíacos/metabolismo , Fluorouracilo/toxicidad , ARN Mensajero/metabolismo , Solventes/metabolismo , Solventes/farmacología
6.
Elife ; 122024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578976

RESUMEN

We developed a 96-well plate assay which allows fast, reproducible, and high-throughput generation of 3D cardiac rings around a deformable optically transparent hydrogel (polyethylene glycol [PEG]) pillar of known stiffness. Human induced pluripotent stem cell-derived cardiomyocytes, mixed with normal human adult dermal fibroblasts in an optimized 3:1 ratio, self-organized to form ring-shaped cardiac constructs. Immunostaining showed that the fibroblasts form a basal layer in contact with the glass, stabilizing the muscular fiber above. Tissues started contracting around the pillar at D1 and their fractional shortening increased until D7, reaching a plateau at 25±1%, that was maintained up to 14 days. The average stress, calculated from the compaction of the central pillar during contractions, was 1.4±0.4 mN/mm2. The cardiac constructs recapitulated expected inotropic responses to calcium and various drugs (isoproterenol, verapamil) as well as the arrhythmogenic effects of dofetilide. This versatile high-throughput assay allows multiple in situ mechanical and structural readouts.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/fisiología , Ingeniería de Tejidos , Arritmias Cardíacas , Isoproterenol/farmacología , Diferenciación Celular
7.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612393

RESUMEN

Cardiovascular diseases are a leading cause of morbidity and mortality world-wide. While many factors like smoking, hypertension, diabetes, dyslipidaemia, a sedentary lifestyle, and genetic factors can predispose to cardiovascular diseases, the natural process of aging is by itself a major determinant of the risk. Cardiac aging is marked by a conglomerate of cellular and molecular changes, exacerbated by age-driven decline in cardiac regeneration capacity. Although the phenotypes of cardiac aging are well characterised, the underlying molecular mechanisms are far less explored. Recent advances unequivocally link cardiovascular aging to the dysregulation of critical signalling pathways in cardiac fibroblasts, which compromises the critical role of these cells in maintaining the structural and functional integrity of the myocardium. Clearly, the identification of cardiac fibroblast-specific factors and mechanisms that regulate cardiac fibroblast function in the senescent myocardium is of immense importance. In this regard, recent studies show that Discoidin domain receptor 2 (DDR2), a collagen-activated receptor tyrosine kinase predominantly located in cardiac fibroblasts, has an obligate role in cardiac fibroblast function and cardiovascular fibrosis. Incisive studies on the molecular basis of cardiovascular aging and dysregulated fibroblast function in the senescent heart would pave the way for effective strategies to mitigate cardiovascular diseases in a rapidly growing elderly population.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Anciano , Humanos , Enfermedades Cardiovasculares/genética , Corazón , Miocardio , Fibroblastos
8.
Arq. bras. cardiol ; 121(4): e20230490, abr.2024. tab, graf
Artículo en Portugués | LILACS-Express | LILACS | ID: biblio-1557034

RESUMEN

Resumo Fundamento A obesidade está associada ao desenvolvimento de doenças cardiovasculares e constitui um grave problema de saúde pública. Em modelos animais, a alimentação com uma dieta hiperlipídica (DH) compromete a estrutura e a função cardíaca e promove estresse oxidativo e apoptose. O treinamento resistido (TR), entretanto, tem sido recomendado como coadjuvante no tratamento de doenças cardiometabólicas, incluindo a obesidade, porque aumenta o gasto energético e estimula a lipólise. Objetivo Na presente revisão sistemática, nosso objetivo foi avaliar os benefícios do TR no coração de ratos e camundongos alimentados com DH. Métodos Foram identificados estudos originais por meio de busca nas bases de dados PubMed, Scopus e Embase de dezembro de 2007 a dezembro de 2022. O presente estudo foi conduzido de acordo com os critérios estabelecidos pelo PRISMA e registrado no PROSPERO (CRD42022369217). O risco de viés e a qualidade metodológica foram avaliados pelo SYRCLE e CAMARADES, respectivamente. Os estudos elegíveis incluíram artigos originais publicados em inglês que avaliaram desfechos cardíacos em roedores submetidos a mais de 4 semanas de TR e controlados por um grupo controle sedentário alimentado com DH (n = 5). Resultados Os resultados mostraram que o TR atenua o estresse oxidativo cardíaco, a inflamação e o estresse do retículo endoplasmático. Também modifica a atividade de marcadores de remodelamento estrutural, apesar de não alterar parâmetros biométricos, parâmetros histomorfométricos ou a função contrátil dos cardiomiócitos. Conclusão Nossos resultados indicam que o TR parcialmente neutraliza o remodelamento cardíaco adverso induzido pela DH, aumentando a atividade dos marcadores de remodelamento estrutural; elevando a biogênese mitocondrial; reduzindo o estresse oxidativo, marcadores inflamatórios e estresse do retículo endoplasmático; e melhorando os parâmetros hemodinâmicos, antropométricos e metabólicos.


Abstract Background Obesity is associated with the development of cardiovascular diseases and is a serious public health problem. In animal models, high-fat diet (HFD) feeding impairs cardiac structure and function and promotes oxidative stress and apoptosis. Resistance exercise training (RT), however, has been recommended as coadjutant in the treatment of cardiometabolic diseases, including obesity, because it increases energy expenditure and stimulates lipolysis. Objective In this systematic review, we aimed to assess the benefits of RT on the heart of rats and mice fed HFD. Methods Original studies were identified by searching PubMed, Scopus, and Embase databases from December 2007 to December 2022. This study was conducted in accordance with the criteria established by PRISMA and registered in PROSPERO (CRD42022369217). The risk of bias and methodological quality was evaluated by SYRCLE and CAMARADES, respectively. Eligible studies included original articles published in English that evaluated cardiac outcomes in rodents submitted to over 4 weeks of RT and controlled by a sedentary, HFD-fed control group (n = 5). Results The results showed that RT mitigates cardiac oxidative stress, inflammation, and endoplasmic reticulum stress. It also modifies the activity of structural remodeling markers, although it does not alter biometric parameters, histomorphometric parameters, or the contractile function of cardiomyocytes. Conclusion Our results indicate that RT partially counteracts the HFD-induced adverse cardiac remodeling by increasing the activity of structural remodeling markers; elevating mitochondrial biogenesis; reducing oxidative stress, inflammatory markers, and endoplasmic reticulum stress; and improving hemodynamic, anthropometric, and metabolic parameters.

9.
Chem Biol Interact ; 394: 110949, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555048

RESUMEN

Methylglyoxal (MGO) is an endogenous, highly reactive dicarbonyl metabolite generated under hyperglycaemic conditions. MGO plays a role in developing pathophysiological conditions, including diabetic cardiomyopathy. However, the mechanisms involved and the molecular targets of MGO in the heart have not been elucidated. In this work, we studied the exposure-related effects of MGO on cardiac function in an isolated perfused rat heart ex vivo model. The effect of MGO on calcium homeostasis in cardiomyocytes was studied in vitro by the fluorescence indicator of intracellular calcium Fluo-4. We demonstrated that MGO induced cardiac dysfunction, both in contractility and diastolic function. In rat heart, the effects of MGO treatment were significantly limited by aminoguanidine, a scavenger of MGO, ruthenium red, a general cation channel blocker, and verapamil, an L-type voltage-dependent calcium channel blocker, demonstrating that this dysfunction involved alteration of calcium regulation. MGO induced a significant concentration-dependent increase of intracellular calcium in neonatal rat cardiomyocytes, which was limited by aminoguanidine and verapamil. These results suggest that the functionality of various calcium channels is altered by MGO, particularly the L-type calcium channel, thus explaining its cardiac toxicity. Therefore, MGO could participate in the development of diabetic cardiomyopathy through its impact on calcium homeostasis in cardiac cells.


Asunto(s)
Calcio , Miocitos Cardíacos , Piruvaldehído , Ratas Wistar , Animales , Piruvaldehído/toxicidad , Ratas , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Masculino , Guanidinas/farmacología , Canales de Calcio Tipo L/metabolismo , Corazón/efectos de los fármacos , Miocardio/metabolismo , Verapamilo/farmacología , Contracción Miocárdica/efectos de los fármacos
10.
Cardiovasc Res ; 120(2): 164-173, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38165268

RESUMEN

AIMS: The mitochondrial dynamics protein Mitofusin 2 (MFN2) coordinates critical cellular processes including mitochondrial bioenergetics, quality control, and cell viability. The NF-κB kinase IKKß suppresses mitochondrial injury in doxorubicin cardiomyopathy, but the underlying mechanism is undefined. METHODS AND RESULTS: Herein, we identify a novel signalling axis that functionally connects IKKß and doxorubicin cardiomyopathy to a mechanism that impinges upon the proteasomal stabilization of MFN2. In contrast to vehicle-treated cells, MFN2 was highly ubiquitinated and rapidly degraded by the proteasomal-regulated pathway in cardiac myocytes treated with doxorubicin. The loss of MFN2 activity resulted in mitochondrial perturbations, including increased reactive oxygen species (ROS) production, impaired respiration, and necrotic cell death. Interestingly, doxorubicin-induced degradation of MFN2 and mitochondrial-regulated cell death were contingent upon IKKß kinase activity. Notably, immunoprecipitation and proximity ligation assays revealed that IKKß interacted with MFN2 suggesting that MFN2 may be a phosphorylation target of IKKß. To explore this possibility, mass spectrometry analysis identified a novel MFN2 phospho-acceptor site at serine 53 that was phosphorylated by wild-type IKKß but not by a kinase-inactive mutant IKKßK-M. Based on these findings, we reasoned that IKKß-mediated phosphorylation of serine 53 may influence MFN2 protein stability. Consistent with this view, an IKKß-phosphomimetic MFN2 (MFN2S53D) was resistant to proteasomal degradation induced by doxorubicin whereas wild-type MFN2 and IKKß-phosphorylation defective MFN2 mutant (MFNS53A) were readily degraded in cardiac myocytes treated with doxorubicin. Concordantly, gain of function of IKKß or MFN2S53D suppressed doxorubicin-induced mitochondrial injury and cell death. CONCLUSIONS: The findings of this study reveal a novel survival pathway for IKKß that is mutually dependent upon and obligatory linked to the phosphorylation and stabilization of the mitochondrial dynamics protein MFN2.


Asunto(s)
Cardiomiopatías , Quinasa I-kappa B , Humanos , Quinasa I-kappa B/metabolismo , Transducción de Señal , Doxorrubicina , Proteínas Mitocondriales/metabolismo , Serina
11.
J Mol Cell Cardiol ; 182: 44-53, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37433391

RESUMEN

Cardiac excitation-contraction coupling (ECC) depends on Ca2+ release from intracellular stores via ryanodine receptors (RyRs) triggered by L-type Ca2+ channels (LCCs). Uncertain numbers of RyRs and LCCs form 'couplons' whose activation produces Ca2+ sparks, which summate to form a cell-wide Ca2+ transient that switches on contraction. Voltage (Vm) changes during the action potential (AP) and stochasticity in channel gating should create variability in Ca2+ spark timing, but Ca2+ transient wavefronts have remarkable uniformity. To examine how this is achieved, we measured the Vm-dependence of evoked Ca2+ spark probability (Pspark) and latency over a wide voltage range in rat ventricular cells. With depolarising steps, Ca2+ spark latency showed a U-shaped Vm-dependence, while repolarising steps from 50 mV produced Ca2+ spark latencies that increased monotonically with Vm. A computer model based on reported channel gating and geometry reproduced our experimental data and revealed a likely RyR:LCC stoichiometry of âˆ¼ 5:1 for the Ca2+ spark initiating complex (IC). Using the experimental AP waveform, the model revealed a high coupling fidelity (Pcpl âˆ¼ 0.5) between each LCC opening and IC activation. The presence of âˆ¼ 4 ICs per couplon reduced Ca2+ spark latency and increased Pspark to match experimental data. Variability in AP release timing is less than that seen with voltage steps because the AP overshoot and later repolarization decrease Pspark due to effects on LCC flux and LCC deactivation respectively. This work provides a framework for explaining the Vm- and time-dependence of Pspark, and indicates how ion channel dispersion in disease can contribute to dyssynchrony in Ca2+ release.


Asunto(s)
Señalización del Calcio , Miocitos Cardíacos , Ratas , Animales , Miocitos Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Acoplamiento Excitación-Contracción , Canales Iónicos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Retículo Sarcoplasmático/metabolismo
12.
Front Physiol ; 14: 1207658, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37362434

RESUMEN

Dystrophic cardiomyopathy arises from mutations in the dystrophin gene. Dystrophin forms part of the dystrophin glycoprotein complex and is postulated to act as a membrane stabilizer, protecting the sarcolemma from contraction-induced damage. Duchenne muscular dystrophy (DMD) is the most severe dystrophinopathy, caused by a total absence of dystrophin. Patients with DMD present with progressive skeletal muscle weakness and, because of treatment advances, a cardiac component of the disease (i.e., dystrophic cardiomyopathy) has been unmasked later in disease progression. The role that myofilaments play in dystrophic cardiomyopathy is largely unknown and, as such, this study aimed to address cardiac myofilament function in a mouse model of muscular dystrophy. To assess the effects of DMD on myofilament function, isolated permeabilized cardiomyocytes of wild-type (WT) littermates and Dmdmdx-4cv mice were attached between a force transducer and motor and subjected to contractile assays. Maximal tension and rates of force development (indexed by the rate constant, k tr) were similar between WT and Dmdmdx-4cv cardiac myocyte preparations. Interestingly, Dmdmdx-4cv cardiac myocytes exhibited greater sarcomere length dependence of peak power output compared to WT myocyte preparations. These results suggest dystrophin mitigates length dependence of activation and, in the absence of dystrophin, augmented sarcomere length dependence of myocyte contractility may accelerate ventricular myocyte contraction-induced damage and contribute to dystrophic cardiomyopathy. Next, we assessed if mavacamten, a small molecule modulator of thick filament activation, would mitigate contractile properties observed in Dmdmdx-4cv permeabilized cardiac myocyte preparations. Mavacamten decreased maximal tension and k tr in both WT and Dmdmdx-4cv cardiac myocytes, while also normalizing the length dependence of peak power between WT and Dmdmdx-4cv cardiac myocyte preparations. These results highlight potential benefits of mavacamten (i.e., reduced contractility while maintaining exquisite sarcomere length dependence of power output) as a treatment for dystrophic cardiomyopathy associated with DMD.

13.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239956

RESUMEN

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia due to inadequate insulin secretion, resistance, or both. The cardiovascular complications of DM are the leading cause of morbidity and mortality in diabetic patients. There are three major types of pathophysiologic cardiac remodeling including coronary artery atherosclerosis, cardiac autonomic neuropathy, and DM cardiomyopathy in patients with DM. DM cardiomyopathy is a distinct cardiomyopathy characterized by myocardial dysfunction in the absence of coronary artery disease, hypertension, and valvular heart disease. Cardiac fibrosis, defined as the excessive deposition of extracellular matrix (ECM) proteins, is a hallmark of DM cardiomyopathy. The pathophysiology of cardiac fibrosis in DM cardiomyopathy is complex and involves multiple cellular and molecular mechanisms. Cardiac fibrosis contributes to the development of heart failure with preserved ejection fraction (HFpEF), which increases mortality and the incidence of hospitalizations. As medical technology advances, the severity of cardiac fibrosis in DM cardiomyopathy can be evaluated by non-invasive imaging modalities such as echocardiography, heart computed tomography (CT), cardiac magnetic resonance imaging (MRI), and nuclear imaging. In this review article, we will discuss the pathophysiology of cardiac fibrosis in DM cardiomyopathy, non-invasive imaging modalities to evaluate the severity of cardiac fibrosis, and therapeutic strategies for DM cardiomyopathy.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Hiperglucemia , Humanos , Cardiomiopatías Diabéticas/diagnóstico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico , Fibrosis , Hiperglucemia/metabolismo
14.
Circulation ; 147(25): 1919-1932, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37194598

RESUMEN

BACKGROUND: Right ventricular (RV) contractile dysfunction commonly occurs and worsens outcomes in patients with heart failure with reduced ejection fraction and pulmonary hypertension (HFrEF-PH). However, such dysfunction often goes undetected by standard clinical RV indices, raising concerns that they may not reflect aspects of underlying myocyte dysfunction. We thus sought to characterize RV myocyte contractile depression in HFrEF-PH, identify those components reflected by clinical RV indices, and uncover underlying biophysical mechanisms. METHODS: Resting, calcium-, and load-dependent mechanics were prospectively studied in permeabilized RV cardiomyocytes isolated from explanted hearts from 23 patients with HFrEF-PH undergoing cardiac transplantation and 9 organ donor controls. RESULTS: Unsupervised machine learning using myocyte mechanical data with the highest variance yielded 2 HFrEF-PH subgroups that in turn mapped to patients with decompensated or compensated clinical RV function. This correspondence was driven by reduced calcium-activated isometric tension in decompensated clinical RV function, whereas surprisingly, many other major myocyte contractile measures including peak power and myocyte active stiffness were similarly depressed in both groups. Similar results were obtained when subgroups were first defined by clinical indices, and then myocyte mechanical properties in each group compared. To test the role of thick filament defects, myofibrillar structure was assessed by x-ray diffraction of muscle fibers. This revealed more myosin heads associated with the thick filament backbone in decompensated clinical RV function, but not compensated clinical RV function, as compared with controls. This corresponded to reduced myosin ATP turnover in decompensated clinical RV function myocytes, indicating less myosin in a crossbridge-ready disordered-relaxed (DRX) state. Altering DRX proportion (%DRX) affected peak calcium-activated tension in the patient groups differently, depending on their basal %DRX, highlighting potential roles for precision-guided therapeutics. Last, increasing myocyte preload (sarcomere length) increased %DRX 1.5-fold in controls but only 1.2-fold in both HFrEF-PH groups, revealing a novel mechanism for reduced myocyte active stiffness and by extension Frank-Starling reserve in human heart failure. CONCLUSIONS: Although there are many RV myocyte contractile deficits in HFrEF-PH, commonly used clinical indices only detect reduced isometric calcium-stimulated force, which is related to deficits in basal and recruitable %DRX myosin. Our results support use of therapies to increase %DRX and enhance length-dependent recruitment of DRX myosin heads in such patients.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Disfunción Ventricular Derecha , Humanos , Sarcómeros , Calcio , Depresión , Volumen Sistólico , Miocitos Cardíacos , Función Ventricular Derecha/fisiología
15.
Cardiol Plus ; 8(1): 18-26, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187809

RESUMEN

The metabolic status of surviving cardiomyocytes (CM) in the myocardial tissues of patients who sustained myocardial infarction (MI) is largely unknown. Spatial single-cell RNA-sequencing (scRNA-seq) is a novel tool that enables the unbiased analysis of RNA signatures within intact tissues. We employed this tool to assess the metabolic profiles of surviving CM in the myocardial tissues of patients post-MI. Methods: A spatial scRNA-seq dataset was used to compare the genetic profiles of CM from patients with MI and control patients; we analyzed the metabolic adaptations of surviving CM within the ischemic niche. A standard pipeline in Seurat was used for data analysis, including normalization, feature selection, and identification of highly variable genes using principal component analysis (PCA). Harmony was used to remove batch effects and integrate the CM samples based on annotations. Uniform manifold approximation and projection (UMAP) was used for dimensional reduction. The Seurat "FindMarkers" function was used to identify differentially expressed genes (DEGs), which were analyzed by the Gene Ontology (GO) enrichment pathway. Finally, the scMetabolism R tool pipeline with parameters method = VISION (Vision is a flexible system that utilizes a high-throughput pipeline and an interactive web-based report to annotate and explore scRNA-seq datasets in a dynamic manner) and metabolism.type = Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to quantify the metabolic activity of each CM. Results: Analysis of spatial scRNA-seq data showed fewer surviving CM in infarcted hearts than in control hearts. GO analysis revealed repressed pathways in oxidative phosphorylation, cardiac cell development, and activated pathways in response to stimuli and macromolecular metabolic processes. Metabolic analysis showed downregulated energy and amino acid pathways and increased purine, pyrimidine, and one-carbon pool by folate pathways in surviving CM. Conclusions: Surviving CM within the infarcted myocardium exhibited metabolic adaptations, as evidenced by the downregulation of most pathways linked to oxidative phosphorylation, glucose, fatty acid, and amino acid metabolism. In contrast, pathways linked to purine and pyrimidine metabolism, fatty acid biosynthesis, and one-carbon metabolism were upregulated in surviving CM. These novel findings have implications for the development of effective strategies to improve the survival of hibernating CM within the infarcted heart.

16.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220173, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37122212

RESUMEN

Human induced pluripotent stem cells (hiPSC) offer an unprecedented opportunity to generate model systems that facilitate a mechanistic understanding of human disease. Current differentiation protocols are capable of generating cardiac myocytes (hiPSC-CM) and sympathetic neurons (hiPSC-SN). However, the ability of hiPSC-derived neurocardiac co-culture systems to replicate the human phenotype in disease modelling is still in its infancy. Here, we adapted current methods for efficient and replicable induction of hiPSC-CM and hiPSC-SN. Expression of cell-type-specific proteins were confirmed by flow cytometry and immunofluorescence staining. The utility of healthy hiPSC-CM was tested with pressor agents to develop a model of cardiac hypertrophy. Treatment with angiotensin II (AngII) resulted in: (i) cell and nuclear enlargement, (ii) enhanced fetal gene expression, and (iii) FRET-activated cAMP responses to adrenergic stimulation. AngII or KCl increased intracellular calcium transients in hiPSC-SN. Immunostaining in neurocardiac co-cultures demonstrated anatomical innervation to myocytes, where myocyte cytosolic cAMP responses were enhanced by forskolin compared with monocultures. In conclusion, human iPSC-derived cardiac myocytes and sympathetic neurons replicated many features of the anatomy and (patho)physiology of these cells, where co-culture preparations behaved in a manner that mimicked key physiological responses seen in other mammalian systems. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Animales , Humanos , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Diferenciación Celular , Fenotipo , Neuronas , Mamíferos
17.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047520

RESUMEN

Most cardiomyocytes (CMs) in the adult mammalian heart are either binucleated or contain a single polyploid nucleus. Recent studies have shown that polyploidy in CMs plays an important role as an adaptive response to physiological demands and environmental stress and correlates with poor cardiac regenerative ability after injury. However, knowledge about the functional properties of polyploid CMs is limited. In this study, we generated tetraploid pluripotent stem cells (PSCs) by fusion of murine embryonic stem cells (ESCs) and somatic cells isolated from bone marrow or spleen and performed a comparative analysis of the electrophysiological properties of tetraploid fusion-derived PSCs and diploid ESC-derived CMs. Fusion-derived PSCs exhibited characteristics of genuine ESCs and contained a near-tetraploid genome. Ploidy features and marker expression were also retained during the differentiation of fusion-derived cells. Fusion-derived PSCs gave rise to CMs, which were similar to their diploid ESC counterparts in terms of their expression of typical cardiospecific markers, sarcomeric organization, action potential parameters, response to pharmacologic stimulation with various drugs, and expression of functional ion channels. These results suggest that the state of ploidy does not significantly affect the structural and electrophysiological properties of murine PSC-derived CMs. These results extend our knowledge of the functional properties of polyploid CMs and contribute to a better understanding of their biological role in the adult heart.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Ratones , Animales , Miocitos Cardíacos/metabolismo , Tetraploidía , Diploidia , Células Madre Embrionarias , Diferenciación Celular/genética , Poliploidía , Mamíferos
18.
Cardiovasc Pathol ; 65: 107538, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37031829

RESUMEN

BACKGROUND: While primary cardiac tumors are rare, it has been increasingly recognized due to improvement in screening measures. However, the hamartoma of mature cardiac myocytes has been underrecognized compared to other cardiac tumors, such as cardiac myxomas and papillary fibroelastomas, and is still potentially associated with critical consequences such as sudden death. This systematic review aims to summarize the evidence regarding the hamartoma of mature cardiac myocytes and characterize the presentations and symptoms for clinicians. METHODS: Following the PRISMA statement, we searched MEDLINE and EMBASE for all peer-reviewed articles using keywords including "hamartoma of mature cardiac myocytes" from their inception to January 2, 2023. RESULTS: We included 25 articles, including 34 cases, in this systematic review. Patients with hamartoma of mature cardiac myocytes commonly presented with nonspecific symptoms such as dyspnea (35.3%), although a few presented with sudden death and syncope. The left ventricle was the common site of origin (41.2%), followed by the right atrium and ventricle. Surgery was commonly pursued for diagnosis and treatment, while a few required cardiac transplants (8.8%), and 29.4% were diagnosed with autopsy or expired. CONCLUSION: Hamartoma of mature cardiac myocytes is a potentially underrecognized primary cardiac tumor associated with treatable yet potentially critical consequences. Given the challenges of differentiating it from malignancy such as angiosarcoma, multimodal imaging needs to be utilized to pursue a diagnosis. Future studies are warranted to develop a noninvasive diagnosis mode for cardiac tumor.


Asunto(s)
Hamartoma , Neoplasias Cardíacas , Humanos , Miocitos Cardíacos/patología , Neoplasias Cardíacas/patología , Ventrículos Cardíacos/patología , Hamartoma/diagnóstico , Hamartoma/patología , Hamartoma/cirugía , Muerte Súbita/patología
19.
Cardiol Res ; 14(1): 22-31, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36896225

RESUMEN

It is well known that the molecules of cardiospecific troponins T and I are localized in the troponin-tropomyosin complex of the cytoplasm of cardiac myocytes and, due to the specific localization, these cardiospecific troponins are widely used as diagnostic biomarkers of myocardial infarction. Cardiospecific troponins are released from the cytoplasm of cardiac myocytes as a result of irreversible cell damage (for example, ischemic necrosis of cardiomyocytes in myocardial infarction or apoptosis of cardiac myocytes in cardiomyopathies and heart failure) or reversible damage (for example, intense physical exertion, hypertension, the influence of stress factors, etc.). Current immunochemical methods for determining cardiospecific troponins T and I have extremely high sensitivity to subclinical (minor) damage to myocardial cells and, thanks to modern high-sensitive methods, it is possible to detect damage to cardiac myocytes in the early (subclinical) stages of a number of cardiovascular pathologies, including myocardial infarction. So, recently, leading cardiological communities (the European Society of Cardiology, the American Heart Association, the American College of Cardiology, etc.) have approved algorithms for early diagnosis of myocardial infarction based on the assessment of serum levels of cardiospecific troponins in the first 1 - 3 h after the onset of pain syndrome. An important factor that may affect early diagnostic algorithms of myocardial infarction are sex-specific features of serum levels of cardiospecific troponins T and I. This manuscript presents a modern view on the role of sex-specific serum levels of cardiospecific troponins T and I in the diagnosis of myocardial infarction and the mechanisms of formation of sex-specific serum levels of troponins.

20.
Herz ; 48(2): 123-133, 2023 Mar.
Artículo en Alemán | MEDLINE | ID: mdl-36700949

RESUMEN

Heart failure is characterized by defects in excitation-contraction coupling, energetic deficit and oxidative stress. The energy for cardiac contraction and relaxation is provided in mitochondria, whose function is tightly regulated by excitation-contraction coupling in cardiac myocytes. In heart failure with reduced ejection fraction (HFrEF), alterations in the ion balance in cardiac myocytes impair mitochondrial Ca2+ uptake, which is required for activation of the Krebs cycle, causing an energetic deficit and oxidative stress in mitochondria. Recent clinical studies suggest that in heart failure with preserved ejection fraction (HFpEF), in stark contrast to HFrEF, hypercontractility often occurs as an attempt to compensate for a pathological increase in systemic and pulmonary vascular resistance. This hypercontractility increases cardiac energy and oxygen demands at rest and reduces the contractile, diastolic and coronary reserves, preventing an adequate increase in cardiac output during exercise. Moreover, increased contractility causes long-term maladaptive remodeling processes due to oxidative stress and redox-sensitive prohypertrophic signaling pathways. As overweight and diabetes, particularly in the interplay with hemodynamic stress, are important risk factors for the development of HFpEF, interventions targeting metabolism in particular could ameliorate the development and progression of HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Volumen Sistólico , Miocitos Cardíacos , Estrés Oxidativo , Acoplamiento Excitación-Contracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA