Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 654
Filtrar
1.
Biomaterials ; 312: 122723, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39121732

RESUMEN

The challenges generated by insufficient T cell activation and infiltration have constrained the application of immunotherapy. Making matters worse, the complex tumor microenvironment (TME), resistance to apoptosis collectively poses obstacles for cancer treatment. The carrier-free small molecular self-assembly strategy is a current research hotspot to overcome these challenges. This strategy can transform multiple functional agents into sustain-released hydrogel without the addition of any excipients. Herein, a coordination and hydrogen bond mediated tricomponent hydrogel (Cel hydrogel) composed of glycyrrhizic acid (GA), copper ions (Cu2+) and celastrol (Cel) was initially constructed. The hydrogel can regulate TME by chemo-dynamic therapy (CDT), which increases reactive oxygen species (ROS) in conjunction with GA and Cel, synergistically expediting cellular apoptosis. What's more, copper induced cuproptosis also contributes to the anti-tumor effect. In terms of regulating immunity, ROS generated by Cel hydrogel can polarize tumor-associated macrophages (TAMs) into M1-TAMs, Cel can induce T cell proliferation as well as activate DC mediated antigen presentation, which subsequently induce T cell proliferation, elevate T cell infiltration and enhance the specific killing of tumor cells, along with the upregulation of PD-L1 expression. Upon co-administration with aPD-L1, this synergy mitigated both primary and metastasis tumors, showing promising clinical translational value.


Asunto(s)
Cobre , Hidrogeles , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Activación de Linfocitos , Triterpenos Pentacíclicos , Especies Reactivas de Oxígeno , Linfocitos T , Microambiente Tumoral , Triterpenos Pentacíclicos/farmacología , Hidrogeles/química , Animales , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones , Activación de Linfocitos/efectos de los fármacos , Cobre/química , Microambiente Tumoral/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Humanos , Ratones Endogámicos C57BL , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/química , Femenino , Triterpenos/farmacología , Triterpenos/química
2.
Int J Biol Macromol ; : 136096, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39353524

RESUMEN

Low concentrations or limited residence times in tumor tissues, making celastrol (Cel) difficult to exert significant therapeutic effects. Thus, we developed Zein/hyaluronic acid core-shell nanoparticles (Cel/Zein@HA NPs) for active targeted delivery of Cel via CD44 receptor over-expression on cancer cells, which may strengthen the therapeutic efficacy of Cel and improve delivery targeting. Cel-loaded Zein nanoparticles (core), are elegantly enveloped by a hydrophilic HA coating that forms the shell, resulting in significantly improved encapsulation efficiency and ensured good stability. The cellular uptake of Cel/Zein@HA NPs in HepG2 cells was 1.57-fold higher than nontargeting Cel/Zein NPs. Near-infrared fluorescence imaging confirmed the accumulation of Cel/Zein@HA NPs in H22 liver cancer tumors in mice, resulting in effective antitumor effects and good biosafety. Besides, in vitro and in vivo experiments showed that compared with Cel/Zein NPs, Cel/Zein@HA NPs had more efficient inhibitory effect on tumor proliferation and lower systemic toxicity. Further studies revealed that Cel/Zein@HA NPs induced apoptosis in hepatocellular carcinoma cells by modulating Bax and Bcl-2 expression, while also inhibiting tumor angiogenesis by decreasing CD31 and VEGF levels. Overall, this study presents a promising strategy for enhancing targeted liver cancer therapy through the utilization of biopolymer nanoparticle-based nano-pharmaceuticals that facilitate CD44-mediated cellular uptake.

3.
Eur J Pharm Biopharm ; : 114511, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307441

RESUMEN

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common causes of respiratory failure in critically ill patients. There is still a lack of definitive and effective treatment options, and the mortality rate remains as high as 30% to 40%. Effective therapeutics for ALI/ARDS are greatly hindered by the side effects resulting from inefficient delivery to the disease lesions and off-targeting biodistribution of drugs. Macrophages play an integral role in maintaining the steady state of the immune system and are involved in inflammation processes. Thus, nanodrug to accurately target macrophages have the potential to transform disease treatment. Here, we developed an mannosylated drug delivery system to target and deliver celastrol (Cel) to the alveolar macrophages for enhanced alleviating the cytokines in LPS-induce ALI mice. In vitro data demonstrated that the as-synthesized Man@Cel-NPs significantly improved the targeting of Cel into the inflammatory macrophages via mannose receptor-mediated phagocytosis. In vivo experiments further showed that intratracheal delivery of Man@Cel-NPs can improve the dysregulation of inflammatory response in LPS-induced mice by inhibiting the release of inflammatory cytokines and increasing autophagy and decreasing apoptosis in lungs. This work provides a potential NP platform for the locally tracheal delivery of herbal ingredients and exhibits promising clinical potential in the treatment of numerous respiratory diseases, including ALI/ARDS.

4.
Biomed Pharmacother ; 179: 117397, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232386

RESUMEN

Celastrol, the primary constituent of Tripterygium wilfordii, has demonstrated neuroprotective properties in rats with dementia by reducing inflammation. A high-fat diet and streptozotocin injection were utilized to establish a diabetic rat model, which was then employed to investigate the possible protective effect of celastrol against the development of diabetes-induced learning and memory deficits. Afterwards, the experimental animals received a dose of celastrol by gavage (4 mg/kg/d). An animal study showed that celastrol enhanced insulin sensitivity and glucose tolerance in diabetic rats. In the Morris water maze test, rats with diabetes performed poorly in terms of spatial learning and memory; treatment with celastrol improved these outcomes. Additionally, administration of celastrol downregulated the expression of inflammatory-related proteins (NF-κB, IKKα, TNF-α, IL-1ß, and IL-6) and greatly reduced the generation of Aß in the diabetic hippocampus tissue. Moreover, the insulin signaling pathway-related proteins PI3K, AKT, and GSK-3ß were significantly upregulated in diabetic rats after celastrol was administered. Also, celastrol prevented damage to the brain structures and increased the synthesis of synaptic proteins like PSD-95 and SYT1. In conclusion, celastrol exerts a neuroprotective effect by modulating the insulin signaling system and reducing inflammatory responses, which helps to ameliorate the cognitive impairment associated with diabetes.


Asunto(s)
Péptidos beta-Amiloides , Diabetes Mellitus Experimental , Hipocampo , Inflamación , Insulina , Plasticidad Neuronal , Fármacos Neuroprotectores , Triterpenos Pentacíclicos , Transducción de Señal , Triterpenos , Animales , Triterpenos Pentacíclicos/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Masculino , Fármacos Neuroprotectores/farmacología , Péptidos beta-Amiloides/metabolismo , Transducción de Señal/efectos de los fármacos , Insulina/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratas , Plasticidad Neuronal/efectos de los fármacos , Triterpenos/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Ratas Sprague-Dawley , Resistencia a la Insulina
5.
Biomed Pharmacother ; 179: 117263, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39243431

RESUMEN

Post-stroke depression (POSD) is a common difficulty and most predominant emotional syndrome after stroke often consequences in poor outcomes. In the present investigation, we have designed and studied the neurologically active celastrol/minocycline encapsulated with macrophages-derived exosomes functionalized PLGA nanoformulations (CMC-EXPL) to achieve enhanced anti-inflammatory behaviour and anti-depressant like activity in a Rat model of POSD. The animal model of POSD was established through stimulating process with chronic unpredictable mild stress (CUM) stimulations after procedure of middle cerebral artery occlusion (MCAO). Neuronal functions and Anti-inflammation behaviours were observed by histopathological (H&E) examination and Elisa analyses, respectively. The anti-depressive activity of the nanoformulations treated Rat models were evaluated by open-field and sucrose preference test methods. Microglial polarization was evaluated via flow-cytometry and qRT-PCR observations. The observed results exhibited that prepared nanoformulations reduced the POSD-stimulated depressive-like activities in rat models as well alleviated the neuronal damages and inflammatory responses in the cerebral hippocampus. Importantly, prepared CMC-EXPL nanoformulation effectively prevented the M1 pro-inflammatory polarization and indorsed M2 anti-inflammatory polarization, which indicates iNOS and CD86 levels significantly decreased and upsurged Arg-1 and CD206 levels. CMC-EXPL nanoformulation suggestively augmented anti-depressive activities and functional capability and also alleviated brain inflammation in POSD rats, demonstrating its therapeutic potential for POSD therapy.


Asunto(s)
Depresión , Modelos Animales de Enfermedad , Portadores de Fármacos , Exosomas , Macrófagos , Microglía , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Sprague-Dawley , Accidente Cerebrovascular , Animales , Exosomas/metabolismo , Depresión/tratamiento farmacológico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Microglía/efectos de los fármacos , Microglía/metabolismo , Masculino , Ratas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Portadores de Fármacos/química , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/complicaciones , Nanopartículas/química , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Antidepresivos/farmacología , Antidepresivos/administración & dosificación , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Composición de Medicamentos
6.
Pharmaceutics ; 16(9)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39339211

RESUMEN

Considering that the precise delivery of Celastrol (Cst) into mitochondria to induce mitochondrial dysfunction may be a potential approach to improve the therapeutic outcomes of Cst on TNBC, a novel tumor mitochondria dual-targeted mixed-micelle nano-system was fabricated via self-synthesized triphenylphosphonium-modified cholesterol (TPP-Chol) and hyaluronic acid (HA)-modified cholesterol (HA-Chol). The Cst-loaded mixed micelles (Cst@HA/TPP-M) exhibited the characteristics of a small particle size, negative surface potential, high drug loading of up to 22.8%, and sustained drug release behavior. Compared to Cst-loaded micelles assembled only by TPP-Chol (Cst@TPP-M), Cst@HA/TPP-M decreased the hemolysis rate and upgraded the in vivo stability and safety. In addition, a series of cell experiments using the triple-negative breast cancer cell line MDA-MB-231 as a cell model proved that Cst@HA/TPP-M effectively increased the cellular uptake of the drug through CD44-receptors-mediated endocytosis, and the uptake amount was three times that of the free Cst group. The confocal results demonstrated successful endo-lysosomal escape and effective mitochondrial transport triggered by the charge converse of Cst@HA/TPP-M after HA degradation in endo-lysosomes. Compared to the free Cst group, Cst@HA/TPP-M significantly elevated the ROS levels, reduced the mitochondrial membrane potential, and promoted tumor cell apoptosis, showing a better induction effect on mitochondrial dysfunction. In vivo imaging and antitumor experiments based on MDA-MB-231-tumor-bearing nude mice showed that Cst@HA/TPP-M facilitated drug enrichment at the tumor site, attenuated drug systemic distribution, and polished up the antitumor efficacy of Cst compared with free Cst. In general, as a target drug delivery system, mixed micelles co-constructed by TPP-Chol and HA-Chol might provide a promising strategy to ameliorate the therapeutic outcomes of Cst on TNBC.

7.
Phytomedicine ; 134: 155937, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39255723

RESUMEN

BACKGROUND: Chronic myeloid leukemia (CML) is driven primarily by the constitutively active BCR-ABL fusion oncoprotein. Although the development of tyrosine kinase inhibitors has markedly improved the prognosis of CML patients, it remains a significant challenge to overcome drug-resistant mutations, such as the T315I mutation of BCR-ABL, and achieve treatment-free remission in the clinic. PURPOSE: The identification of new intervention targets beyond BCR-ABL could provide new perspectives for future research and therapeutic intervention. A network pharmacology analysis was conducted to identify the most promising natural product with anti-CML activity. Celastrol was selected for further analysis to gain insights into its mechanism of action (MoA), with the aim of identifying potential new intervention targets for BCR-ABL T315I-mutant CML. METHODS: Transcriptomic and proteomic analyses were conducted to systematically investigate the molecular MoA of celastrol in K562T315I cells. To identify the target proteins of celastrol, mass spectrometry-coupled cellular thermal shift assay (MS-CETSA) was carried out, followed by validations with genetic knockdown and overexpression, cell proliferation assay, comet assay, Western blotting, celastrol probe-based in situ labeling and pull-down assay, molecular docking, and biolayer interferometry. RESULTS: Our multi-omics analyses revealed that celastrol primarily induces DNA damage accumulation and the unfolded protein response in K562T315I cells. Among the twelve most potential celastrol targets, experimental evidence demonstrated that the direct interaction of celastrol with YY1 and HMCES increases the levels of DNA damage, leading to cell death. CONCLUSION: This study represents the first investigation utilizing a proteome-wide label-free target deconvolution approach, MS-CETSA, to identify the protein targets of celastrol. This study also develops a new systems pharmacology strategy. The findings provide new insights into the multifaceted mechanisms of celastrol and, more importantly, highlight the potential of targeting proteins in DNA damage and repair pathways, particularly YY1 and HMCES, to combat drug-resistant CML.


Asunto(s)
Daño del ADN , Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Triterpenos Pentacíclicos , Triterpenos , Factor de Transcripción YY1 , Triterpenos Pentacíclicos/farmacología , Humanos , Daño del ADN/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Proteínas de Fusión bcr-abl/genética , Factor de Transcripción YY1/metabolismo , Triterpenos/farmacología , Células K562 , Mutación , Antineoplásicos Fitogénicos/farmacología , Muerte Celular/efectos de los fármacos , Tripterygium/química
8.
Int J Biol Macromol ; 280(Pt 3): 135848, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326626

RESUMEN

Celastrol (Cel) is a monomer from a famous traditional Chinese medicine named Tripterygium wilfordii Hook. f. Cel has shown great potential in treating intrahepatic cholangiocarcinoma (ICC) but still faces problems, including poor water solubility, high toxicity, and lack of targeting ability. Thus, the present work constructed a drug-delivery system using black fungus polysaccharide self-assembled -nanotubes (BFP). Cel-loaded nanotubes (BFP-Cel) were confirmed to have a high loading content of Cel (38 %), liver targeting, and enzyme-controlled release abilities. Moreover, BFP carriers could significantly increase the uptake efficiency of Cel by tumor cells. In vivo experiments showed that BFP-Cel could effectively inhibit tumor growth and reduce the physiological toxicity of Cel. Furthermore, BFP, as a carrier, could regulate the immune microenvironment in the liver through the activation of macrophages and play an immunomodulatory role. In summary, the BFP nanotube carrier could achieve detoxification and efficacy enhancement of Cel in treating ICC by increasing the targetability, controlled release ability, cell-uptake effect, and regulation of the immune microenvironment.

9.
IBRO Neurosci Rep ; 17: 161-176, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39220228

RESUMEN

Background: Following recent research advancements, an increasing level of evidence had been published to indicate that celastrol exerted a therapeutic effect on a range of nervous system diseases. This study therefore aimed to investigate the potential involvement of celastrol on ferroptosis and the blood-brain barrier disruption in intracerebral haemorrhage. Methods: We established a rat intracerebral haemorrhage and adrenal pheochromocytoma cell (PC12) OxyHb models using an ACSL4 overexpression vector. Ferroptosis-related indices were assessed using corresponding assay kits, and immunofluorescence and flow cytometry were used to measure reactive oxygen species (ROS) levels. Additionally, quantitative PCR (qPCR) and western blot analyses were conducted to evaluate the expression of key proteins and elucidate the role of celastrol in intracerebral haemorrhage (ICH). Results: Celastrol significantly improved neurological function scores, blood-brain barrier integrity, and brain water content in rats with ICH. Moreover, subsequent analysis of ferroptosis-related markers, such as Fe2+, ROS, MDA, and SOD, suggested that celastrol exerted a protective effect against the oxidative damage induced by ferroptosis in ICH rats and cells. Furthermore, Western blotting indicated that celastrol attenuated ferroptosis by modulating the expression levels of key proteins, including acyl-CoA synthetase long-chain family member 4 (ACSL4), glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and anti-transferrin receptor 1 (TFR1) both in vitro and in vivo. ACSL4 overexpression attenuated the neuroprotective effects of celastrol on ICH in vitro. Molecular docking analysis revealed that celastrol interacted with ACSL4 via the GLU107, GLN109, ASN111, and LYS357 binding sites. Conclusions: Celastrol exerted antioxidant properties and aids in neurological recovery after stroke by suppressing ACSL4 expression during ferroptosis. As such, this drug represented a promising pharmaceutical candidate for the treatment of ICH.

10.
Curr Med Chem ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39318000

RESUMEN

Cancer stands as a significant global health challenge due to its mortality rates and the complexities involved in its treatment. Addressing issues, such as metastasis, recurrence, chemoresistance, and treatment-related toxicity, remains pivotal in cancer therapy advancement. Therefore, exploration of novel therapeutic agents has emerged as a priority. As the risk of cancer continues to rise, effective measures must be taken to combat it. One promising approach is to explore natural remedies, such as terpenoids, which have demonstrated anticancer activity. Utilizing terpenoids could aid in the development of potent compounds to fight cancer. By studying the structural makeup of various terpenoid derivatives from previous research, we can identify which structural groups are essential for their anticancer activity. This understanding of the structure-activity relationship is crucial for developing new, effective anticancer agents based on terpenoids. Terpenoids, a diverse class of plant-derived secondary metabolites composed of multiple isoprene units, have garnered attention for their potential anticancer and pharmacological qualities. Some terpenoids exhibit notable anticancer effects by concentrating on several stages of cancer development. They show promise in blocking the initiation of early carcinogenesis by the induction of cell cycle arrest, the inhibition of cancer cell differentiation, and the induction of apoptosis. This study delves into the investigation of specific terpenoids showcasing promising anticancer activity against prevalent malignancies, including breast, colon, ovarian, and lung cancers. The study also explores the relationship between the structure and activity of these compounds, which sheds light on how effective they are against a variety of cancer cell types. The comprehensive discussion centres on elucidating terpenoids with substantial potential for combating diverse cancer types, offering insights into their structural features and promising anticancer mechanisms.

11.
Int J Nanomedicine ; 19: 9613-9635, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309184

RESUMEN

Background: The combination of nanoplatform-based chemotherapy and photodynamic therapy (PDT) is a promising way to treat cancer. Celastrol (Cela) exhibits highly effective anti-hepatoma activity with low water solubility, poor bioavailability, non-tumor targeting, and toxic side effects. The combination of Cela-based chemotherapy and PDT via hepatoma-targeting and reactive oxygen species (ROS)-responsive polymeric micelles (PMs) could solve the application problem of Cela and further enhance antitumor efficacy. Methods: In this study, Cela and photosensitizer chlorin e6 (Ce6) co-loaded glycyrrhetinic acid-modified carboxymethyl chitosan-thioketal-rhein (GCTR) PMs (Cela/Ce6/GCTR PMs) were prepared and characterized. The safety, ROS-sensitive drug release, and intracellular ROS production were evaluated. Furthermore, the in vitro anti-hepatoma effect and cellular uptaken in HepG2 and BEL-7402 cells, and in vivo pharmacokinetic, tissue distribution, and antitumor efficacy of Cela/Ce6/GCTR PMs in H22 tumor-bearing mice were then investigated. Results: Cela/Ce6/GCTR PMs were successfully prepared with nanometer-scale particle size, favorable drug loading capacity, and encapsulation efficiency. Cela/Ce6/GCTR PMs exhibited a strong safety profile and better hemocompatibility, exhibiting less damage to normal tissues. Compared with Cela-loaded GCTR PMs, the ROS-responsiveness of Cela/Ce6/GCTR PMs was increased, and the release of Cela was accelerated after combination with PDT. Cela/Ce6/GCTR PMs can efficiently target liver tumor cells by uptake and have a high cell-killing effect in response to ROS. The combination of GCTR PM-based chemotherapy and PDT resulted in increased bioavailability of Cela and Ce6, improved liver tumor targeting, and better anti-hepatoma effects in vivo. Conclusion: Hepatoma-targeting and ROS-responsive GCTR PMs co-loaded with Cela and Ce6 combined with PDT exhibited improved primary hepatic carcinoma therapeutic effects with lower toxicity to normal tissues, overcoming the limitations of monotherapy and providing new strategies for tumor treatment.


Asunto(s)
Carcinoma Hepatocelular , Quitosano , Clorofilidas , Neoplasias Hepáticas , Micelas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Especies Reactivas de Oxígeno , Animales , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacocinética , Fármacos Fotosensibilizantes/administración & dosificación , Células Hep G2 , Porfirinas/química , Porfirinas/farmacocinética , Porfirinas/farmacología , Porfirinas/administración & dosificación , Quitosano/química , Quitosano/análogos & derivados , Línea Celular Tumoral , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/farmacocinética , Triterpenos/química , Triterpenos/farmacología , Triterpenos/farmacocinética , Ácido Glicirretínico/química , Ácido Glicirretínico/farmacología , Ácido Glicirretínico/farmacocinética , Ácido Glicirretínico/análogos & derivados , Polímeros/química , Distribución Tisular , Liberación de Fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Masculino , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética
12.
Int J Biol Sci ; 20(12): 4601-4617, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309437

RESUMEN

Celastrol (Cel), derived from the traditional herb Tripterygium wilfordii Hook. f., has anti-inflammatory, anti-tumor, and immunoregulatory activities. Renal dysfunction, including acute renal failure, has been reported in patients following the administration of Cel-relative medications. However, the functional mechanism of nephrotoxicity caused by Cel is unknown. This study featured combined use of activity-based protein profiling and metabolomics analysis to distinguish the targets of the nephrotoxic effects of Cel. Results suggest that Cel may bind directly to several critical enzymes participating in metabolism and mitochondrial functions. These enzymes include voltage-dependent anion-selective channel protein 1 (essential for maintaining mitochondrial configurational and functional stability), pyruvate carboxylase (involved in sugar isomerization and the tricarboxylic acid cycle), fatty acid synthase (related to ß-oxidation of fatty acids), and pyruvate kinase M2 (associated with aerobic respiration). Proteomics and metabolomics analysis confirmed that Cel-targeted proteins disrupt some metabolic biosynthetic processes and promote mitochondrial dysfunction. Ultimately, Cel aggravated kidney cell apoptosis. These cumulative results deliver an insight into the potential mechanisms of Cel-caused nephrotoxicity. They may also facilitate development of antagonistic drugs to mitigate the harmful effects of Cel on the kidneys and improve its clinical applications.


Asunto(s)
Metabolómica , Triterpenos Pentacíclicos , Proteómica , Triterpenos , Triterpenos/farmacología , Proteómica/métodos , Animales , Riñón/efectos de los fármacos , Riñón/metabolismo , Humanos , Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
14.
ACS Appl Mater Interfaces ; 16(36): 47270-47283, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39189605

RESUMEN

In situ vaccines that can stimulate tumor immune response have emerged as a breakthrough in antitumor therapy. However, the immunosuppressed tumor microenvironment and insufficient infiltration of immune cells lead to ineffective antitumor immunity. Hence, a biomimetic carrier-free nanosystem (BCC) to induce synergistic phototherapy/chemotherapy-driven in situ vaccines was designed. A carrier-free nanosystem was developed using phototherapeutic reagents CyI and celastrol as raw materials. In vitro and in vivo studies have shown that under NIR light irradiation, BCC-mediated photo/chemotherapy not only accelerates the release of drugs to deeper parts of tumors, achieving timing and light-controlled drug delivery to result in cell apoptosis, but also effectively stimulates the antitumor response to induce in situ vaccine, which could invoke long-lasting antitumor immunity to inhibit tumor metastasis and eliminate distant tumor. This therapeutic strategy holds promise for priming robust innate and adaptive immune responses, arresting cancer progression, and inducing tumor dormancy.


Asunto(s)
Vacunas contra el Cáncer , Inmunoterapia , Animales , Ratones , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/inmunología , Humanos , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacología , Línea Celular Tumoral , Neoplasias/terapia , Neoplasias/inmunología , Microambiente Tumoral/efectos de los fármacos , Nanopartículas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fototerapia , Apoptosis/efectos de los fármacos , Rayos Infrarrojos
15.
Toxicol Appl Pharmacol ; 491: 117077, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181414

RESUMEN

BACKGROUND: Celastrol is a natural triterpene exhibiting significant and extensive antitumor activity in a wide range of cancer. Due to unfavorable toxicity profile and undefined mechanism, Celastrol's application in clinical cancer therapy remains limited. Herein, we elucidate the pharmacological mechanism of Celastrol's anticancer effects, with a focus on STAT3 signaling pathway in cancers with high incidence of metastasis. METHODS: The safety profile of Celastrol were assessed in mice. In vitro analysis was performed in gastric cancer and ovarian cancer to assess the cytotoxicity, induction of reactive oxygen species (ROS) of Celastrol using STAT3 knockout cancer cells. Effects of Celastrol on STAT3 activation and transcription activity, JAK2/STAT3 signaling protein expression were assessed. Additionally, proteomic contrastive analysis was performed to explore the molecular association of Celastrol with STAT3 deletion in cancer cells. RESULTS: Celastrol has no obvious toxic effect at 1.5 mg/kg/day in a 15 days' administration. Celastrol inhibits tumor growth and increases ROS in a STAT3 dependent manner in gastric and ovarian cancer celllines. On molecular level, it downregulates IL-6 level and inhibits the JAK2/STAT3 signaling pathway by suppressing STAT3' activation and transcription activity. Proteomic contrastive analysis suggests a similar cellular mechanism of action between Celastrol and STAT3 deletion on regulating cancer progression pathways related to migration and invasion. CONCLUSION: Our research elucidates the anti-cancer mechanism of Celastrol through targeting the JAK2/STAT3 signaling pathway in cancer with high incidence of metastasis. This study provides a solid theoretical basis for the application of Celastrol in cancer therapy.


Asunto(s)
Janus Quinasa 2 , Neoplasias Ováricas , Triterpenos Pentacíclicos , Factor de Transcripción STAT3 , Transducción de Señal , Neoplasias Gástricas , Triterpenos , Janus Quinasa 2/metabolismo , Femenino , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Animales , Humanos , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Línea Celular Tumoral , Ratones , Antineoplásicos/farmacología , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos BALB C
16.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3828-3836, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099356

RESUMEN

This study aims to further elucidate the efficacy targets of celastrol(CEL) intervention in central inflammation in mice with obesity-depression comorbiditiy, based on the differential mRNA expression in the amygdala(AMY) and dorsal raphe nucleus(DRN) after CEL intervention. C57BL/6J mice were randomly divided into a normal diet group(Chow), a obesity-depression comorbidity(COM) group, and low-, medium-, and high-dose CEL groups(CEL-L, CEL-M, CEL-H, 0.5, 1.0, 2.0 mg·kg~(-1)). The Chow group received a normal diet, while the COM group and CEL-L, CEL-M, CEL-H groups received a high-fat diet combined with chronic stress from wet bedding. After 10 weeks of feeding, the mice were orally administered CEL for three weeks. Subsequently, the AMY and DRN of mice in the Chow, COM, and CEL-H groups were subjected to transcriptome analysis, and the intersection of target differentially expressed genes in both nuclei was visualized using a Venn diagram. The intersected genes were then imported into STRING for protein-protein interaction(PPI) analysis, and Gene Ontology(GO) analysis was performed using DAVID to identify the core targets regulated by CEL in the AMY and DRN. Independent samples were subjected to quantitative real-time PCR(qPCR) to validate the intersection genes. The results revealed that the common genes regulated by CEL in the AMY and DRN included chemokine family genes Ccl2, Ccl5, Ccl7, Cxcl10, Cxcr6, and Hsp70 family genes Hspa1a, Hspa1b, as well as Myd88, Il2ra, Irf7, Slc17a8, Drd2, Parp9, and Nampt. GO analysis showed that the top 5 nodes Ccl2, Cxcl10, Myd88, Ccl5, and Irf7 were all involved in immune-inflammation regulation(P<0.01). The qPCR results from independent samples showed that in the AMY, compared with the results in the Chow group, chemokine family genes, Hsp70, Myd88, Il2ra, Irf7, Slc17a8, Parp9, and Nampt were significantly up-regulated in the COM group, with Drd2 showing a decreasing trend; these pathological changes were significantly improved in the CEL-H group compared to the COM group. In the DRN, compared with the results in the Chow group, chemokine family genes, Hsp70, Myd88, Il2ra, Irf7, Parp9, and Nampt were significantly down-regulated, while Slc17a8 was significantly up-regulated in the COM group; compared with those in the COM group, Cxcr6, Irf7, and Drd2 were significantly up-regulated, while Slc17a8 was significantly down-regulated in the CEL-H group. In both the AMY and DRN, the expression of Irf7 by CEL showed both inhibition and activation in a dose-dependent manner(R~2 were 0.709 8 and 0.917 2, respectively). These findings suggest that CEL can effectively improve neuroinflammation by regulating bidirectional expression of the same target proteins, thereby intervening in the immune activation of the AMY and immune suppression of the DRN in COM mice.


Asunto(s)
Amígdala del Cerebelo , Depresión , Núcleo Dorsal del Rafe , Ratones Endogámicos C57BL , Obesidad , Triterpenos Pentacíclicos , Triterpenos , Animales , Ratones , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Masculino , Depresión/tratamiento farmacológico , Depresión/genética , Depresión/metabolismo , Obesidad/genética , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Triterpenos/farmacología , Núcleo Dorsal del Rafe/metabolismo , Núcleo Dorsal del Rafe/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/genética , Humanos
17.
Biochem Biophys Res Commun ; 735: 150480, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094229

RESUMEN

Celastrol, a pentacyclic triterpenoid found in Chinese herb Tripterygium wilfordii, is considered as one of the top-five natural medicinal compounds with high antioxidant property. However, celastrol has poor aqueous solubility and thereby low bioavailability, restricting its clinical application as drug. To overcome this problem, we nanonized celastrol by entrapping it within hydrophilic nanocarrier - calcium phosphate nanoparticle. The synthesized calcium phosphate celastrol nanoparticle (CPCN) had average size of 35 nm, spherical shape, significant stability with (-) 37 mV zeta potential, celastrol entrapment efficiency around 75 % and low celastrol release kinetics spanning over 7 days, as measured by different techniques like FESEM, AFM, DLS, and spectrophotometry. Studies on the antioxidant potency of CPCN by flow cytometry and fluorescence microscopy depicted that the toxicity developed in human neuroblastoma cells SH-SY5Y by treatment with the selective neurotoxin MPP+ iodide (N-Methyl-4-phenylpyridinium iodide) got reduced by pretreatment of the cells with CPCN. Determination of cellular ROS content, depolarization level of mitochondrial membrane potential, cell cycle analysis and nuclear damage in MPP+-exposed cells demonstrated that CPCN had about 65 % more antioxidant efficacy over that of bulk celastrol. Thus, the nanonization process transformed hydrophobic celastrol into hydrophilic CPCN, having high potentiality to be developed as an effective antioxidant drug.

18.
J Tissue Eng ; 15: 20417314241265892, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130681

RESUMEN

The incidence of ulcerative colitis (UC) is rapidly rising worldwide. Oral drug delivery system is a promising approach for treating UC, but it often fails to accumulate to the inflammatory lesions, thus, it is impressive to develop a colon-targeted oral delivery system for preventing systemic toxicity and maintaining UC therapeutics. Here, a negative-charged PLGA nanoparticle system was designed to encapsulate celastrol (Cel), and then chitosan and mannose were coated on the surface of the nanoparticles (MC@Cel-NPs) to endow these nanoparticles with the mucosal adsorption and macrophage targeting abilities. MC@Cel-NPs demonstrate excellent resist decomposition ability against the strong acidic gastrointestinal environment, and accumulates in the specific inflammatory sites through the affinity of electrostatic reaction. After releasing the payload, MC@Cel-NPs could remarkably alleviate the colon inflammation, which was evidenced by the decrease in pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 in both blood and colon sections, and scavenging reactive oxygen species (ROS) in colon cells, including macrophage, neutrophil, T cell, and B cell. This nanoparticle system provided a new approach for treating UC through a Chinese herbal ingredient-related oral delivery manner.

19.
Mol Divers ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207663

RESUMEN

Idiopathic Pulmonary Fibrosis (IPF) is a disease characterized by pulmonary interstitial fibrosis and collagen proliferation, currently lacking effective therapeutic options. The combined use of Celastrol and Ligustrazine has been proved to synergistically improve the pathological processes of inflammation and fibrosis. In earlier studies, we designed and synthesized a Celastrol-Ligustrazine compound CL-001, though its role in IPF remains unclear. Here, the effects and mechanisms of CL-001 in bleomycin (BLM)-induced IPF were investigated. In vivo, CL-001 significantly improved lung function, reduced pulmonary inflammation, and decreased collagen deposition, thereby preventing the progression of IPF. In vitro, CL-001 concurrently inhibited both Smad-dependent and Smad-independent pathways, thereby suppressing TGF-ß1-induced epithelial-mesenchymal transition (EMT) and epithelial cell migration. This inhibitory effect was superior to that of Celastrol or Ligustrazine administered alone. Additionally, CL-001 significantly increased the level of apoptosis and promoted the expression of apoptosis-related proteins (Caspase-8 and PARP), ultimately leading to widespread apoptosis in activated lung epithelial cells. In summary, CL-001 exhibits excellent anti-IPF effects both in vitro and in vivo, suggesting its potential as a novel candidate drug for IPF, warranting further development.

20.
Front Pharmacol ; 15: 1444117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161898

RESUMEN

Objective: Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease globally, characterized by the accumulation of lipids, oxidative stress, and mitochondrial dysfunction in the liver. Celastrus orbiculatus Thunb. (COT) and its active compound celastrol (CEL) have demonstrated antioxidant and anti-inflammatory properties. Our prior research has shown the beneficial effects of COT in mitigating NAFLD induced by a high-fat diet (HFD) in guinea pigs by reducing hepatic lipid levels and inhibiting oxidative stress. This study further assessed the effects of COT on NAFLD and explored its underlying mitochondria-related mechanisms. Methods: COT extract or CEL was administered as an intervention in C57BL/6J mice fed a HFD or in HepG2 cells treated with sodium oleate. Oral glucose tolerance test, biochemical parameters including liver enzymes, blood lipid, and pro-inflammatory factors, and steatosis were evaluated. Meanwhile, mitochondrial ultrastructure and indicators related to oxidative stress were tested. Furthermore, regulators of mitochondrial function were measured using RT-qPCR and Western blot. Results: The findings demonstrated significant reductions in hepatic steatosis, oxidative stress, and inflammation associated with NAFLD in both experimental models following treatment with COT extract or CEL. Additionally, improvements were observed in mitochondrial structure, ATP content, and ATPase activity. This improvement can be attributed to the significant upregulation of mRNA and protein expression levels of key regulators including FGF21, AMPK, PGC-1α, PPARγ, and SIRT3. Conclusion: These findings suggest that COT may enhance mitochondrial function by activating the FGF21/AMPK/PGC-1α signaling pathway to mitigate NAFLD, which indicated that COT has the potential to target mitochondria and serve as a novel therapeutic option for NAFLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA