Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.622
Filtrar
1.
BMC Biol ; 22(1): 146, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956599

RESUMEN

BACKGROUND: Metabolic associated fatty liver disease (MAFLD), a prevalent liver disorder affecting one-third of the global population, encompasses a spectrum ranging from fatty liver to severe hepatic steatosis. Both genetic and lifestyle factors, particularly diet and nutrition, contribute to its etiology. Folate deficiency, a frequently encountered type of malnutrition, has been associated with the pathogenesis of MAFLD and shown to impact lipid deposition. However, the underlying mechanisms of this relationship remain incompletely understood. We investigated the impact of disturbed folate-mediated one-carbon metabolism (OCM) on hepatic lipid metabolism both in vitro using human hepatoma cells and in vivo using transgenic fluorescent zebrafish displaying extent-, stage-, and duration-controllable folate deficiency upon induction. RESULTS: Disturbed folate-mediated one-carbon metabolism, either by inducing folate deficiency or adding anti-folate drug, compromises autophagy and causes lipid accumulation in liver cells. Disturbed folate status down-regulates cathepsin L, a key enzyme involved in autophagy, through inhibiting mTOR signaling. Interfered mitochondrial biology, including mitochondria relocation and increased fusion-fission dynamics, also occurs in folate-deficient hepatocytes. Folate supplementation effectively mitigated the impaired autophagy and lipid accumulation caused by the inhibition of cathepsin L activity, even when the inhibition was not directly related to folate deficiency. CONCLUSIONS: Disruption of folate-mediated OCM diminishes cathepsin L expression and impedes autophagy via mTOR signaling, leading to lipid accumulation within hepatocytes. These findings underscore the crucial role of folate in modulating autophagic processes and regulating lipid metabolism in the liver.


Asunto(s)
Autofagia , Ácido Fólico , Hepatocitos , Homeostasis , Metabolismo de los Lípidos , Pez Cebra , Autofagia/fisiología , Ácido Fólico/metabolismo , Humanos , Hepatocitos/metabolismo , Animales , Deficiencia de Ácido Fólico/metabolismo
2.
Methods Mol Biol ; 2814: 55-79, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954197

RESUMEN

Lysosomes are membrane-enclosed organelles that digest intracellular material. They contain more than 50 different enzymes that can degrade a variety of macromolecules including nucleic acids, proteins, polysaccharides, and lipids. In addition to functioning within lysosomes, lysosomal enzymes are also secreted. Alterations in the levels and activities of lysosomal enzymes dysregulates lysosomes, which can lead to the intralysosomal accumulation of biological material and the development of lysosomal storage diseases (LSDs) in humans. Dictyostelium discoideum has a long history of being used to study the trafficking and functions of lysosomal enzymes. More recently, it has been used as a model system to study several LSDs. In this chapter, we outline the methods for assessing the activity of several lysosomal enzymes in D. discoideum (α-galactosidase, ß-galactosidase, α-glucosidase, ß-glucosidase, ß-N-acetylglucosaminidase, α-mannosidase, cathepsin B, cathepsin D, cathepsin F, palmitoyl protein thioesterase 1, and tripeptidyl peptidase 1).


Asunto(s)
Dictyostelium , Lisosomas , Dictyostelium/enzimología , Lisosomas/enzimología , Lisosomas/metabolismo , Tripeptidil Peptidasa 1 , Pruebas de Enzimas/métodos , Humanos , beta-Galactosidasa/metabolismo , Enfermedades por Almacenamiento Lisosomal/enzimología , Enfermedades por Almacenamiento Lisosomal/metabolismo , Tioléster Hidrolasas/metabolismo
3.
Exp Eye Res ; : 109981, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914301

RESUMEN

We aimed to determine the role of cathepsin S (CTSS) in modulating oxidative stress-induced immune and inflammatory reactions and angiogenesis in age-related macular degeneration. Human retinal pigment epithelium cells line ARPE-19 (immature) were maintained and treated with H2O2. The expression of CTSS, inflammatory cytokines, and complement factors induced by oxidative stress was compared between cells incubated without (control) and with CTSS knockdown (using small interfering ribonucleic acid; siRNA). To evaluate the role of CTSS in angiogenesis, we assayed tube formation using human umbilical vein endothelial cells and conditioned medium from ARPE-19 cells. We also used a mouse model of laser-induced choroidal neovascularization. CTSS levels were higher in ARPE-19 cells treated with H2O2 than in control cells. Oxidative stress-induced CTSS resulted in significantly elevated transcription of nuclear factor kappa B-dependent inflammatory cytokines, complement factors C3a and C5a, membrane attack complex (C5b-9), and C3a and C5a receptors. siRNA-mediated knockdown of CTSS reduced the number of inflammatory signals. Furthermore, oxidative stress-induced CTSS regulated the expression of peroxisome proliferator-activated receptor γ and vascular endothelial growth factor A/ Akt serine/threonine kinase family signaling, which led to angiogenesis. Tube formation assays and mouse models of choroidal neovascularization revealed that CTSS knockdown ameliorated angiogenesis in vitro and in vivo. The present findings suggest that CTSS modulates the complement pathway, inflammatory reactions, and neovascularization, and that CTSS knockdown induces potent immunomodulatory effects. Hence, it could be a promising target for the prevention and treatment of early- and late-stage age-related macular degeneration.

4.
J Labelled Comp Radiopharm ; 67(8): 295-304, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38837480

RESUMEN

Cathepsin B (CTSB) is a lysosomal protease that is overexpressed in tumor cells. Radioimmunoconjugates (RICs) composed of CTSB-recognizing chelating agents are expected to increase the molecular weights of their radiometabolites by forming conjugates with CTSB in cells, resulting in their improved retention in tumor cells. We designed a novel CTSB-recognizing trifunctional chelating agent, azide-[111In]In-DOTA-CTSB-substrate ([111In]In-ADCS), to synthesize a RIC, trastuzumab-[111In]In-ADCS ([111In]In-TADCS), and evaluated its utility to improve tumor retention of the RIC. [111In]In-ADCS and [111In]In-TADCS were synthesized with satisfactory yield and purity. [111In]In-ADCS was markedly stable in murine plasma until 96 h postincubation. [111In]In-ADCS showed binding to CTSB in vitro, and the conjugation was blocked by the addition of CTSB inhibitor. In the internalization assay, [111In]In-TADCS exhibited high-level retention in SK-OV-3 cells, indicating the in vitro utility of the CTSB-recognizing unit. In the biodistribution assay, [111In]In-TADCS showed high-level tumor accumulation, but the retention was hardly improved. In the first attempt to combine a CTSB-recognizing unit and RIC, these findings show the fundamental properties of the CTSB-recognizing trifunctional chelating agent to improve tumor retention of RICs.


Asunto(s)
Catepsina B , Quelantes , Inmunoconjugados , Catepsina B/metabolismo , Quelantes/química , Quelantes/síntesis química , Animales , Ratones , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Distribución Tisular , Línea Celular Tumoral , Humanos , Radioisótopos de Indio/química , Técnicas de Química Sintética , Trastuzumab/química
5.
Mol Neurobiol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888836

RESUMEN

Lysosomes play a crucial role in various intracellular pathways as their final destination. Various stressors, whether mild or severe, can induce lysosomal membrane permeabilization (LMP), resulting in the release of lysosomal enzymes into the cytoplasm. LMP not only plays a pivotal role in various cellular events but also significantly contributes to programmed cell death (PCD). Previous research has demonstrated the participation of LMP in central nervous system (CNS) injuries, including traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid hemorrhage (SAH), and hypoxic-ischemic encephalopathy (HIE). However, the mechanisms underlying LMP in CNS injuries are poorly understood. The occurrence of LMP leads to the activation of inflammatory pathways, increased levels of oxidative stress, and PCD. Herein, we present a comprehensive overview of the latest findings regarding LMP and highlight its functions in cellular events and PCDs (lysosome-dependent cell death, apoptosis, pyroptosis, ferroptosis, and autophagy). In addition, we consolidate the most recent insights into LMP in CNS injury by summarizing and exploring the latest advances. We also review potential therapeutic strategies that aim to preserve LMP or inhibit the release of enzymes from lysosomes to alleviate the consequences of LMP in CNS injury. A better understanding of the role that LMP plays in CNS injury may facilitate the development of strategic treatment options for CNS injury.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38837642

RESUMEN

OBJECTIVE: Krabbe disease (KD) is a multisystem neurodegenerative disorder with severe disability and premature death, mostly with an infancy/childhood onset. In rare cases of late-onset phenotypes, symptoms are often milder and difficult to diagnose. We here present a translational approach combining diagnostic and biochemical analyses of a male patient with a progressive gait disorder starting at the age of 44 years, with a final diagnosis of late-onset KD (LOKD). METHODS: Additionally to cerebral MRI, protein structural analyses of the ß-galactocerebrosidase protein (GALC) were performed. Moreover, expression, lysosomal localization, and activities of ß-glucocerebrosidase (GCase), cathepsin B (CTSB), and cathepsin D (CTSD) were analyzed in leukocytes, fibroblasts, and lysosomes of fibroblasts. RESULTS: Exome sequencing revealed biallelic likely pathogenic variants: GALC exons 11-17: 33 kb deletion; exon 4: missense variant (c.334A>G, p.Thr112Ala). We detected a reduced GALC activity in leukocytes and fibroblasts. While histological KD phenotypes were absent in fibroblasts, they showed a significantly decreased activities of GCase, CTSB, and CTSD in lysosomal fractions, while expression levels were unaffected. INTERPRETATION: The presented LOKD case underlines the age-dependent appearance of a mildly pathogenic GALC variant and its interplay with other lysosomal proteins. As GALC malfunction results in reduced ceramide levels, we assume this to be causative for the here described decrease in CTSB and CTSD activity, potentially leading to diminished GCase activity. Hence, we emphasize the importance of a functional interplay between the lysosomal enzymes GALC, CTSB, CTSD, and GCase, as well as between their substrates, and propose their conjoined contribution in KD pathology.

7.
J Neurochem ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923513

RESUMEN

Research on the markers of autoimmune response in multiple sclerosis (MS) is still of great importance. The aim of our study was the evaluation of plasma 20S constitutive proteasome, 20S immunoproteasome, and cathepsin S concentrations as potential biomarkers of a relapsing-remitting type of MS (RRMS). Surface plasmon resonance imaging (SPRI) biosensors were used for the evaluation of protein concentrations. Plasma 20S constitutive proteasome, 20S immunoproteasome, and cathepsin S concentrations were significantly higher in RRMS patients compared to the control group. All three parameters were characterized by excellent usefulness in differentiating MS patients from healthy individuals (AUC equal to or close to 1.000). The plasma concentration of analyzed parameters was not correlated with severity of disability in the course of RRMS (EDSS value), the number of years from the first MS symptoms, the number of years from MS diagnosis, or the number of relapses within the 24-month observational period. Our study has shown that plasma concentrations of 20S constitutive proteasome, 20S immunoproteasome, and cathepsin S have promising potential in differentiating RRMS patients from healthy individuals. All of the analyzed parameters were found to be independent of the time of MS relapse and the severity of neurological symptoms. Hence, their potential as highly sensitive and independent circulating markers of RRMS suggests a stronger association with immunological activity (inflammatory processes) than with the severity of the disease.

8.
Redox Biol ; 74: 103231, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38861835

RESUMEN

Primary graft dysfunction (PGD) is a severe form of acute lung injury resulting from lung ischemia/reperfusion injury (I/R) in lung transplantation (LTx), associated with elevated post-transplant morbidity and mortality rates. Neutrophils infiltrating during reperfusion are identified as pivotal contributors to lung I/R injury by releasing excessive neutrophil extracellular traps (NETs) via NETosis. While alveolar macrophages (AMs) are involved in regulating neutrophil chemotaxis and infiltration, their role in NETosis during lung I/R remains inadequately elucidated. Extracellular histones constitute the main structure of NETs and can activate AMs. In this study, we confirmed the significant involvement of extracellular histone-induced M1 phenotype of AMs (M1-AMs) in driving NETosis during lung I/R. Using secretome analysis, public protein databases, and transwell co-culture models of AMs and neutrophils, we identified Cathepsin C (CTSC) derived from AMs as a major mediator in NETosis. Further elucidating the molecular mechanisms, we found that CTSC induced NETosis through a pathway dependent on NADPH oxidase-mediated production of reactive oxygen species (ROS). CTSC could significantly activate p38 MAPK, resulting in the phosphorylation of the NADPH oxidase subunit p47phox, thereby facilitating the trafficking of cytoplasmic subunits to the cell membrane and activating NADPH oxidase. Moreover, CTSC up-regulated and activated its substrate membrane proteinase 3 (mPR3), resulting in an increased release of NETosis-related inflammatory factors. Inhibiting CTSC revealed great potential in mitigating NETosis-related injury during lung I/R. These findings suggests that CTSC from AMs may be a crucial factor in mediating NETosis during lung I/R, and targeting CTSC inhition may represent a novel intervention for PGD in LTx.


Asunto(s)
Catepsina C , Trampas Extracelulares , Histonas , Macrófagos Alveolares , Neutrófilos , Especies Reactivas de Oxígeno , Daño por Reperfusión , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Macrófagos Alveolares/metabolismo , Trampas Extracelulares/metabolismo , Animales , Histonas/metabolismo , Neutrófilos/metabolismo , Catepsina C/metabolismo , Catepsina C/genética , Especies Reactivas de Oxígeno/metabolismo , Ratones , NADPH Oxidasas/metabolismo , Masculino , Humanos , Pulmón/metabolismo , Pulmón/patología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/etiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Disfunción Primaria del Injerto/metabolismo , Disfunción Primaria del Injerto/patología
9.
Mol Ther Nucleic Acids ; 35(3): 102227, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38939051

RESUMEN

Effective therapeutics are necessary for managing severe COVID-19 disease despite the availability of vaccines. Small interfering RNA (siRNA) can silence viral genes and restrict SARS-CoV-2 replication. Cell-penetrating peptides is a robust method for siRNA delivery, enhancing siRNA stability and targeting specific receptors. We developed a peptide HE25 that blocks SARS-CoV-2 replication by various mechanisms, including the binding of multiple receptors involved in the virus's internalization, such as ACE2, integrins and NRP1. HE25 not only acts as a vehicle to deliver the SARS-CoV-2 RNA-dependent RNA polymerase siRNA into cells but also facilitates their internalization through endocytosis. Once inside endosomes, the siRNA is released into the cytoplasm through the Histidine-proton sponge effect and the selective cleavage of HE25 by cathepsin B. These mechanisms effectively inhibited the replication of the ancestral SARS-CoV-2 and the Omicron variant BA.5 in vitro. When HE25 was administered in vivo, either by intravenous injection or inhalation, it accumulated in lungs, veins and arteries, endothelium, or bronchial structure depending on the route. Furthermore, the siRNA/HE25 complex caused gene silencing in lung cells in vitro. The SARS-CoV-2 siRNA/HE25 complex is a promising therapeutic for COVID-19, and a similar strategy can be employed to combat future emerging viral diseases.

10.
Aging (Albany NY) ; 162024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38944813

RESUMEN

Cathepsin L (CTSL) has been implicated in aging and age-related diseases, such as cardiovascular diseases, specifically atherosclerosis. However, the underlying mechanism(s) is not well documented. Recently, we demonstrated a role of CUT-like homeobox 1 (CUX1) in regulating the p16INK4a-dependent cellular senescence in human endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) via its binding to an atherosclerosis-associated functional SNP (fSNP) rs1537371 on the CDKN2A/B locus. In this study, to determine if CTSL, which was reported to proteolytically activate CUX1, regulates cellular senescence via CUX1, we measured the expression of CTSL, together with CUX1 and p16INK4a, in human ECs and VSMCs undergoing senescence. We discovered that CUX1 is not a substrate that is cleaved by CTSL. Instead, CTSL is an upstream regulator that activates CUX1 transcription indirectly in a process that requires the proteolytic activity of CTSL. Our findings suggest that there is a transcription factor in between CTSL and CUX1, and cleavage of this factor by CTSL can activate CUX1 transcription, inducing endothelial senescence. Thus, our findings provide new insights into the signal transduction pathway that leads to atherosclerosis-associated cellular senescence.

11.
Int Immunopharmacol ; 136: 112284, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823179

RESUMEN

Cathepsin B (CTSB) and inflammatory cytokines are critical in initiating and developing pancreatitis. Calcineurin, a central calcium (Ca2+)-responsive signaling molecule, mediates acinar cell death and inflammatory responses leading to pancreatitis. However, the detailed mechanisms for regulating CTSB activity and inflammatory cytokine production are unknown. Myricetin (MC) exhibits various biological activities, including anti-inflammatory effects. Here, we aimed to investigate MC effects on pancreatitis and the underlying mechanisms. Prophylactic and therapeutic MC treatment ameliorated the severity of cerulein-, L-arginine-, and PDL-induced acute pancreatitis (AP). The inhibition of CTSB activity by MC was mediated via decreased calcineurin activity and macrophage infiltration, not neutrophils infiltration, into the pancreas. Additionally, calcineurin activity inhibition by MC prevented the phosphorylation of Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) during AP, resulting in the inhibition of CaMKIV phosphorylation and adenosine monophosphate-activated protein kinase (AMPK) dephosphorylation. Furthermore, MC reduced nuclear factor-κB activation by modulating the calcineurin-CaMKIV-IKKα/ß-Iκ-Bα and calcineurin-AMPK-sirtuin1 axes, resulting in reduced production of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. Our results showed that MC alleviated AP severity by inhibiting acinar cell death and inflammatory responses, suggesting that MC as a calcineurin and CaMKK2 signaling modulator may be a potential treatment for AP.


Asunto(s)
Calcineurina , Catepsina B , Citocinas , Flavonoides , Ratones Endogámicos C57BL , Pancreatitis , Animales , Pancreatitis/tratamiento farmacológico , Pancreatitis/inmunología , Pancreatitis/patología , Pancreatitis/inducido químicamente , Flavonoides/farmacología , Flavonoides/uso terapéutico , Citocinas/metabolismo , Catepsina B/metabolismo , Ratones , Masculino , Calcineurina/metabolismo , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Ceruletida , FN-kappa B/metabolismo , Páncreas/patología , Páncreas/efectos de los fármacos , Páncreas/inmunología , Transducción de Señal/efectos de los fármacos , Arginina/metabolismo , Modelos Animales de Enfermedad , Proteínas Quinasas Activadas por AMP/metabolismo
12.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928416

RESUMEN

A homozygous mutation of the DNAJC6 gene causes autosomal recessive familial type 19 of Parkinson's disease (PARK19). To test the hypothesis that PARK19 DNAJC6 mutations induce the neurodegeneration of dopaminergic cells by reducing the protein expression of functional DNAJC6 and causing DNAJC6 paucity, an in vitro PARK19 model was constructed by using shRNA-mediated gene silencing of endogenous DANJC6 in differentiated human SH-SY5Y dopaminergic neurons. shRNA targeting DNAJC6 induced the neurodegeneration of dopaminergic cells. DNAJC6 paucity reduced the level of cytosolic clathrin heavy chain and the number of lysosomes in dopaminergic neurons. A DNAJC6 paucity-induced reduction in the lysosomal number downregulated the protein level of lysosomal protease cathepsin D and impaired macroautophagy, resulting in the upregulation of pathologic α-synuclein or phospho-α-synucleinSer129 in the endoplasmic reticulum (ER) and mitochondria. The expression of α-synuclein shRNA or cathepsin D blocked the DNAJC6 deficiency-evoked degeneration of dopaminergic cells. An increase in ER α-synuclein or phospho-α-synucleinSer129 caused by DNAJC6 paucity activated ER stress, the unfolded protein response and ER stress-triggered apoptotic signaling. The lack of DNAJC6-induced upregulation of mitochondrial α-synuclein depolarized the mitochondrial membrane potential and elevated the mitochondrial level of superoxide. The DNAJC6 paucity-evoked ER stress-related apoptotic cascade, mitochondrial malfunction and oxidative stress induced the degeneration of dopaminergic neurons via activating mitochondrial pro-apoptotic signaling. In contrast with the neuroprotective function of WT DNAJC6, the PARK19 DNAJC6 mutants (Q789X or R927G) failed to attenuate the tunicamycin- or rotenone-induced upregulation of pathologic α-synuclein and stimulation of apoptotic signaling. Our data suggest that PARK19 mutation-induced DNAJC6 paucity causes the degeneration of dopaminergic neurons via downregulating protease cathepsin D and upregulating neurotoxic α-synuclein. Our results also indicate that PARK19 mutation (Q789X or R927G) impairs the DNAJC6-mediated neuroprotective function.


Asunto(s)
Catepsina D , Neuronas Dopaminérgicas , Estrés del Retículo Endoplásmico , Proteínas del Choque Térmico HSP40 , alfa-Sinucleína , Catepsina D/metabolismo , Catepsina D/genética , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Regulación hacia Arriba , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Mitocondrias/metabolismo , Lisosomas/metabolismo , Regulación hacia Abajo , Apoptosis/genética , Línea Celular Tumoral
13.
Arch Pharm (Weinheim) ; : e2400114, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900588

RESUMEN

The design and synthesis of a library of 21 novel benzenesulfonamide-bearing 3-functionalized pyrazole-linked 1,2,3-triazole derivatives as dual inhibitors of cathepsin B and carbonic anhydrase enzymes are reported. The target 1,2,3-triazole-linked pyrazolic esters (16) were synthesized by the condensation of 1,2,3-triazolic diketo esters with 4-hydrazinobenzenesulfonamide hydrochloride, and these were further converted into the corresponding carboxylic acid (17) and carboxamide (18) analogs. The synthesized compounds were assayed in vitro for their inhibition potential against human carbonic anhydrase (hCA) isoforms I, II, IX, and XII. They were found to be potent inhibitors at the low nanomolar level against the cancer-related hCA IX and XII and to be selective towards the cytosolic isoform hCA I. The physiologically important isoform hCA II was potently inhibited by all the newly synthesized compounds showing KI values ranging between 0.8 and 561.5 nM. The ester derivative 16c having 4-fluorophenyl (KI = 5.2 nM) was the most potent inhibitor of hCA IX, and carboxamide derivative 18b (KI = 2.2 nM) having 4-methyl substituted phenyl was the most potent inhibitor of hCA XII. The newly synthesized compounds exhibited potent cathepsin B inhibition at 10-7 M concentration. In general, the carboxamide derivatives (18) showed higher % inhibition as compared with the corresponding ester derivatives (16) and carboxylic acid derivatives (17) for cathepsin B. The interactions of the target compounds with the active sites of cathepsin B and CA were studied through molecular docking studies. Further, the in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of the target compounds were also studied.

14.
Front Aging Neurosci ; 16: 1380483, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903897

RESUMEN

Background: Parkinson's disease (PD), the second most prevalent neurodegenerative condition, has a multifaceted etiology. Cathepsin-cysteine proteases situated within lysosomes participate in a range of physiological and pathological processes, including the degradation of harmful proteins. Prior research has pointed towards a potential link between cathepsins and PD; however, the precise causal relationship between the cathepsin family and PD remains unclear. Methods: This study employed univariate and multivariate Mendelian randomization (MR) analyses to explore the causal relationship between the nine cathepsins and Parkinson's disease (PD) risk. For the primary analysis, genome-wide association study (GWAS) summary statistics for the plasma levels of the nine cathepsins and PD was obtained from the INTERVAL study and the International Parkinson's Disease Genomics Consortium. GWAS for PD replication analysis were obtained from the FinnGen consortium, and a meta-analysis was performed for the primary and replication analyses to evaluate the association between genetically predicted cathepsin plasma levels and PD risk. After identifying significant MR estimates, genetic co-localization analyses were conducted to determine whether shared or distinct causal variants influenced both cathepsins and PD. Results: Elevated cathepsin B levels were associated with a decreased risk of PD in univariate MR analysis (odds ratio [OR] = 0.890, 95% confidence interval [CI]: 0.831-0.954, pFDR = 0.009). However, there was no indication that PD affected cathepsin B levels (OR = 0.965, 95% CI: 0.858-1.087, p = 0.852). In addition, after adjusting for the remaining cathepsins, cathepsin B levels independently and significantly contributed to the reduced risk of PD in multivariate MR analysis (OR = 0.887, 95% CI: 0.823-0.957, p = 0.002). The results of the replication MR analysis with the FinnGen GWAS for PD (OR = 0.921, 95% CI: 0.860-0.987, p = 0.020) and meta-analysis (OR = 0.905, 95% CI: 0.862-0.951, p < 0.001) were consistent with those of the primary analysis. Colocalization analysis did not provide any evidence of a shared causal variant between cathepsins and PD (PP.H4.abf = 0.005). Conclusion: This genetic investigation supports the hypothesis that cathepsin B exerts a protective effect against PD. The quantification of cathepsin B levels could potentially serve as a predictive biomarker for susceptibility to PD, providing new insights into the pathomechanisms of the disease and possible interventions.

15.
J Pharm Bioallied Sci ; 16(Suppl 2): S1321-S1325, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882875

RESUMEN

Background and Aim: Osteoarthritis (OA) stands as the prevailing degenerative joint condition, and although it is widely observed, its precise causes are not fully understood. The main focus of the study was to assess the role of Complement C3 and Cathepsin D in the development of knee osteoarthritis (OA), which is the most prevalent degenerative joint disease. Materials and Methods: The study was carried out in 20 patients with knee OA and 20 healthy control group. OA knee (Grade II/III, Radiological Kellgren and Lawrence (K/L) classification), aged between 40 and 65 years were able to walk with a painful knee. The study also included healthy age-matched controls. The concentration of Complement C3 and Cathepsin D in serum was determined. Results: The results of the present study demonstrated significantly (P < 0.001) higher concentrations of C3 and Cathepsin D in OA patients in comparison to that of the healthy aged matched control group. Conclusions: The analysis showed that inflammatory markers, Complement C3 as well as Cathepsin D may be used as diagnostic markers of knee OA. The observations suggest that the activation of the complement system mainly affects processes within the joints, while C3 appears to play a central role in generating a systemic inflammatory response.

16.
FASEB J ; 38(11): e23720, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38837708

RESUMEN

Recessive Stargardt disease (STGD1) is an inherited juvenile maculopathy caused by mutations in the ABCA4 gene, for which there is no suitable treatment. Loss of functional ABCA4 in the retinal pigment epithelium (RPE) alone, without contribution from photoreceptor cells, was shown to induce STGD1 pathology. Here, we identified cathepsin D (CatD), the primary RPE lysosomal protease, as a key molecular player contributing to endo-lysosomal dysfunction in STGD1 using a newly developed "disease-in-a-dish" RPE model from confirmed STGD1 patients. Induced pluripotent stem cell (iPSC)-derived RPE originating from three STGD1 patients exhibited elevated lysosomal pH, as previously reported in Abca4-/- mice. CatD protein maturation and activity were impaired in RPE from STGD1 patients and Abca4-/- mice. Consequently, STGD1 RPE cells have reduced photoreceptor outer segment degradation and abnormal accumulation of α-synuclein, the natural substrate of CatD. Furthermore, dysfunctional ABCA4 in STGD1 RPE cells results in intracellular accumulation of autofluorescent material and phosphatidylethanolamine (PE). The altered distribution of PE associated with the internal membranes of STGD1 RPE cells presumably compromises LC3-associated phagocytosis, contributing to delayed endo-lysosomal degradation activity. Drug-mediated re-acidification of lysosomes in the RPE of STGD1 restores CatD functional activity and reduces the accumulation of immature CatD protein loads. This preclinical study validates the contribution of CatD deficiencies to STGD1 pathology and provides evidence for an efficacious therapeutic approach targeting RPE cells. Our findings support a cell-autonomous RPE-driven pathology, informing future research aimed at targeting RPE cells to treat ABCA4-mediated retinopathies.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Catepsina D , Lisosomas , Epitelio Pigmentado de la Retina , Enfermedad de Stargardt , Catepsina D/metabolismo , Catepsina D/genética , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Enfermedad de Stargardt/metabolismo , Enfermedad de Stargardt/patología , Enfermedad de Stargardt/genética , Animales , Humanos , Ratones , Lisosomas/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Células Madre Pluripotentes Inducidas/metabolismo , Ratones Noqueados , Degeneración Macular/metabolismo , Degeneración Macular/patología , Degeneración Macular/genética
17.
Lipids Health Dis ; 23(1): 194, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909243

RESUMEN

BACKGROUND: Lipid droplet (LD)-laden microglia is a key pathological hallmark of multiple sclerosis. The recent discovery of this novel microglial subtype, lipid-droplet-accumulating microglia (LDAM), is notable for increased inflammatory factor secretion and diminished phagocytic capability. Lipophagy, the autophagy-mediated selective degradation of LDs, plays a critical role in this context. This study investigated the involvement of microRNAs (miRNAs) in lipophagy during demyelinating diseases, assessed their capacity to modulate LDAM subtypes, and elucidated the potential underlying mechanisms involved. METHODS: C57BL/6 mice were used for in vivo experiments. Two weeks post demyelination induction at cervical level 4 (C4), histological assessments and confocal imaging were performed to examine LD accumulation in microglia within the lesion site. Autophagic changes were observed using transmission electron microscopy. miRNA and mRNA multi-omics analyses identified differentially expressed miRNAs and mRNAs under demyelinating conditions and the related autophagy target genes. The role of miR-223 in lipophagy under these conditions was specifically explored. In vitro studies, including miR-223 upregulation in BV2 cells via lentiviral infection, validated the bioinformatics findings. Immunofluorescence staining was used to measure LD accumulation, autophagy levels, target gene expression, and inflammatory mediator levels to elucidate the mechanisms of action of miR-223 in LDAM. RESULTS: Oil Red O staining and confocal imaging revealed substantial LD accumulation in the demyelinated spinal cord. Transmission electron microscopy revealed increased numbers of autophagic vacuoles at the injury site. Multi-omics analysis revealed miR-223 as a crucial regulatory gene in lipophagy during demyelination. It was identified that cathepsin B (CTSB) targets miR-223 in autophagy to integrate miRNA, mRNA, and autophagy gene databases. In vitro, miR-223 upregulation suppressed CTSB expression in BV2 cells, augmented autophagy, alleviated LD accumulation, and decreased the expression of the inflammatory mediator IL-1ß. CONCLUSION: These findings indicate that miR-223 plays a pivotal role in lipophagy under demyelinating conditions. By inhibiting CTSB, miR-223 promotes selective LD degradation, thereby reducing the lipid burden and inflammatory phenotype in LDAM. This study broadens the understanding of the molecular mechanisms of lipophagy and proposes lipophagy induction as a potential therapeutic approach to mitigate inflammatory responses in demyelinating diseases.


Asunto(s)
Autofagia , Catepsina B , Enfermedades Desmielinizantes , Gotas Lipídicas , Lisofosfatidilcolinas , Ratones Endogámicos C57BL , MicroARNs , Microglía , Animales , MicroARNs/genética , MicroARNs/metabolismo , Microglía/metabolismo , Microglía/patología , Ratones , Gotas Lipídicas/metabolismo , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Catepsina B/metabolismo , Catepsina B/genética , Lisofosfatidilcolinas/metabolismo , Modelos Animales de Enfermedad , Masculino , Regulación de la Expresión Génica , Línea Celular
18.
Brain Pathol ; : e13282, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38932696

RESUMEN

Although the concept that the blood-brain barrier (BBB) plays an important role in the etiology and pathogenesis of Alzheimer's disease (AD) has become increasingly accepted, little is known yet about how it actually contributes. We and others have recently identified a novel functionally distinct subset of BBB pericytes (PCs). In the present study, we sought to determine whether these PC subsets differentially contribute to AD-associated pathologies by immunohistochemistry and amyloid beta (Aß) peptidomics. We demonstrated that a disease-associated PC subset (PC2) expanded in AD patients compared to age-matched, cognitively unimpaired controls. Surprisingly, we found that this increase in the percentage of PC2 (%PC2) was correlated negatively with BBB breakdown in AD patients, unlike in natural aging or other reported disease conditions. The higher %PC2 in AD patients was also correlated with a lower Aß42 plaque load and a lower Aß42:Aß40 ratio in the brain as determined by immunohistochemistry. Colocalization analysis of multicolor confocal immunofluorescence microscopy images suggests that AD patient with low %PC2 have higher BBB breakdown due to internalization of Aß42 by the physiologically normal PC subset (PC1) and their concomitant cell death leading to more vessels without PCs and increased plaque load. On the contrary, it appears that PC2 can secrete cathepsin D to cleave and degrade Aß built up outside of PC2 into more soluble forms, ultimately contributing to less BBB breakdown and reducing Aß plaque load. Collectively our data shows functionally distinct mechanisms for PC1 and PC2 in high Aß conditions, demonstrating the importance of correctly identifying these populations when investigating the contribution of neurovascular dysfunction to AD pathogenesis.

19.
Sci Rep ; 14(1): 13556, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866930

RESUMEN

Abnormalities in the extracellular matrix (ECM) play important roles in the regulation and progression of clear cell renal cell carcinoma (ccRCC). The cysteine cathepsin is one of the major proteases involved in ECM remodeling and has been shown to be aberrantly expressed in multiple cancer types. However, the clinical significance and biological function of distinct cysteine cathepsins in ccRCC remain poorly understood. In this study, several bioinformatics databases, including UALCAN, TIMER, GEPIA and the Human Protein Atlas datasets, were used to analyze the expression and prognostic value of different cysteine cathepsin family members in ccRCC. We found that the expression level of CTSF was downregulated in tumor tissues and closely related to the poor survival of ccRCC patients. Further in vitro experiments suggested that CTSF overexpression suppressed the proliferation and migration of ccRCC cells. Moreover, the expression of CTSF was shown to be associated with several immune-infiltrating cells and immunomodulators in ccRCC. These results indicated that CTSF might be a promising diagnostic and prognostic marker in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Catepsina F , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/mortalidad , Pronóstico , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/mortalidad , Femenino , Masculino , Catepsina F/metabolismo , Catepsina F/genética , Línea Celular Tumoral , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Movimiento Celular/genética , Persona de Mediana Edad , Regulación hacia Abajo
20.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892390

RESUMEN

Aurora kinase A (AURKA) is a serine/threonine-protein kinase that regulates microtubule organization during neuron migration and neurite formation. Decreased activity of AURKA was found in Alzheimer's disease (AD) brain samples, but little is known about the role of AURKA in AD pathogenesis. Here, we demonstrate that AURKA is expressed in primary cultured rat neurons, neurons from adult mouse brains, and neurons in postmortem human AD brains. AURKA phosphorylation, which positively correlates with its activity, is reduced in human AD brains. In SH-SY5Y cells, pharmacological activation of AURKA increased AURKA phosphorylation, acidified endolysosomes, decreased the activity of amyloid beta protein (Aß) generating enzyme ß-site amyloid precursor protein cleaving enzyme (BACE-1), increased the activity of the Aß degrading enzyme cathepsin D, and decreased the intracellular and secreted levels of Aß. Conversely, pharmacological inhibition of AURKA decreased AURKA phosphorylation, de-acidified endolysosomes, decreased the activity of cathepsin D, and increased intracellular and secreted levels of Aß. Thus, reduced AURKA activity in AD may contribute to the development of intraneuronal accumulations of Aß and extracellular amyloid plaque formation.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Aurora Quinasa A , Lisosomas , Neuronas , Aurora Quinasa A/metabolismo , Animales , Neuronas/metabolismo , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ratones , Ratas , Lisosomas/metabolismo , Fosforilación , Línea Celular Tumoral , Encéfalo/metabolismo , Células Cultivadas , Masculino , Secretasas de la Proteína Precursora del Amiloide/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...