Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.307
Filtrar
1.
Tissue Barriers ; : 2387408, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087432

RESUMEN

Tight junctions (TJs) are an important component of cellular connectivity. Claudin family proteins, as a constituent of TJs, determine their barrier properties, cell polarity and paracellular permeability. Claudin-12 is an atypical member of the claudin family, as it belongs to the group of non-classical claudins that lack a PDZ-binding domain. It has been shown that claudin-12 is involved in paracellular Ca2+ transients and it is present in normal and hyperplastic tissues in addition to neoplastic tissues. Dysregulation of claudin-12 expression has been reported in various cancers, suggesting that this protein may play an important role in cancer cell migration, invasion, and metastasis. Some studies have shown that claudin-12 gene functions as a tumor suppressor, but others have reported that overexpression of claudin-12 significantly increases the metastatic properties of various tumor cells. Investigating this dual role of claudin-12 is of utmost importance and should therefore be studied in detail. The aim of this review is to provide an overview of the information available to date on claudin-12, including its structure, expression in various tissues and substances that may affect it, with a final focus on its role in cancer.

2.
Cells ; 13(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39120298

RESUMEN

The establishment of neuronal polarity, involving axon specification and outgrowth, is critical to achieve the proper morphology of neurons, which is important for neuronal connectivity and cognitive functions. Extracellular factors, such as Wnts, modulate diverse aspects of neuronal morphology. In particular, non-canonical Wnt5a exhibits differential effects on neurite outgrowth depending upon the context. Thus, the role of Wnt5a in axon outgrowth and neuronal polarization is not completely understood. In this study, we demonstrate that Wnt5a, but not Wnt3a, promotes axon outgrowth in dissociated mouse embryonic cortical neurons and does so in coordination with the core PCP components, Prickle and Vangl. Unexpectedly, exogenous Wnt5a-induced axon outgrowth was dependent on endogenous, neuronal Wnts, as the chemical inhibition of Porcupine using the IWP2- and siRNA-mediated knockdown of either Porcupine or Wntless inhibited Wnt5a-induced elongation. Importantly, delayed treatment with IWP2 did not block Wnt5a-induced elongation, suggesting that endogenous Wnts and Wnt5a act during specific timeframes of neuronal polarization. Wnt5a in fibroblast-conditioned media can associate with small extracellular vesicles (sEVs), and we also show that these Wnt5a-containing sEVs are primarily responsible for inducing axon elongation.


Asunto(s)
Axones , Polaridad Celular , Proteína Wnt-5a , Animales , Proteína Wnt-5a/metabolismo , Polaridad Celular/efectos de los fármacos , Axones/metabolismo , Axones/efectos de los fármacos , Ratones , Vía de Señalización Wnt/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proyección Neuronal/efectos de los fármacos , Neuronas/metabolismo , Neuronas/citología , Proteína Wnt3A/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética
3.
Development ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133134

RESUMEN

Rho/Rac of plant (ROP) GTPases are a plant-specific proteins that function as molecular switches, activated by guanine nucleotide exchange factors (GEFs) and inactivated by GTPase-activating proteins (GAPs). The bryophyte Marchantia polymorpha contains single copies of ROP (MpROP), GEFs (ROPGEF and SPIKE (SPK)), and GAPs (ROPGAP and ROP ENHANCER (REN)). MpROP regulates the development of various tissues and organs such as rhizoids, gemmae, and air chambers. While the ROPGEF, KARAPPO (MpKAR) is essential for gemma initiation, the functions of other ROP regulatory factors are less understood. This study focused on two GAPs: MpROPGAP and MpREN. Mpren single mutants showed defects in thallus growth, rhizoid tip growth, gemma development, and air chamber formation, whereas Mpropgap mutants showed no visible abnormalities. However, Mpropgap Mpren double mutants had more severe phenotypes than the Mpren single mutants, suggesting backup roles of MpROPGAP in MpREN-involving processes. Overexpression of MpROPGAP, MpREN resulted in similar gametophyte defects, highlighting the importance of MpROP activation/inactivation cycling (or balancing). Thus, MpREN predominantly, and MpROPGAP as a backup, regulate gametophyte development, most likely by controlling MpROP activation in M. polymorpha.

4.
Proc Natl Acad Sci U S A ; 121(35): e2405217121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39172791

RESUMEN

Intercellular signaling mediated by evolutionarily conserved planar cell polarity (PCP) proteins aligns cell polarity along the tissue plane and drives polarized cell behaviors during tissue morphogenesis. Accumulating evidence indicates that the vertebrate PCP pathway is regulated by noncanonical, ß-catenin-independent Wnt signaling; however, the signaling components and mechanisms are incompletely understood. In the mouse hearing organ, both PCP and noncanonical Wnt (ncWnt) signaling are required in the developing auditory sensory epithelium to control cochlear duct elongation and planar polarity of resident sensory hair cells (HCs), including the shape and orientation of the stereociliary hair bundle essential for sound detection. We have recently discovered a Wnt/G-protein/PI3K pathway that coordinates HC planar polarity and intercellular PCP signaling. Here, we identify Wnt7b as a ncWnt ligand acting in concert with Wnt5a to promote tissue elongation in diverse developmental processes. In the cochlea, Wnt5a and Wnt7b are redundantly required for cochlear duct coiling and elongation, HC planar polarity, and asymmetric localization of core PCP proteins Fzd6 and Dvl2. Mechanistically, Wnt5a/Wnt7b-mediated ncWnt signaling promotes membrane recruitment of Daple, a nonreceptor guanine nucleotide exchange factor for Gαi, and activates PI3K/AKT and ERK signaling, which promote asymmetric Fzd6 localization. Thus, ncWnt and PCP signaling pathways have distinct mutant phenotypes and signaling components, suggesting that they act as separate, parallel pathways with nonoverlapping functions in cochlear morphogenesis. NcWnt signaling drives tissue elongation and reinforces intercellular PCP signaling by regulating the trafficking of PCP-specific Frizzled receptors.


Asunto(s)
Polaridad Celular , Proteínas Wnt , Vía de Señalización Wnt , Proteína Wnt-5a , Animales , Polaridad Celular/fisiología , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Ratones , Vía de Señalización Wnt/fisiología , Cóclea/metabolismo , Cóclea/citología , Cóclea/crecimiento & desarrollo , Células Ciliadas Auditivas/metabolismo , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Morfogénesis
5.
Curr Biol ; 34(16): 3722-3734.e7, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39089255

RESUMEN

Temperature can impact every reaction essential to a cell. For organisms that cannot regulate their own temperature, adapting to temperatures that fluctuate unpredictably and on variable timescales is a major challenge. Extremes in the magnitude and frequency of temperature changes are increasing across the planet, raising questions as to how the biosphere will respond. To examine mechanisms of adaptation to temperature, we collected wild isolates from different climates of the fungus Ashbya gossypii, which has a compact genome of only ∼4,600 genes. We found control of the nuclear division cycle and polarized morphogenesis, both critical processes for fungal growth, were temperature sensitive and varied among the isolates. The phenotypes were associated with naturally varying sequences within the glutamine-rich region (QRR) IDR of an RNA-binding protein called Whi3. This protein regulates both nuclear division and polarized growth via its ability to form biomolecular condensates. In cells and in cell-free reconstitution assays, we found that temperature tunes the properties of Whi3-based condensates. Exchanging Whi3 sequences between isolates was sufficient to rescue temperature-sensitive phenotypes, and specifically, a heptad repeat sequence within the QRR confers temperature-sensitive behavior. Together, these data demonstrate that sequence variation in the size and composition of an IDR can promote cell adaptation to growth at specific temperature ranges. These data demonstrate the power of IDRs as tuning knobs for rapid adaptation to environmental fluctuations.


Asunto(s)
Ciclo Celular , Proteínas Fúngicas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Temperatura , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/genética
6.
Cancers (Basel) ; 16(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39123414

RESUMEN

Since the initial identification of oncogenic Wnt in mice and Drosophila, the Wnt signaling pathway has been subjected to thorough and extensive investigation. Persistent activation of Wnt signaling exerts diverse cancer characteristics, encompassing tumor initiation, tumor growth, cell senescence, cell death, differentiation, and metastasis. Here we review the principal signaling mechanisms and the regulatory influence of pathway-intrinsic and extrinsic kinases on cancer progression. Additionally, we underscore the divergences and intricate interplays of the canonical and non-canonical Wnt signaling pathways and their critical influence in cancer pathophysiology, exhibiting both growth-promoting and growth-suppressing roles across diverse cancer types.

7.
Plant Physiol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140752

RESUMEN

Oriented cell divisions establish plant tissue and organ patterning and produce different cell types; this is particularly true of the highly organized Arabidopsis (Arabidopsis thaliana) root meristem. Mutant alleles of INFLORESCENCE AND ROOT APICES RECEPTOR KINASE (IRK) exhibit excess cell divisions in the root endodermis. IRK is a transmembrane receptor kinase that localizes to the outer polar domain of these cells, suggesting that directional signal perception is necessary to repress endodermal cell division. Here, a detailed examination revealed many of the excess endodermal divisions in irk have division planes that specifically skew towards the outer lateral side. Therefore, we termed them 'outward askew' divisions. Expression of an IRK truncation lacking the kinase domain retains polar localization and prevents outward askew divisions in irk; however, the roots exhibit excess periclinal endodermal divisions. Using cell identity markers, we show that the daughters of outward askew divisions transition from endodermal to cortical identity similar to those of periclinal divisions. These results extend the requirement for IRK beyond repression of cell division activity to include cell division plane positioning. Based on its polarity, we propose that IRK at the outer lateral endodermal cell face participates in division plane positioning to ensure normal root ground tissue patterning.

8.
Methods Mol Biol ; 2805: 187-201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008183

RESUMEN

Epidermal tissues are among the most striking examples of planar polarity. Insect bristles, fish scales, and mammalian fur are all uniformly oriented along an animal's body axis. The collective alignment of epidermal structures provides a valuable system to interrogate the signaling mechanisms that coordinate cellular behaviors at both local and tissue-levels. Here, we provide methods to analyze the planar organization of hair follicles within the mouse epidermis. Hair follicles are specified and bud into the underlying dermis during embryonic development. Shortly after, follicle cells dynamically rearrange to orient each follicle toward the anterior of the animal. When directional signaling is disrupted, hair follicles become misoriented. In this chapter, we describe how to create a spatial map of hair follicle orientations to reveal tissue-scale patterns in both embryonic and postnatal skin. Additionally, we provide a live imaging protocol that can be used to monitor cell movements in embryonic skin explants to reveal the cellular behaviors that polarize the hair follicle itself.


Asunto(s)
Polaridad Celular , Epidermis , Folículo Piloso , Animales , Ratones , Folículo Piloso/citología , Folículo Piloso/embriología , Polaridad Celular/fisiología , Epidermis/embriología , Epidermis/metabolismo , Células Epidérmicas/citología , Movimiento Celular
9.
Cells ; 13(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38994985

RESUMEN

The Notch communication pathway, discovered in Drosophila over 100 years ago, regulates a wide range of intra-lineage decisions in metazoans. The division of the Drosophila mechanosensory organ precursor is the archetype of asymmetric cell division in which differential Notch activation takes place at cytokinesis. Here, we review the molecular mechanisms by which epithelial cell polarity, cell cycle and intracellular trafficking participate in controlling the directionality, subcellular localization and temporality of mechanosensitive Notch receptor activation in cytokinesis.


Asunto(s)
Drosophila melanogaster , Receptores Notch , Animales , Drosophila melanogaster/metabolismo , Receptores Notch/metabolismo , Epitelio/metabolismo , Polaridad Celular , Proteínas de Drosophila/metabolismo , Órganos de los Sentidos/metabolismo , Órganos de los Sentidos/citología , Transducción de Señal , Células Epiteliales/metabolismo , Células Epiteliales/citología
10.
bioRxiv ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38948792

RESUMEN

The development of multicellular tissues requires both local and global coordination of cell polarization, however, the mechanisms underlying their interplay are poorly understood. In Arabidopsis, leaf epidermal pavement cells (PC) develop a puzzle-piece shape locally coordinated through apoplastic auxin signaling. Here we show auxin also globally coordinates interdigitation by activating the TIR1/AFB-dependent nuclear signaling pathway. This pathway promotes a transient maximum of auxin at the cotyledon tip, which then moves across the leaf activating local PC polarization, as demonstrated by locally uncaged auxin globally rescuing defects in tir1;afb1;afb2;afb4;afb5 mutant but not in tmk1;tmk2;tmk3;tmk4 mutants. Our findings show that hierarchically integrated global and local auxin signaling systems, which respectively depend on TIR1/AFB-dependent gene transcription in the nucleus and TMK-mediated rapid activation of ROP GTPases at the cell surface, control PC interdigitation patterns in Arabidopsis cotyledons, revealing a mechanism for coordinating a local cellular process with the development of whole tissues.

11.
J Cancer ; 15(14): 4490-4502, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006077

RESUMEN

Ovarian cancer is one of the gynecological malignancies with the highest mortality rate. Its widespread metastasis is difficult to cure, and the beneficiaries of targeted therapy are still limited, which has been a long-standing bottleneck problem. MAGUK P55 scaffold protein 7 (MPP7) plays an important role in the establishment of epithelial cell polarity, but its potential significance in epithelial ovarian cancer is still unclear. In this study, we investigated the expression profile of MPP7 and its functional role in epithelial ovarian cancer. Through analysis of TCGA and GEO databases, combined with immunohistochemical staining of ovarian tumor tissue chips, it was found that MPP7 is significantly overexpressed in epithelial ovarian cancer tissue, and its high expression is closely related to poor prognosis of patients. It has been verified through cell function experiments that interference with MPP7 can inhibit the proliferation, migration, and invasion of ovarian cancer cells in vitro. Performing planar polarity immunofluorescence staining on ovarian cancer cells revealed that interference with MPP7 can cause polarity changes in ovarian cancer cells. The transcriptome sequencing results of the ovarian cancer database were analyzed, and Western Blot was used to verify that MPP7 may mediate EMT via Wnt/ß-catenin signaling pathway and promote changes in cell polarity in human epithelial ovarian cancer, thereby promoting cancer progression, demonstrating the potential of MPP7 as a new biomarker and target for the diagnosis and treatment of ovarian cancer.

12.
Proc Natl Acad Sci U S A ; 121(29): e2400569121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985771

RESUMEN

Defects in planar cell polarity (PCP) have been implicated in diverse human pathologies. Vangl2 is one of the core PCP components crucial for PCP signaling. Dysregulation of Vangl2 has been associated with severe neural tube defects and cancers. However, how Vangl2 protein is regulated at the posttranslational level has not been well understood. Using chemical reporters of fatty acylation and biochemical validation, here we present that Vangl2 subcellular localization is regulated by a reversible S-stearoylation cycle. The dynamic process is mainly regulated by acyltransferase ZDHHC9 and deacylase acyl-protein thioesterase 1 (APT1). The stearoylation-deficient mutant of Vangl2 shows decreased plasma membrane localization, resulting in disruption of PCP establishment during cell migration. Genetically or pharmacologically inhibiting ZDHHC9 phenocopies the effects of the stearoylation loss of Vangl2. In addition, loss of Vangl2 stearoylation enhances the activation of oncogenic Yes-associated protein 1 (YAP), serine-threonine kinase AKT, and extracellular signal-regulated protein kinase (ERK) signaling and promotes breast cancer cell growth and HRas G12V mutant (HRasV12)-induced oncogenic transformation. Our results reveal a regulation mechanism of Vangl2, and provide mechanistic insight into how fatty acid metabolism and protein fatty acylation regulate PCP signaling and tumorigenesis by core PCP protein lipidation.


Asunto(s)
Membrana Celular , Polaridad Celular , Proteínas de la Membrana , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Polaridad Celular/fisiología , Membrana Celular/metabolismo , Movimiento Celular , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/genética , Aciltransferasas/metabolismo , Aciltransferasas/genética , Animales , Transducción de Señal , Procesamiento Proteico-Postraduccional , Péptidos y Proteínas de Señalización Intracelular
13.
Fluids Barriers CNS ; 21(1): 53, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956598

RESUMEN

AQP4 is expressed in the endfeet membranes of subpial and perivascular astrocytes and in the ependymal cells that line the ventricular system. The sporadic appearance of obstructive congenital hydrocephalus (OCHC) has been observed in the offspring of AQP4-/- mice (KO) due to stenosis of Silvio's aqueduct. Here, we explore whether the lack of AQP4 expression leads to abnormal development of ependymal cells in the aqueduct of mice. We compared periaqueductal samples from wild-type and KO mice. The microarray-based transcriptome analysis reflected a large number of genes with differential expression (809). Gene sets (GS) associated with ependymal development, ciliary function and the immune system were specially modified qPCR confirmed reduced expression in the KO mice genes: (i) coding for transcription factors for ependymal differentiation (Rfx4 and FoxJ1), (ii) involved in the constitution of the central apparatus of the axoneme (Spag16 and Hydin), (iii) associated with ciliary assembly (Cfap43, Cfap69 and Ccdc170), and (iv) involved in intercellular junction complexes of the ependyma (Cdhr4). By contrast, genes such as Spp1, Gpnmb, Itgax, and Cd68, associated with a Cd11c-positive microglial population, were overexpressed in the KO mice. Electron microscopy and Immunofluorescence of vimentin and γ-tubulin revealed a disorganized ependyma in the KO mice, with changes in the intercellular complex union, unevenly orientated cilia, and variations in the planar cell polarity of the apical membrane. These structural alterations translate into reduced cilia beat frequency, which might alter cerebrospinal fluid movement. The presence of CD11c + microglia cells in the periaqueductal zone of mice during the first postnatal week is a novel finding. In AQP4-/- mice, these cells remain present around the aqueduct for an extended period, showing peak expression at P11. We propose that these cells play an important role in the normal development of the ependyma and that their overexpression in KO mice is crucial to reduce ependyma abnormalities that could otherwise contribute to the development of obstructive hydrocephalus.


Asunto(s)
Acuaporina 4 , Epéndimo , Hidrocefalia , Ratones Noqueados , Microglía , Animales , Epéndimo/metabolismo , Epéndimo/patología , Hidrocefalia/metabolismo , Hidrocefalia/genética , Hidrocefalia/patología , Microglía/metabolismo , Acuaporina 4/metabolismo , Acuaporina 4/genética , Ratones , Acueducto del Mesencéfalo/metabolismo , Acueducto del Mesencéfalo/patología , Antígenos CD11/metabolismo , Antígenos CD11/genética , Ratones Endogámicos C57BL
14.
Hum Reprod ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926157

RESUMEN

In the first days of life, cells of the mammalian embryo segregate into two distinct lineages, trophectoderm and inner cell mass. Unlike nonmammalian species, mammalian development does not proceed from predetermined factors in the oocyte. Rather, asymmetries arise de novo in the early embryo incorporating cues from cell position, contractility, polarity, and cell-cell contacts. Molecular heterogeneities, including transcripts and non-coding RNAs, have now been characterized as early as the 2-cell stage. However, it's debated whether these early heterogeneities bias cells toward one fate or the other or whether lineage identity arises stochastically at the 16-cell stage. This review summarizes what is known about early blastomere asymmetries and our understanding of lineage allocation in the context of historical models. Preimplantation development is reviewed coupled with what is known about changes in morphology, contractility, and transcription factor networks. The addition of single-cell atlases of human embryos has begun to reveal key differences between human and mouse, including the timing of events and core transcription factors. Furthermore, the recent generation of blastoid models will provide valuable tools to test and understand fate determinants. Lastly, new techniques are reviewed, which may better synthesize existing knowledge with emerging data sets and reconcile models with the regulative capacity unique to the mammalian embryo.

15.
EMBO J ; 43(15): 3214-3239, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38907033

RESUMEN

Cell polarity networks are defined by quantitative features of their constituent feedback circuits, which must be tuned to enable robust and stable polarization, while also ensuring that networks remain responsive to dynamically changing cellular states and/or spatial cues during development. Using the PAR polarity network as a model, we demonstrate that these features are enabled by the dimerization of the polarity protein PAR-2 via its N-terminal RING domain. Combining theory and experiment, we show that dimer affinity is optimized to achieve dynamic, selective, and cooperative binding of PAR-2 to the plasma membrane during polarization. Reducing dimerization compromises positive feedback and robustness of polarization. Conversely, enhanced dimerization renders the network less responsive due to kinetic trapping of PAR-2 on internal membranes and reduced sensitivity of PAR-2 to the anterior polarity kinase, aPKC/PKC-3. Thus, our data reveal a key role for a dynamically oligomeric RING domain in optimizing interaction affinities to support a robust and responsive cell polarity network, and highlight how optimization of oligomerization kinetics can serve as a strategy for dynamic and cooperative intracellular targeting.


Asunto(s)
Membrana Celular , Polaridad Celular , Proteína Quinasa C , Multimerización de Proteína , Membrana Celular/metabolismo , Proteína Quinasa C/metabolismo , Animales , Unión Proteica
16.
Elife ; 132024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869055

RESUMEN

The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.


Asunto(s)
Proteína Quinasa CDC2 , Polaridad Celular , Proteínas de Drosophila , Animales , Fosforilación , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Órganos de los Sentidos/metabolismo , Órganos de los Sentidos/embriología , Péptidos y Proteínas de Señalización Intracelular
17.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830762

RESUMEN

Neurons are highly polarized cells that are composed of a single axon and multiple dendrites. Axon-dendrite polarity is essential for proper tissue formation and brain functions. Intracellular protein transport plays an important role in the establishment of neuronal polarity. However, the regulatory mechanism of polarized transport remains unclear. Here, we show that Rab6, a small GTPase that acts on the regulation of intracellular vesicular trafficking, plays key roles in neuronal polarization and brain development. Central nervous system-specific Rab6a/b double knock-out (Rab6 DKO) mice of both sexes exhibit severe dysplasia of the neocortex and the cerebellum. In the Rab6 DKO neocortex, impaired axonal extension of neurons results in hypoplasia of the intermediate zone. In vitro, deletion of Rab6a and Rab6b in cultured neurons from both sexes causes the abnormal accumulation of synaptic vesicle precursors (SVPs) adjacent to the Golgi apparatus, which leads to defects in axonal extension and the loss of axon-dendrite polarity. Moreover, Rab6 DKO causes significant expansion of lysosomes in the soma in neurons. Overall, our results reveal that Rab6-mediated polarized transport of SVPs is crucial for neuronal polarization and subsequent brain formation.


Asunto(s)
Encéfalo , Polaridad Celular , Ratones Noqueados , Neuronas , Vesículas Sinápticas , Proteínas de Unión al GTP rab , Animales , Polaridad Celular/fisiología , Ratones , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Neuronas/metabolismo , Femenino , Masculino , Vesículas Sinápticas/metabolismo , Encéfalo/metabolismo , Encéfalo/embriología , Encéfalo/citología , Células Cultivadas
18.
Front Cell Dev Biol ; 12: 1394031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827526

RESUMEN

Introdution: During development, planes of cells give rise to complex tissues and organs. The proper functioning of these tissues is critically dependent on proper inter- and intra-cellular spatial orientation, a feature known as planar cell polarity (PCP). To study the genetic and environmental factors affecting planar cell polarity, investigators must often manually measure cell orientations, which is a time-consuming endeavor. To automate cell counting and planar cell polarity data collection we developed a Fiji/ImageJ plug-in called PCP Auto Count (PCPA). Methods: PCPA analyzes binary images and identifies "chunks" of white pixels that contain "caves" of infiltrated black pixels. For validation, inner ear sensory epithelia including cochleae and utricles from mice were immunostained for ßII-spectrin and imaged with a confocal microscope. Images were preprocessed using existing Fiji functionality to enhance contrast, make binary, and reduce noise. An investigator rated PCPA cochlear hair cell angle measurements for accuracy using a one to five agreement scale. For utricle samples, PCPA derived measurements were directly compared against manually derived angle measurements and the concordance correlation coefficient (CCC) and Bland-Altman limits of agreement were calculated. PCPA was also tested against previously published images examining PCP in various tissues and across various species suggesting fairly broad utility. Results: PCPA was able to recognize and count 99.81% of cochlear hair cells, and was able to obtain ideally accurate planar cell polarity measurements for at least 96% of hair cells. When allowing for a <10° deviation from "perfect" measurements, PCPA's accuracy increased to 98%-100% for all users and across all samples. When PCPA's measurements were compared with manual angle measurements for E17.5 utricles there was negligible bias (<0.5°), and a CCC of 0.999. Qualitative examination of example images of Drosophila ommatidia, mouse ependymal cells, and mouse radial progenitors revealed a high level of accuracy for PCPA across a variety of stains, tissue types, and species. Discussion: Altogether, the data suggest that the PCPA plug-in suite is a robust and accurate tool for the automated collection of cell counts and PCP angle measurements.

19.
bioRxiv ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38895287

RESUMEN

Our sense of hearing is critically dependent on the spiral ganglion neurons (SGNs) that connect the sound receptors in the organ of Corti (OC) to the cochlear nuclei of the hindbrain. Type I SGNs innervate inner hair cells (IHCs) to transmit sound signals, while type II SGNs (SGNIIs) innervate outer hair cells (OHCs) to detect moderate-to-intense sound. During development, SGNII afferents make a characteristic 90-degree turn toward the base of the cochlea and innervate multiple OHCs. It has been shown that the Planar Cell Polarity (PCP) pathway acts non-autonomously to mediate environmental cues in the cochlear epithelium for SGNII afferent turning towards the base. However, the underlying mechanisms are unknown. Here, we present evidence that PCP signaling regulates multiple downstream effectors to influence cell adhesion and the cytoskeleton in cochlear supporting cells (SCs), which serve as intermediate targets of SGNII afferents. We show that the core PCP gene Vangl2 regulates the localization of the small GTPase Rac1 and the cell adhesion molecule Nectin3 at SC-SC junctions through which SGNII afferents travel. Through in vivo genetic analysis, we also show that loss of Rac1 or Nectin3 partially phenocopied SGNII peripheral afferent turning defects in Vangl2 mutants, and that Rac1 plays a non-autonomous role in this process in part by regulating PCP protein localization at the SC-SC junctions. Additionally, epistasis analysis indicates that Nectin3 and Rac1 likely act in the same genetic pathway to control SGNII afferent turning. Together, these experiments identify Nectin3 and Rac1 as novel regulators of PCP-directed SGNII axon guidance in the cochlea.

20.
Dev Biol ; 514: 37-49, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38885804

RESUMEN

The conserved bazooka (baz/par3) gene acts as a key regulator of asymmetrical cell divisions across the animal kingdom. Associated Par3/Baz-Par6-aPKC protein complexes are also well known for their role in the establishment of apical/basal cell polarity in epithelial cells. Here we define a novel, positive function of Baz/Par3 in the Notch pathway. Using Drosophila wing and eye development, we demonstrate that Baz is required for Notch signaling activity and optimal transcriptional activation of Notch target genes. Baz appears to act independently of aPKC in these contexts, as knockdown of aPKC does not cause Notch loss-of-function phenotypes. Using transgenic Notch constructs, our data positions Baz activity downstream of activating Notch cleavage steps and upstream of Su(H)/CSL transcription factor complex activity on Notch target genes. We demonstrate a biochemical interaction between NICD and Baz, suggesting that Baz is required for NICD activity before NICD binds to Su(H). Taken together, our data define a novel role of the polarity protein Baz/Par3, as a positive and direct regulator of Notch signaling through its interaction with NICD.


Asunto(s)
Proteínas de Drosophila , Receptores Notch , Transducción de Señal , Alas de Animales , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores Notch/metabolismo , Alas de Animales/metabolismo , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Unión Proteica , Drosophila melanogaster/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Ojo/embriología , Ojo/metabolismo , Ojo/crecimiento & desarrollo , Drosophila/metabolismo , Drosophila/embriología , Polaridad Celular , Péptidos y Proteínas de Señalización Intracelular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA