Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 493
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124989, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154403

RESUMEN

A newly developed 2H5MA-MOF sensor by covalently linking NH2-MIL-53(Al) with 2'-Hydroxy-5'-methylacetophenon, designed for highly sensitive and selective detection of Cd2+ ions using fluorometric methods. Detailed structural and morphological analyses confirmed the sensor's unique properties. It demonstrated an impressive linear detection range from 0 to 2 ppm, with an exceptionally low detection limit of 5.77 × 10-2 ppm and a quantification limit of 1.75 × 10-1 ppm, indicating its high sensitivity (R2 = 0.9996). The sensor also responded quickly, detecting Cd2+ within just 30 s at pH 4. We successfully tested it on real samples of tap water and human blood plasma, achieving recovery rates between 96 % and 104 %. The accuracy of these findings was further validated by comparison with ICP-OES. Overall, the 2H5MA-MOF sensor shows great potential for fast, ultra-sensitive, and reliable detection of Cd2+ ions, making it a promising tool for environmental and biomedical applications.


Asunto(s)
Cadmio , Agua Potable , Límite de Detección , Estructuras Metalorgánicas , Cadmio/sangre , Cadmio/análisis , Humanos , Estructuras Metalorgánicas/química , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/sangre , Iones/sangre , Concentración de Iones de Hidrógeno
2.
Front Immunol ; 15: 1415839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308865

RESUMEN

The question whether interference with the ubiquitous splicing machinery can lead to cell-type specific perturbation of cellular function is addressed here by T cell specific ablation of the general U5 snRNP assembly factor CD2BP2/U5-52K. This protein defines the family of nuclear GYF domain containing proteins that are ubiquitously expressed in eukaryotes with essential functions ascribed to early embryogenesis and organ function. Abrogating CD2BP2/U5-52K in T cells, allows us to delineate the consequences of splicing machinery interferences for T cell development and function. Increased T cell lymphopenia and T cell death are observed upon depletion of CD2BP2/U5-52K. A substantial increase in exon skipping coincides with the observed defect in the proliferation/differentiation balance in the absence of CD2BP2/U5-52K. Prominently, skipping of exon 7 in Mdm4 is observed, coinciding with upregulation of pro-apoptotic gene expression profiles upon CD2BP2/U5-52K depletion. Furthermore, we observe enhanced sensitivity of naïve T cells compared to memory T cells to changes in CD2BP2/U5-52K levels, indicating that depletion of this general splicing factor leads to modulation of T cell homeostasis. Given the recent structural characterization of the U5 snRNP and the crosslinking mass spectrometry data given here, design of inhibitors of the U5 snRNP conceivably offers new ways to manipulate T cell function in settings of disease.


Asunto(s)
Homeostasis , Linfocitos T , Animales , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ratones , Apoptosis , Diferenciación Celular/inmunología , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/inmunología , Proliferación Celular , Linfopenia/inmunología , Linfopenia/genética , Empalme del ARN
3.
Front Mol Biosci ; 11: 1414805, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234565

RESUMEN

Background: Colorectal carcinoma (CRC) has emerged as one of the most widespread cancers and was the third leading cause of cancer-related mortality in 2020. The role of the podosomal protein Tks4 in tumor formation and progression is well established, including its involvement in gastric carcinoma and hepatocellular carcinoma; however, exploration of Tks4 and its associated EMT-regulating interactome in the context of colon cancer remains largely unexplored. Methods: We conducted a comprehensive bioinformatic analysis to investigate the mRNA and protein expression levels of Tks4 and its associated partner molecules (CD2AP, GRB2, WASL, SRC, CTTN, and CAPZA1) across different tumor types. We quantified the expression levels of Tks4 and its partner molecules using qPCR, utilizing a TissueScan colon cancer array. We then validated the usefulness of Tks4 and its associated molecules as biomarkers via careful statistical analyses, including Pearson's correlation analysis, principal component analysis (PCA), multiple logistic regression, confusion matrix analysis, and ROC analysis. Results: Our findings indicate that the co-expression patterns of the seven examined biomarker candidates better differentiate between tumor and normal samples compared with the expression levels of the individual genes. Moreover, variable importance analysis of these seven genes revealed four core genes that yield consistent results similar to the seven genes. Thus, these four core genes from the Tks4 interactome hold promise as potential combined biomarkers for colon adenocarcinoma diagnosis and prognosis. Conclusion: Our proposed biomarker set from the Tks4 interactome shows promising sensitivity and specificity, aiding in colon cancer prevention and diagnosis.

4.
Small Methods ; : e2401215, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246192

RESUMEN

Given the scientifically significant importance of studying the chirality of clusters, the challenges of synthesizing chiral clusters are progressively surmounted. However, the racemization of clusters is unavoidable, and it limits the development of their follow-on chiral applications. To address this issue, chiral thiols are synthesized and used for the construction of high-stability optically pure nanoclusters in this work. As a result, a pair of chiral nanoclusters, Au24Cd2(SR)14, is obtained with excellent stability under thermal, acidic, alkaline, oxidizing, and reducing environments. Unexpectedly, it can also maintain its optical activity with the introduction of Cu2+ ions and chiral ligand with opposite configuration. Structural relationship analysis indicates that the excellent stability is mainly dependent on the hierarchical assembly of the nanoclusters, in which the chiral assembly of chiral ligands (a new pattern of chiral arrangement of intramolecular ligands on the surface of clusters) may be a key factor.

5.
Int J Biol Macromol ; 279(Pt 3): 135393, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245097

RESUMEN

Diabetic nephropathy (DN) is a prevalent complication of diabetes mellitus, characterized by complex pathogenesis that involves numerous molecules and signaling pathways. Among these, CD2 glycoprotein and CD44 play pivotal roles in cell adhesion, signal transduction, and inflammatory responses, potentially contributing significantly to the onset and progression of DN. This study aimed to investigate the central features of CD2 glycoprotein and CD44 in preventing diabetic nephropathy. To achieve this, kidney tissue sample data from DN patients were sourced from a public gene expression database. The roles of CD2 glycoprotein and CD44 within the PPI network were then analyzed, focusing on their interactions with other related genes. WGCNA analysis identified several significant gene modules associated with DN, including CD2 glycoprotein and CD44. PPI network analysis showed that these two proteins had a high degree of connectivity in the network, suggesting that they may be central regulatory molecules of DN. Further functional enrichment analysis revealed the potentially important role of CD2 glycoprotein and CD44 in diabetic nephropathy.

6.
J Hazard Mater ; 480: 135926, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307018

RESUMEN

Cadmium (Cd) pollution poses a significant ecological risk to mangrove ecosystems. Trehalose has excellent potential to mitigate the adverse effects of heavy metals. Unfortunately, the mechanisms related to trehalose-mediated heavy metal tolerance in plants remain elusive. In the present study, we firstly found that Cd induced the accumulation of trehalose and the differential expression of trehalose biosynthesis genes in the roots of mangrove plant Avicennia marina. Then, we found that the application of exogenous trehalose could alleviate the negative effects of Cd on A. marina by phenotypic observation. In addition, photosynthetic parameters and cellular ultrastructure analyses demonstrated that exogenous trehalose could improve the photosynthesis and stabilize the chloroplast and nuclear structure of the leaves of A. marina. Besides, exogenous trehalose could inhibit the Cd2+ influx from the root to reduce the Cd2+ content in A. marina. Subsequently, substrate sensitivity assay combined with ion uptake analysis using yeast cells showed that several trehalose biosynthesis genes may have a regulatory function for Cd2+ transport. Finally, we further identified a positive regulatory factor, AmTPS6, which enhances the Cd tolerance in transgenic Arabidopsis thaliana. Taken together, these findings provide new understanding to the mechanism of Cd tolerance in mangrove A. marina at trehalose aspect and a theoretical basis for the conservation of mangroves in coastal wetlands.

7.
Sci Rep ; 14(1): 21499, 2024 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277706

RESUMEN

Cadmium is a toxic heavy metal found in acid mine drainage. It hinders plant and animal growth and accumulates in human organs. In this study, through shake flask experiments, an iron-rich, sulphate-rich environment was simulated, and Acidithiobacillus ferrooxidans was used to mediate the formation of secondary high-iron minerals to explore the effect of calcium ions on the removal of Cd2+ from that environment. Four treatment systems were used: "Blank", "Ca2+-30 mg/L", "Fe/K = 3,Ca2+-30 mg/L", and "Fe/K = 3". The results showed that Cd2+ with an initial concentration of 20 mg/L was effectively removed in each treatment system. The removal efficiencies of Cd2+ in each treatment were 23.46%, 18.42%, 52.88%, and 45.76% respectively. The quantity and type of minerals determined the removal efficiency of Cd2+. The Fe/K = 3 treatment system can significantly increase the amount of mineral formation and improve the removal efficiency of Cd2+. In the Ca2+-30 mg/L, Fe/K = 3 treatment system, the biological oxidation ability was the strongest, and the removal effect of Cd2+ was the best under the combined action of K+ and Ca2+. Co-precipitation was the main way to remove Cd2+ during the formation of biogenic secondary iron minerals, and the removal amount was 5.64 to 14.83 times that of adsorption. Biogenetic secondary iron minerals showed high values in repairing heavy metal pollution. This study provides a theoretical basis for treating heavy metals in acid mine drainage.


Asunto(s)
Acidithiobacillus , Cadmio , Calcio , Hierro , Minerales , Cadmio/metabolismo , Calcio/metabolismo , Calcio/química , Hierro/metabolismo , Acidithiobacillus/metabolismo , Minerales/metabolismo , Minerales/química , Biodegradación Ambiental , Contaminantes Químicos del Agua/metabolismo , Oxidación-Reducción
8.
Biosens Bioelectron ; 264: 116660, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39142230

RESUMEN

Expanding the family of fluorescent metal clusters beyond gold, silver, and copper has always been an issue for researchers to solve. In this study, a novel type of cysteine-capped nickel nanoclusters (Cys-Ni NCs) with bright turquoise emission was developed. The as-synthesized Ni NCs showed aggregation-induced emission enhancement (AIEE) properties across Cd2+ and various polar organic solvents. Concurrently, solvents with different viscosities were used to explore the principle of solvent-induced AIEE of Cys-Ni NCs, revealing a positive correlation between fluorescence intensity and solution viscosity. In addition, the concentration of Cd2+ that induced the AIEE effect was reduced by nearly two orders of magnitude in highly viscous solvents, indicating the possibility of Cys-Ni NCs as a promising nanomaterial platform for Cd2+ sensing analysis. Moreover, we propose a novel fluorescent sensing method for rapid detection of Cu2+ based on the carboxyl group of Cys-Ni NCs coupling with Cu2+. Further, validation of Cu2+ detecting methodologies in environmental water samples with the accuracy up to 93.94% underscores their potential as robust and efficient sensing platforms. This study expands the repertoire of fluorescent metal nanoclusters for highly sensitive and selective sensing of hazardous ions and paves the way for further exploration and wide applications in Cu2+ detection in biological and medicine fields.


Asunto(s)
Técnicas Biosensibles , Cadmio , Cobre , Nanopartículas del Metal , Níquel , Solventes , Níquel/química , Cobre/química , Técnicas Biosensibles/métodos , Cadmio/química , Cadmio/análisis , Nanopartículas del Metal/química , Solventes/química , Cisteína/química , Cisteína/análisis , Espectrometría de Fluorescencia/métodos , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Metales Pesados/química , Colorantes Fluorescentes/química , Límite de Detección , Nanoestructuras/química
9.
Hum Mol Genet ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39146503

RESUMEN

CD2-Associated protein (CD2AP) is a candidate susceptibility gene for Alzheimer's disease, but its role in the mammalian central nervous system remains largely unknown. We show that CD2AP protein is broadly expressed in the adult mouse brain, including within cortical and hippocampal neurons, where it is detected at pre-synaptic terminals. Deletion of Cd2ap altered dendritic branching and spine density, and impaired ubiquitin-proteasome system activity. Moreover, in mice harboring either one or two copies of a germline Cd2ap null allele, we noted increased paired-pulse facilitation at hippocampal Schaffer-collateral synapses, consistent with a haploinsufficient requirement for pre-synaptic release. Whereas conditional Cd2ap knockout in the brain revealed no gross behavioral deficits in either 3.5- or 12-month-old mice, Cd2ap heterozygous mice demonstrated subtle impairments in discrimination learning using a touchscreen task. Based on unbiased proteomics, partial or complete loss of Cd2ap triggered perturbation of proteins with roles in protein folding, lipid metabolism, proteostasis, and synaptic function. Overall, our results reveal conserved, dose-sensitive requirements for CD2AP in the maintenance of neuronal structure and function, including synaptic homeostasis and plasticity, and inform our understanding of possible cell-type specific mechanisms in Alzheimer's Disease.

10.
Sci Rep ; 14(1): 18433, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117723

RESUMEN

Electrochemical detection is favorable for the rapid and sensitive determination of heavy metal cadmium. However, the detection sensitivity needs to be further improved, and a portable, low-cost device is needed for on-site detection. Herein, an in-situ bismuth modified pre-anodized screen-printed carbon electrode (SPCE) was developed for Cd2+ determination by square wave anodic stripping voltammetry (SWASV). The in-situ bismuth modification enhances the enrichment of Cd2+, and together with pre-anodization improve the electron transfer rate of electrode, thus enhancing the detection sensitivity. The electrode modification method combines pre-anodization and in-situ bismuth deposition, which is very easy and effective. Furthermore, a self-made PSoC Stat potentiostat coupled with a stirring device was fabricated for portable and low-cost electrochemical detection. After comprehensive optimization, the developed method can reach a testing time of 3 min, a detection limit of 3.55 µg/L, a linear range of 5-100 µg/L, and a recovery rate of 91.7-107.1% in water and rice samples for Cd2+ determination. Therefore, our method holds great promise for the rapid, sensitive and on-site determination of Cd2+ in food samples.


Asunto(s)
Bismuto , Cadmio , Técnicas Electroquímicas , Electrodos , Oryza , Cadmio/análisis , Oryza/química , Bismuto/química , Bismuto/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Agua/química , Agua/análisis , Contaminantes Químicos del Agua/análisis , Límite de Detección , Contaminación de Alimentos/análisis
11.
Heliyon ; 10(14): e34657, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39148992

RESUMEN

The capacity of South African Heulandite (HEU) zeolite to remove Pb2+ and Cd2+ ions from aqueous solution was investigated using batch experiments and molecular simulations studies. The effect of different factors on the adsorption of these ions onto the zeolite was investigated; contact time, initial metal ion concentration and the amount of HEU adsorbent. Molecular simulations was done using Monte Carlo and density functional theory. Experimental results obtained indicate that the maximum adsorption for the two ions occur at pH 5 and after 240 min of contact time. The percent removal based on contact time of Pb2+ and Cd2+ ions from water by the heulandite zeolite were 99.7 and 76.7 %, respectively. The adsorption of two metal ions onto the HEU zeolite follows the Langmuir adsorption isotherm. From the molecular simulation findings, the adsorption of Pb2+ ions onto the HEU window is equidistant from the two adjacent oxygen atoms within the HEU structure while the Cd2+ ion is adsorbed in the upper left side of the 8-ring HEU window. It was observed that the performance of the zeolite can significantly be improved by doping with germanium, aluminum, thallium indium, and sodium cations. These results indicate that the application of HEU zeolite as an adsorbent holds a great promise in heavy metal removal from aqueous solutions.

12.
Fundam Res ; 4(4): 868-881, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39156573

RESUMEN

In this work, two kinds of primary batteries, both of which included a Zn anode, C rod cathode, copper wire and electrolyte composed of Cd2+-contaminated water or soil, were constructed in the first attempt to both remove Cd2+ and generate electricity. Unlike traditional technologies such as electrokinetic remediation with high energy consumption, this technology could realize Cd2+ migration to aggregation and solidification and generate energy at the same time through simultaneous galvanic reactions. The passive surface of Zn and C was proven via electrochemical measurements to be porous to maintain the relatively active galvanic reactions for continuous Cd2+ precipitation. Cd2+ RE (removal efficiency) and electricity generation were investigated under different conditions, based on which two empirical models were established to predict them successfully. In soil, KCl was added to desorb Cd2+ from soil colloids to promote Cd2+ removal. These systems were also proven to remove Cd2+ efficiently when their effects on plants, zebrafish, and the soil bacterial community were tested. LEDs could be lit for days by utilizing the electricity produced herein. This work provides a novel, green, and low-cost route to remediate Cd2+ contamination and generate electricity simultaneously, which is of extensive practical significance in the environmental and energy fields.

13.
Sensors (Basel) ; 24(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000958

RESUMEN

Pollution by heavy metal ions has a serious impact on human health and the environment, which is why the monitoring of heavy metal ions is of great practical importance. In this work, we describe the development of an electrochemical sensor for the detection of cadmium (Cd2+) involving the doping of porous SiO2 spheres with ZnO nanoparticles. Zinc oxide is chosen as the central dopant in the composite material to increase the conductivity and thus improve the electrochemical detection of Cd2+ ions with the SiO2 spheres. The resulting composite is characterized by electrochemical spectroscopic XRD and microscopic methods. As a result, the developed sensor shows good selectivity towards the targeted Cd2+ ions compared to other divalent ions. After optimization of the experimental conditions, the electrochemical sensor shows two different linear ranges between 2.5 × 10-11 molL-1 to 1.75 × 10-10 molL-1 and 2 × 10-9 molL-1 to 1.75 × 10-9 molL-1, indicating a change from diffusion-controlled to surface-controlled oxidation of Cd2+. A detection limit was reached at 4.4 × 10-11 molL-1. In addition, it offers good repeatability and recovery, and can detect accurate trace amounts of Cd2+ ions in real samples such as tap water or seawater by spiking these samples with known Cd2+ concentrations. This setup also provides satisfactory recovery rates in the range of 89-102%.

14.
Food Chem ; 459: 140380, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39003862

RESUMEN

As a common heavy metal contaminant, Cd2+ has adverse effects on food safety and consumer health. It is very important for human health to realize highly sensitive Cd2+ detection methods. The self-powered sensing system based on enzyme biofuel cells (EBFCs) does not need an external power supply, which can simplify the experimental equipment and has great application value in portable detection. Thus, the biosensor is innovatively integrated into the screen-printed electrode to construct a new type of portable sensor suitable for on-site and real-time Cd2+ detection. Hybridization chain reaction (HCR) combined with the Cd2+-dependent deoxyribose (DNAzyme) signal amplification strategy is used to enhance the detection sensitivity while specifically recognizing the Cd2+. Moreover, the self-powered sensor combines with smartphones to realize quantitative Cd2+ detection without other instruments and has the characteristic of Effectively improving the hazard detection technology is essential to ensure food safety. Portability, simplicity, and speed are suitable for real-time Cd2+ detection in the field. The dual mechanism and three quantitative modes combining colorimetric and two electrical signals output modes are adopted to realize the visualization and accurate detection. A series of research results confirm that this strategy is of great significance to strengthen the development of intelligent Cd2+ technology, expand the application of self-powered sensing technology, and improve the safety detection system.


Asunto(s)
Técnicas Biosensibles , Cadmio , Contaminación de Alimentos , Cadmio/análisis , Cadmio/química , Técnicas Biosensibles/instrumentación , Contaminación de Alimentos/análisis , Colorimetría/instrumentación , Límite de Detección , ADN Catalítico/química , ADN Catalítico/metabolismo , Fuentes de Energía Bioeléctrica
15.
Ecotoxicol Environ Saf ; 281: 116648, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964065

RESUMEN

The pollution of Pb2+ and Cd2+ in both irrigation water and soil, coupled with the scarcity of vital mineral nutrition, poses a significant hazard to the security and quality of agricultural products. An economical potassium feldspar-derived adsorbent (PFDA) was synthesized using potassium feldspar as the main raw material through ball milling-thermal activation technology to solve this problem. The synthesis process is cost-effective and the resulting adsorbent demonstrates high efficiency in removing Pb2+ and Cd2+ from water. The removal process is endothermic, spontaneous, and stochastic, and follows the quasi-second-order kinetics, intraparticle diffusion, and Langmuir model. The adsorption and elimination of Pb2+ and Cd2+ is largely dependent on monolayer chemical sorption. The maximum removal capacity of PFDA for Pb2+ and Cd2+ at room temperature is 417 and 56.3 mg·g-1, respectively, which is superior to most mineral-based adsorbents. The desorption of Pb2+/Cd2+ on PFDA is highly challenging at pH≥3, whereas PFDA and Pb2+/Cd2+ are recyclable at pH≤0.5. When Pb2+ and Cd2+ coexisted, Pb2+ was preferentially removed by PFDA. In the case of single adsorption, Pb2+ was mainly adsorbed onto PFDA as Pb2SiO4, PbSiO3·xH2O, Pb3SiO5, PbAl2O4, PbAl2SiO6, PbAl2Si2O8, Pb2SO5, and PbSO4, whereas Cd2+ was primarily adsorbed as CdSiO3, Cd2SiO4, and Cd3Al2Si3O12. After the complex adsorption, the main products were PbSiO3·xH2O, PbAl2Si2O8, Pb2SiO4, Pb4Al2Si2O11, Pb5SiO7, PbSO4, CdSiO3, and Cd3Al2Si3O12. The forms of mineral nutrients in single and complex adsorption were different. The main mechanisms by which PFDA removed Pb2+ and Cd2+ were chemical precipitation, complexation, electrostatic attraction, and ion exchange. In irrigation water, the elimination efficiencies of Pb2+ and Cd2+ by PFDA within 10 min were 96.0 % and 70.3 %, respectively, and the concentrations of K+, Si4+, Ca2+, and Mg2+ increased by 14.0 %, 12.4 %, 55.7 %, and 878 %, respectively, within 60 min. PFDA holds great potential to replace costly methods for treating heavy metal pollution and nutrient deficiency in irrigation water, offering a sustainable, cost-effective solution and paving a new way for the comprehensive utilization of potassium feldspar.


Asunto(s)
Riego Agrícola , Cadmio , Plomo , Contaminantes Químicos del Agua , Calidad del Agua , Adsorción , Contaminantes Químicos del Agua/química , Plomo/química , Cadmio/química , Riego Agrícola/métodos , Purificación del Agua/métodos , Metales Pesados/química , Compuestos de Potasio/química , Nutrientes , Cinética
16.
Int J Cardiol ; 413: 132364, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39025135

RESUMEN

BACKGROUND: Kawasaki disease (KD) is a kind of pediatric vasculitis, whose pathogenesis has not been elucidated until now. Many scholars believe that KD is one type of infectious diseases in the susceptible groups. However, no recognized pathogens are confirmed. Human cytomegalovirus (HCMV) is a ubiquitous human herpes virus, which can infect varieties of cells including endothelial cells. Studies reported that the viral protein pUL135 is very important for virus replication, reactivation and immune escape. Therefore, we hypothesize that HCMV pUL135 may have a pathogenic effect on KD. METHODS: We first determined pUL135 levels in the serum from KD patients. Next, we examined the effects and mechanisms of pUL135 on endothelial cell proliferation and migration. Finally, we assessed the effect of pUL135 on cardiac inflammation in a KD murine model. RESULTS: Data showed that pUL135 level was significantly increased in the serum from KD patients compared with the healthy and fever controls. And pUL135 expression in endothelial cells remarkably inhibited cell proliferation, migration and tube formation. Moreover, expression of pUL135 obviously affected actin cytoskeleton. Mechanism investigation substantiated that pUL135 mediated endothelial cell dysfunction via regulating CD2AP. Ultimately, we found that HCMV pUL135 aggravated coronary arteritis in the Candida albicans cell wall extracts (CAWS)-induced KD mouse model. CONCLUSION: Our findings imply that HCMV pUL135-mediated endothelial dysfunction plays an important role in exacerbating coronary artery injury in KD conditions.


Asunto(s)
Citomegalovirus , Células Endoteliales , Síndrome Mucocutáneo Linfonodular , Animales , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Ratones , Proliferación Celular/fisiología , Células Cultivadas , Infecciones por Citomegalovirus/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/virología , Ratones Endogámicos C57BL , Síndrome Mucocutáneo Linfonodular/metabolismo , Proteínas Virales/metabolismo
17.
Front Immunol ; 15: 1352404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846950

RESUMEN

Background: CD2v, a critical outer envelope glycoprotein of the African swine fever virus (ASFV), plays a central role in the hemadsorption phenomenon during ASFV infection and is recognized as an essential immunoprotective protein. Monoclonal antibodies (mAbs) targeting CD2v have demonstrated promise in both diagnosing and combating African swine fever (ASF). The objective of this study was to develop specific monoclonal antibodies against CD2v. Methods: In this investigation, Recombinant CD2v was expressed in eukaryotic cells, and murine mAbs were generated through meticulous screening and hybridoma cloning. Various techniques, including indirect enzyme-linked immunosorbent assay (ELISA), western blotting, immunofluorescence assay (IFA), and bio-layer interferometry (BLI), were employed to characterize the mAbs. Epitope mapping was conducted using truncation mutants and epitope peptide mapping. Results: An optimal antibody pair for a highly sensitive sandwich ELISA was identified, and the antigenic structures recognized by the mAbs were elucidated. Two linear epitopes highly conserved in ASFV genotype II strains, particularly in Chinese endemic strains, were identified, along with a unique glycosylated epitope. Three mAbs, 2B25, 3G25, and 8G1, effectively blocked CD2v-induced NF-κB activation. Conclusions: This study provides valuable insights into the antigenic structure of ASFV CD2v. The mAbs obtained in this study hold great potential for use in the development of ASF diagnostic strategies, and the identified epitopes may contribute to vaccine development against ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Anticuerpos Monoclonales , Mapeo Epitopo , FN-kappa B , Animales , Virus de la Fiebre Porcina Africana/inmunología , FN-kappa B/metabolismo , FN-kappa B/inmunología , Porcinos , Ratones , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Anticuerpos Monoclonales/inmunología , Proteínas del Envoltorio Viral/inmunología , Epítopos/inmunología , Anticuerpos Antivirales/inmunología , Ratones Endogámicos BALB C
18.
Microorganisms ; 12(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38930464

RESUMEN

Cadmium (Cd) is a highly toxic and cumulative environmental pollutant. Siderophores are heavy metal chelators with high affinity to heavy metals, such as Cd. Ryegrass (Lolium perenne L.) has a potential remediation capacity for soils contaminated by heavy metals. Consequently, using ryegrass alongside beneficial soil microorganisms that produce siderophores may be an effective means to remediate soils contaminated with Cd. In this study, the Bacillus strains WL1210 and CD303, which were previously isolated from the rhizospheres of Nitraria tangutorum in Wulan and Peganum harmala L. in Dachaidan, Qinghai, China, respectively, both arid and sandy environments, were evaluated for heavy metal pollution mitigation. Our quantitative analyses have discerned that the two bacterial strains possess commendable attributes of phosphorus (P) solubilization and potassium (K) dissolution, coupled with the capacity to produce phytohormones. To assess the heavy metal stress resilience of these strains, they were subjected to a cadmium concentration gradient, revealing their incremental growth despite cadmium presence, indicative of a pronounced tolerance threshold. The subsequent phylogenetic analysis, bolstered by robust genomic data from conserved housekeeping genes, including 16S rDNA, gyr B gene sequencing, as well as dnaK and recA, delineated a species-level phylogenetic tree, thereby confirming the strains as Bacillus atrophaeus. Additionally, we identified the types of iron-carrier-producing strains as catechol (WL1210) and carboxylic acid ferrophilin (CD303). A genomic analysis uncovered functional genes in strain CD303 associated with plant growth and iron carrier biosynthesis, such as fnr and iscA. Ryegrass seed germination assays, alongside morphological and physiological evaluations under diverse heavy metal stress, underscored the strains' potential to enhance ryegrass growth under high cadmium stress when treated with bacterial suspensions. This insight probes the strains' utility in leveraging alpine microbial resources and promoting ryegrass proliferation.

19.
Vaccines (Basel) ; 12(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38932381

RESUMEN

The aim of this study was to analyze the immunogenic response elicited in swine by two synthetic peptides derived from GP5 to understand the role of lineal B epitopes in the humoral and B-cell-mediated response against the porcine reproductive and respiratory syndrome virus (PRRSV). For inoculation, twenty-one-day-old pigs were allocated into six groups: control, vehicle, vaccinated (Ingelvac-PRRSV, MLV®), non-vaccinated and naturally infected, GP5-B and GP5-B3. At 2 days post-immunization (dpi), the GP5-B3 peptide increased the serum concentrations of cytokines associated with activate adaptive cellular immunity, IL-1ß (1.15 ± 1.15 to 10.17 ± 0.94 pg/mL) and IL-12 (323.8 ± 23.3 to 778.5 ± 58.11 pg/mL), compared to the control group. The concentration of IgGs anti-GP5-B increased in both cases at 21 and 42 dpi compared to that at 0 days (128.3 ± 8.34 ng/mL to 231.9 ± 17.82 and 331 ± 14.86 ng/mL), while IgGs anti-GP5-B3 increased at 21 dpi (105.1 ± 19.06 to 178 ± 15.09 ng/mL) and remained at the same level until 42 dpi. Also, antibody-forming/Plasma B cells (CD2+/CD21-) increased in both cases (9.85 ± 0.7% to 13.67 ± 0.44 for GP5-B and 15.72 ± 1.27% for GP5-B3). Furthermore, primed B cells (CD2-/CD21+) from immunized pigs showed an increase in both cases (9.62 ± 1.5% to 24.51 ± 1.3 for GP5-B and 34 ± 2.39% for GP5-B3) at 42 dpi. Conversely the naïve B cells from immunized pigs decreased compared with the control group (8.84 ± 0.63% to 6.25 ± 0.66 for GP5-B and 5.78 ± 0.48% for GP5-B3). Importantly, both GP5-B and GP5-B3 peptides exhibited immunoreactivity against serum antibodies from the vaccinated group, as well as the non-vaccinated and naturally infected group. In conclusion, GP5-B and GP5-B3 peptides elicited immunogenicity mediated by antigen-specific IgGs and B cell activation.

20.
Vaccines (Basel) ; 12(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38793768

RESUMEN

African swine fever (ASF) is a deadly disease of swine currently causing a worldwide pandemic, leading to severe economic consequences for the porcine industry. The control of disease spread is hampered by the limitation of available effective vaccines. Live attenuated vaccines (LAVs) are currently the most advanced vaccine prototypes, providing strong protection against ASF. However, the significant advances achieved using LAVs must be complemented with further studies to analyze vaccine-induced immunity. Here, we characterized the onset of cross-protective immunity triggered by the LAV candidate BA71ΔCD2. Intranasally vaccinated pigs were challenged with the virulent Georgia 2007/1 strain at days 3, 7 and 12 postvaccination. Only the animals vaccinated 12 days before the challenge had effectively controlled infection progression, showing low virus loads, minor clinical signs and a lack of the unbalanced inflammatory response characteristic of severe disease. Contrarily, the animals vaccinated 3 or 7 days before the challenge just showed a minor delay in disease progression. An analysis of the humoral response and whole blood transcriptome signatures demonstrated that the control of infection was associated with the presence of virus-specific IgG and a cytotoxic response before the challenge. These results contribute to our understanding of protective immunity induced by LAV-based vaccines, encouraging their use in emergency responses in ASF-affected areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA