Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 146, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783303

RESUMEN

BACKGROUND: Cellobiose dehydrogenase (CDH) is an extracellular fungal oxidoreductase with multiple functions in plant biomass degradation. Its primary function as an auxiliary enzyme of lytic polysaccharide monooxygenase (LPMO) facilitates the efficient depolymerization of cellulose, hemicelluloses and other carbohydrate-based polymers. The synergistic action of CDH and LPMO that supports biomass-degrading hydrolases holds significant promise to harness renewable resources for the production of biofuels, chemicals, and modified materials in an environmentally sustainable manner. While previous phylogenetic analyses have identified four distinct classes of CDHs, only class I and II have been biochemically characterized so far. RESULTS: Following a comprehensive database search aimed at identifying CDH sequences belonging to the so far uncharacterized class III for subsequent expression and biochemical characterization, we have curated an extensive compilation of putative CDH amino acid sequences. A sequence similarity network analysis was used to cluster them into the four distinct CDH classes. A total of 1237 sequences encoding putative class III CDHs were extracted from the network and used for phylogenetic analyses. The obtained phylogenetic tree was used to guide the selection of 11 cdhIII genes for recombinant expression in Komagataella phaffii. A small-scale expression screening procedure identified a promising cdhIII gene originating from the plant pathogen Fusarium solani (FsCDH), which was selected for expression optimization by signal peptide shuffling and subsequent production in a 5-L bioreactor. The purified FsCDH exhibits a UV-Vis spectrum and enzymatic activity similar to other characterized CDH classes. CONCLUSION: The successful production and functional characterization of FsCDH proved that class III CDHs are catalytical active enzymes resembling the key properties of class I and class II CDHs. A detailed biochemical characterization based on the established expression and purification strategy can provide new insights into the evolutionary process shaping CDHs and leading to their differentiation into the four distinct classes. The findings have the potential to broaden our understanding of the biocatalytic application of CDH and LPMO for the oxidative depolymerization of polysaccharides.


Asunto(s)
Deshidrogenasas de Carbohidratos , Filogenia , Proteínas Recombinantes , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/enzimología , Celulosa/metabolismo , Secuencia de Aminoácidos
2.
Front Microbiol ; 15: 1330079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562472

RESUMEN

Cellobiose dehydrogenase (CDH) is one of the cellulase auxiliary proteins, which is widely used in the field of biomass degradation. However, how to efficiently and cheaply apply it in industrial production still needs further research. Aspergillus niger C112 is a significant producer of cellulase and has a relatively complete lignocellulose degradation system, but its CDH activity was only 3.92 U. To obtain a recombinant strain of A. niger C112 with high cellulases activity, the CDH from the readily available white-rot fungus Grifola frondose had been heterologously expressed in A. niger C112, under the control of the gpdA promoter. After cultivation in the medium with alkali-pretreated poplar fiber as substrate, the enzyme activity of recombinant CDH reached 36.63 U/L. Compared with the original A. niger C112, the recombinant A. niger transformed with Grifola frondosa CDH showed stronger lignocellulase activity, the activities of cellulases, ß-1, 4-glucosidase and manganese peroxidase increased by 28.57, 35.07 and 121.69%, respectively. The result showed that the expression of the gcdh gene in A. niger C112 could improve the activity of some lignocellulose degrading enzymes. This work provides a theoretical basis for the further application of gcdh gene in improving biomass conversion efficiency.

3.
Protein Expr Purif ; 218: 106448, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38373510

RESUMEN

Cellobiose dehydrogenase (CDH) plays a crucial role in lignocellulose degradation and bioelectrochemical industries, making it highly in demand. However, the production and purification of CDH through fungal heterologous expression methods is time-consuming, costly, and challenging. In this study, we successfully displayed Pycnoporus sanguineus CDH (psCDH) on the surface of Bacillus subtilis spores for the first time. Enzymatic characterization revealed that spore surface display enhanced the tolerance of psCDH to high temperature (80 °C) and low pH levels (3.5) compared to free psCDH. Furthermore, we found that glycerol, lactic acid, and malic acid promoted the activity of immobilized spore-displayed psCDH; glycerol has a more significant stimulating effect, increasing the activity from 16.86 ± 1.27 U/mL to 46.26 ± 3.25 U/mL. After four reuse cycles, the psCDH immobilized with spores retained 48% of its initial activity, demonstrating a substantial recovery rate. In conclusion, the spore display system, relying on cotG, enables the expression and immobilization of CDH while enhancing its resistance to adverse conditions. This system demonstrates efficient enzyme recovery and reuse. This approach provides a novel method and strategy for the immobilization and stability enhancement of CDH.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Deshidrogenasas de Carbohidratos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glicerol/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/química
4.
Appl Microbiol Biotechnol ; 108(1): 62, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38183486

RESUMEN

In this work the green synthesis of gold nanoparticles (Au-NPs) using the oxidoreductive enzymes Myriococcum thermophilum cellobiose dehydrogenase (Mt CDH), Glomerella cingulata glucose dehydrogenase (Gc GDH), and Aspergillus niger glucose oxidase (An GOX)) as bioreductants was investigated. The influence of reaction conditions on the synthesis of Au-NPs was examined and optimised. The reaction kinetics and the influence of Au ions on the reaction rate were determined. Based on the kinetic study, the mechanism of Au-NP synthesis was proposed. The Au-NPs were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The surface plasmon resonance (SPR) absorption peaks of the Au-NPs synthesised with Mt CDH and Gc GDH were observed at 535 nm, indicating an average size of around 50 nm. According to the image analysis performed on a TEM micrograph, the Au-NPs synthesized with Gc GDH have a spherical shape with an average size of 2.83 and 6.63 nm after 24 and 48 h of the reaction, respectively. KEY POINTS: • The Au NPs were synthesised by the action of enzymes CDH and GDH. • The synthesis of Au-NPs by CDH is related to the oxidation of cellobiose. • The synthesis of Au-NPs by GDH was not driven by the reaction kinetic.


Asunto(s)
Nanopartículas del Metal , Oxidorreductasas , Oro , Glucosa 1-Deshidrogenasa , Bacterias
5.
Appl Biochem Biotechnol ; 196(3): 1292-1303, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37392323

RESUMEN

We report a novel production process for lactobionic acid (LBA) production using an engineered Neurospora crassa strain F5. The wild-type N. crassa strain produces cellobiose dehydrogenase (CDH) and uses lactose as a carbon source. N. crassa strain F5, which was constructed by deleting six out of the seven ß-glucosidases in the wild type, showed a much slower lactose utilization rate and produced a much higher level of cellobiose dehydrogenase (CDH) than the wild type. Strain N. crassa F5 produced CDH and laccase simultaneously on the pretreated wheat straw with 3 µM of cycloheximide added as the laccase inducer. The deproteinized cheese whey was added directly to the shake flasks with the fungus present to achieve LBA production. Strain F5 produced about 37 g/L of LBA from 45 g/L of lactose in 27 h since deproteinized cheese whey addition. The yield of LBA from consumed lactose was about 85%, and the LBA productivity achieved was about 1.37 g/L/h.


Asunto(s)
Queso , Disacáridos , Neurospora crassa , Lactosa , Suero Lácteo , Neurospora crassa/genética , Lacasa , Proteína de Suero de Leche
6.
J Microbiol Biotechnol ; 34(2): 457-466, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38044713

RESUMEN

Cellobiose dehydrogenases (CDHs) are a group of enzymes belonging to the hemoflavoenzyme group, which are mostly found in fungi. They play an important role in the production of acid sugar. In this research, CDH annotated from the actinobacterium Cellulomonas palmilytica EW123 (CpCDH) was cloned and characterized. The CpCDH exhibited a domain architecture resembling class-I CDH found in Basidiomycota. The cytochrome c and flavin-containing dehydrogenase domains in CpCDH showed an extra-long evolutionary distance compared to fungal CDH. The amino acid sequence of CpCDH revealed conservative catalytic amino acids and a distinct flavin adenine dinucleotide region specific to CDH, setting it apart from closely related sequences. The physicochemical properties of CpCDH displayed optimal pH conditions similar to those of CDHs but differed in terms of optimal temperature. The CpCDH displayed excellent enzymatic activity at low temperatures (below 30°C), unlike other CDHs. Moreover, CpCDH showed the highest substrate specificity for disaccharides such as cellobiose and lactose, which contain a glucose molecule at the non-reducing end. The catalytic efficiency of CpCDH for cellobiose and lactose were 2.05 x 105 and 9.06 x 104 (M-1 s-1), respectively. The result from the Fourier-transform infrared spectroscopy (FT-IR) spectra confirmed the presence of cellobionic and lactobionic acids as the oxidative products of CpCDH. This study establishes CpCDH as a novel and attractive bacterial CDH, representing the first report of its kind in the Cellulomonas genus.


Asunto(s)
Deshidrogenasas de Carbohidratos , Cellulomonas , Cellulomonas/genética , Cellulomonas/metabolismo , Celobiosa/metabolismo , Lactosa , Azúcares Ácidos , Espectroscopía Infrarroja por Transformada de Fourier , Protocadherinas
7.
Chembiochem ; 24(22): e202300431, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37768852

RESUMEN

The function of cellobiose dehydrogenase (CDH) in biosensors, biofuel cells, and as a physiological redox partner of lytic polysaccharide monooxygenase (LPMO) is based on its role as an electron donor. Before donating electrons to LPMO or electrodes, an interdomain electron transfer from the catalytic FAD-containing dehydrogenase domain to the electron shuttling cytochrome domain of CDH is required. This study investigates the role of two crucial amino acids located at the dehydrogenase domain on domain interaction and interdomain electron transfer by structure-based engineering. The electron transfer kinetics of wild-type Myriococcum thermophilum CDH and its variants M309A, R698S, and M309A/R698S were analyzed by stopped-flow spectrophotometry and structural effects were studied by small-angle X-ray scattering. The data show that R698 is essential to pull the cytochrome domain close to the dehydrogenase domain and orient the heme propionate group towards the FAD, while M309 is an integral part of the electron transfer pathway - its mutation reducing the interdomain electron transfer 10-fold. Structural models and molecular dynamics simulations pinpoint the action of these two residues on the domain interaction and interdomain electron transfer.


Asunto(s)
Deshidrogenasas de Carbohidratos , Electrones , Aminoácidos/metabolismo , Proteínas Fúngicas/química , Transporte de Electrón , Deshidrogenasas de Carbohidratos/química , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Citocromos/metabolismo
8.
J Funct Biomater ; 14(7)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37504878

RESUMEN

Lactobionic acid (LBA) is a bioactive compound that has become increasingly popular in medicine in recent years due to its unique properties. This chemical can be formed via the enzymatic oxidation of lactose using fungal oxidoreductive enzymes. This study aimed to intensify the synthesis of LBA using immobilised enzymes (cellobiose dehydrogenase from Phanerochaete chrysosporium (PchCDH) and laccase from Cerrena unicolor (CuLAC)) on chitosan microspheres. We used three different crosslinking agents: genipin, glutaraldehyde, and polyethyleneimine to activate the chitosan. The FTIR and CellDrop techniques were used to characterise the activated microspheres. Quantitative (HPLC) and qualitative (TLC) methods were used to determine the obtained LBA. The results show that the type of activator used influences the efficiency of the binding of the enzyme to the matrix. Furthermore, the amount of LBA formed depends on the type of system used. The use of a system in which one of the enzymes is immobilised on a PEI-activated carrier (PchCDH) and the other is free (CuLAC) proved to be the most optimal, as it yielded almost 100% conversion of lactose to lactobionic acid. Summarising the data obtained the following: lactobionic acid immobilised on chitosan microspheres has great potential for medical applications.

9.
Int J Biol Macromol ; 247: 125822, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37451383

RESUMEN

This work reports biochemical characterization of Thermothelomyces thermophilus cellobiose dehydrogenase (TthCDHIIa) and its application as an antimicrobial and antibiofilm agent. We demonstrate that TthCDHIIa is thermostable in different ionic solutions and is capable of oxidizing multiple mono and oligosaccharide substrates and to continuously produce H2O2. Kinetics measurements depict the enzyme catalytic characteristics consistent with an Ascomycota class II CDH. Our structural analyses show that TthCDHIIa substrate binding pocket is spacious enough to accommodate larger cello and xylooligosaccharides. We also reveal that TthCDHIIa supplemented with cellobiose reduces the viability of S. aureus ATCC 25923 up to 32 % in a planktonic growth model and also inhibits its biofilm growth on 62.5 %. Furthermore, TthCDHIIa eradicates preformed S. aureus biofilms via H2O2 oxidative degradation of the biofilm matrix, making these bacteria considerably more susceptible to gentamicin and tetracycline.


Asunto(s)
Peróxido de Hidrógeno , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Antibacterianos/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana
10.
FEBS J ; 290(19): 4726-4743, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37287434

RESUMEN

The interdomain electron transfer (IET) between the catalytic flavodehydrogenase domain and the electron-transferring cytochrome domain of cellobiose dehydrogenase (CDH) plays an essential role in biocatalysis, biosensors and biofuel cells, as well as in its natural function as an auxiliary enzyme of lytic polysaccharide monooxygenase. We investigated the mobility of the cytochrome and dehydrogenase domains of CDH, which is hypothesised to limit IET in solution by small angle X-ray scattering (SAXS). CDH from Myriococcum thermophilum (syn. Crassicarpon hotsonii, syn. Thermothelomyces myriococcoides) was probed by SAXS to study the CDH mobility at different pH and in the presence of divalent cations. By comparison of the experimental SAXS data, using pair-distance distribution functions and Kratky plots, we show an increase in CDH mobility at higher pH, indicating alterations of domain mobility. To further visualise CDH movement in solution, we performed SAXS-based multistate modelling. Glycan structures present on CDH partially masked the resulting SAXS shapes, we diminished these effects by deglycosylation and studied the effect of glycoforms by modelling. The modelling shows that with increasing pH, the cytochrome domain adopts a more flexible state with significant separation from the dehydrogenase domain. On the contrary, the presence of calcium ions decreases the mobility of the cytochrome domain. Experimental SAXS data, multistate modelling and previously reported kinetic data show how pH and divalent ions impact the closed state necessary for the IET governed by the movement of the CDH cytochrome domain.


Asunto(s)
Deshidrogenasas de Carbohidratos , Citocromos , Dispersión del Ángulo Pequeño , Rayos X , Difracción de Rayos X , Deshidrogenasas de Carbohidratos/química , Polisacáridos , Iones , Celobiosa
11.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901965

RESUMEN

Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoprotein catalyzing the oxidation reaction of ß-1,4-glycosidic-bonded sugars (lactose or cellobiose), which results in the formation of aldobionic acids and hydrogen peroxide as a byproduct. The biotechnological application of CDH requires the immobilization of the enzyme on a suitable support. As a carrier of natural origin used for CDH immobilization, chitosan seems to increase the catalytic potential of the enzyme, especially for applications as packaging in the food industry and as a dressing material in medical applications. The present study aimed to immobilize the enzyme on chitosan beads and determine the physicochemical and biological properties of immobilized CDHs obtained from different fungal sources. The chitosan beads with immobilized CDHs were characterized in terms of their FTIR spectra or SEM microstructure. The most effective method of immobilization in the proposed modification was the covalent bonding of enzyme molecules using glutaraldehyde, resulting in efficiencies ranging from 28 to 99%. Very promising results, compared to free CDH, were obtained in the case of antioxidant, antimicrobial, and cytotoxic properties. Summarizing the obtained data, chitosan seems to be a valuable material for the development of innovative and effective immobilization systems for biomedical applications or food packaging, preserving the unique properties of CDH.


Asunto(s)
Antiinfecciosos , Quitosano , Quitosano/química , Oxidación-Reducción , Peróxido de Hidrógeno , Oxidorreductasas , Enzimas Inmovilizadas/química , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno
12.
Biotechnol Biofuels Bioprod ; 15(1): 135, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476312

RESUMEN

BACKGROUND: The Carbohydrate-Active enZymes (CAZy) auxiliary activity family 3 (AA3) comprises flavin adenine dinucleotide-dependent (FAD) oxidoreductases from the glucose-methanol-choline (GMC) family, which play auxiliary roles in lignocellulose conversion. The AA3 subfamily 1 predominantly consists of cellobiose dehydrogenases (CDHs) that typically comprise a dehydrogenase domain, a cytochrome domain, and a carbohydrate-binding module from family 1 (CBM1). RESULTS: In this work, an AA3_1 gene from T. myriococcoides CBS 398.93 encoding only a GMC dehydrogenase domain was expressed in Aspergillus niger. Like previously characterized CDHs, this enzyme (TmXdhA) predominantly accepts linear saccharides with ß-(1 → 4) linkage and targets the hydroxyl on the reducing anomeric carbon. TmXdhA was distinguished, however, by its preferential activity towards xylooligosaccharides over cellooligosaccharides. Amino acid sequence analysis showed that TmXdhA possesses a glutamine at the substrate-binding site rather than a threonine or serine that occupies this position in previously characterized CDHs, and structural models suggest the glutamine in TmXdhA could facilitate binding to pentose sugars. CONCLUSIONS: The biochemical analysis of TmXdhA revealed a catalytic preference for xylooligosaccharide substrates. The modeled structure of TmXdhA provides a reference for the screening of oxidoreductases targeting xylooligosaccharides. We anticipate TmXdhA to be a good candidate for the conversion of xylooligosaccharides to added-value chemicals by its exceptional catalytic ability.

13.
Bioresour Technol ; 359: 127444, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35691504

RESUMEN

The bioremediation of emerging recalcitrant pollutants in wastewater via enzyme biotechnology has been evolving as cost-effective with an input of low-energy technological approach. However, the enzyme based bioremediation technology is still not fully developed at a commercial level. The oxidoreductases being the domineering biocatalysts are promising candidates for wastewater treatments. Henceforth, comprehending their global market and biotransformation efficacy is mandatory for establishing these techno-economic bio-enzymes in commercial scale. The biocatalytic strategy can be established as a combinatorial approach with existing treatment technology to achieve towering bioremediation and effective removal of emerging pollutants from wastewater. This review provides a novel insight on the toxicological xenobiotics released from industries such as paper and pulps, soap and detergents, pharmaceuticals, textiles, pesticides, explosives and aptitude of peroxidases, nitroreductase and cellobiose dehydrogenase in their bio-based treatment. Moreover, the review comprehensively covers environmental relevance of wastewater pollution and the critical challenges based on remediation achieved through biocatalysts for future prospectives.


Asunto(s)
Contaminantes Ambientales , Plaguicidas , Biodegradación Ambiental , Contaminantes Ambientales/metabolismo , Oxidorreductasas , Aguas Residuales
14.
Biosens Bioelectron ; 210: 114337, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35537312

RESUMEN

Direct electron transfer (DET) of enzymes on electrode surfaces is highly desirable both for fundamental mechanistic studies and to achieve membrane- and mediator-less bioenergy harvesting. In this report, we describe the preparation and comprehensive structural and electrochemical characterization of a three-dimensional (3D) graphene-based carbon electrode, onto which the two-domain redox enzyme Myriococcum thermophilum cellobiose dehydrogenase (MtCDH) is immobilized. The electrode is prepared by an entirely novel method, which combines in a single step electrochemical reduction of graphene oxide (GO) and simultaneous electrodeposition of positively charged polyethylenimine (PEI), resulting in a well dispersed MtCDH surface. The resulting MtCDH bio-interface was characterized structurally in detail, optimized, and found to exhibit a DET maximum current density of 7.7 ± 0.9 µA cm-2 and a half-lifetime of 48 h for glucose oxidation, attributed to favorable MtCDH surface orientation. A dual, entirely DET-based enzymatic biofuel cell (EBFC) was constructed with a MtCDH bioanode and a Myrothecium verrucaria bilirubin oxidase (MvBOD) biocathode. The EBFC delivers a maximum power density (Pmax) of 7.6 ± 1.3 µW cm-2, an open-circuit voltage (OCV) of 0.60 V, and an operational lifetime over seven days, which exceeds most reported CDH based DET-type EBFCs. A biosupercapacitor/EBFC hybrid was also constructed and found to register maximum power densities 62 and 43 times higher than single glucose/air and lactose/air EBFCs, respectively. This hybrid also shows excellent operational stability with self-charging/discharging over at least 500 cycles.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Técnicas Biosensibles/métodos , Deshidrogenasas de Carbohidratos , Electrodos , Electrones , Enzimas Inmovilizadas/química , Glucosa/metabolismo , Sordariales
15.
Arch Microbiol ; 203(7): 4433-4448, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34132850

RESUMEN

Polysaccharides are biopolymers composed of simple sugars like glucose, galactose, mannose, fructose, etc. The major natural sources for the production of polysaccharides include plants and microorganisms. In the present work, four bacterial and two fungal polysaccharides (PS or EPS) were used for the modification and preservation of Pycnoporus sanguineus cellobiose dehydrogenase (CDH) activity. It was found that the presence of polysaccharide preparations clearly enhanced the stability of cellobiose dehydrogenase compared to the control value (4 °C). The highest stabilization effect was observed for CDH modified with Rh110EPS. Changes in the optimum pH in the samples of CDH incubated with the chosen polysaccharide modifiers were evidenced as well. The most significant effect was observed for Rh24EPS and Cu139PS (pH 3.5). Cyclic voltammetry used for the analysis of electrochemical parameters of modified CDH showed the highest peak values after 30 days of incubation with polysaccharides at 4 °C. In summary, natural polysaccharides seem to be an effective biotechnological tool for the modification of CDH activity to increase the possibilities of its practical applications in many fields of industry.


Asunto(s)
Deshidrogenasas de Carbohidratos , Polyporaceae , Polisacáridos , Bacterias/química , Deshidrogenasas de Carbohidratos/metabolismo , Catálisis/efectos de los fármacos , Estabilidad de Enzimas , Hongos/química , Polyporaceae/enzimología , Polisacáridos/metabolismo , Polisacáridos/farmacología
16.
FEBS J ; 288(13): 4115-4128, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33411405

RESUMEN

Fungal lytic polysaccharide monooxygenases (LPMOs) depolymerise crystalline cellulose and hemicellulose, supporting the utilisation of lignocellulosic biomass as a feedstock for biorefinery and biomanufacturing processes. Recent investigations have shown that H2 O2 is the most efficient cosubstrate for LPMOs. Understanding the reaction mechanism of LPMOs with H2 O2 is therefore of importance for their use in biotechnological settings. Here, we have employed a variety of spectroscopic and biochemical approaches to probe the reaction of the fungal LPMO9C from N. crassa using H2 O2 as a cosubstrate and xyloglucan as a polysaccharide substrate. We show that a single 'priming' electron transfer reaction from the cellobiose dehydrogenase partner protein supports up to 20 H2 O2 -driven catalytic cycles of a fungal LPMO. Using rapid mixing stopped-flow spectroscopy, alongside electron paramagnetic resonance and UV-Vis spectroscopy, we reveal how H2 O2 and xyloglucan interact with the enzyme and investigate transient species that form uncoupled pathways of NcLPMO9C. Our study shows how the H2 O2 cosubstrate supports fungal LPMO catalysis and leaves the enzyme in the reduced Cu+ state following a single enzyme turnover, thus preventing the need for external protons and electrons from reducing agents or cellobiose dehydrogenase and supporting the binding of H2 O2 for further catalytic steps. We observe that the presence of the substrate xyloglucan stabilises the Cu+ state of LPMOs, which may prevent the formation of uncoupled side reactions.


Asunto(s)
Polisacáridos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxigenasas de Función Mixta/metabolismo , Neurospora crassa/enzimología , Biocatálisis , Celulosa/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas Fúngicas/genética , Glucanos/metabolismo , Oxigenasas de Función Mixta/genética , Neurospora crassa/genética , Oxidación-Reducción , Polisacáridos/metabolismo , Unión Proteica , Proteínas Recombinantes/metabolismo , Espectrofotometría/métodos , Especificidad por Sustrato , Xilanos/metabolismo
17.
Microb Cell Fact ; 20(1): 2, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407462

RESUMEN

BACKGROUND: Cellobiose dehydrogenase from Phanerochaete chrysosporium (PcCDH) is a key enzyme in lignocellulose depolymerization, biosensors and biofuel cells. For these applications, it should retain important molecular and catalytic properties when recombinantly expressed. While homologous expression is time-consuming and the prokaryote Escherichia coli is not suitable for expression of the two-domain flavocytochrome, the yeast Pichia pastoris is hyperglycosylating the enzyme. Fungal expression hosts like Aspergillus niger and Trichoderma reesei were successfully used to express CDH from the ascomycete Corynascus thermophilus. This study describes the expression of basidiomycetes PcCDH in T. reesei (PcCDHTr) and the detailed comparison of its molecular, catalytic and electrochemical properties in comparison with PcCDH expressed by P. chrysosporium and P. pastoris (PcCDHPp). RESULTS: PcCDHTr was recombinantly produced with a yield of 600 U L-1 after 4 days, which is fast compared to the secretion of the enzyme by P. chrysosporium. PcCDHTr and PcCDH were purified to homogeneity by two chromatographic steps. Both enzymes were comparatively characterized in terms of molecular and catalytic properties. The pH optima for electron acceptors are identical for PcCDHTr and PcCDH. The determined FAD cofactor occupancy of 70% for PcCDHTr is higher than for other recombinantly produced CDHs and its catalytic constants are in good accordance with those of PcCDH. Mass spectrometry showed high mannose-type N-glycans on PcCDH, but only single N-acetyl-D-glucosamine additions at the six potential N-glycosylation sites of PcCDHTr, which indicates the presence of an endo-N-acetyl-ß-D-glucosaminidase in the supernatant. CONCLUSIONS: Heterologous production of PcCDHTr is faster and the yield higher than secretion by P. chrysosporium. It also does not need a cellulose-based medium that impedes efficient production and purification of CDH by binding to the polysaccharide. The obtained high uniformity of PcCDHTr glycoforms will be very useful to investigate electron transfer characteristics in biosensors and biofuel cells, which are depending on the spatial restrictions inflicted by high-mannose N-glycan trees. The determined catalytic and electrochemical properties of PcCDHTr are very similar to those of PcCDH and the FAD cofactor occupancy is good, which advocates T. reesei as expression host for engineered PcCDH for biosensors and biofuel cells.


Asunto(s)
Deshidrogenasas de Carbohidratos/metabolismo , Celobiosa/metabolismo , Hypocreales/enzimología , Phanerochaete/enzimología , Proteínas Recombinantes/metabolismo , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/aislamiento & purificación , Glicosilación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Transformación Genética
18.
Prep Biochem Biotechnol ; 51(5): 488-496, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33063604

RESUMEN

Termitomyces sp. OE 147 is one of the active cellulose degraders in the ecosphere and produces large amount of cellobiose dehydrogenase (CDH) and ß-glucosidases when cultivated on cellulose. In order to investigate its effect on cellulose, a highly purified preparation of CDH was obtained from the culture supernatant of the fungus cultivated on cellulose. A combination of ultrafiltration, ion-exchange and gel-filtration chromatography was used to purify CDH by ∼172-fold to a high specific activity of ∼324 U/mg protein on lactose which was used for routine measurement of enzyme activity. The enzyme displayed a pH optimum of 5.0 and stability between pH 5.0 and 8.0 with maximum catalytic efficiency (kcat/Km) of 397 mM-1 s-1 on cellobiose. Incubation of microcrystalline cellulose with the purified CDH led to production of reducing sugars which was accelerated by the addition of FeCl3 during the early stages of incubation. A mass spectrometric analysis revealed fragmentation products of cellulose which were concluded to be cellodextrins, sugars, and corresponding aldonic acids suggesting that CDH can release reducing sugars in the absence of externally added lytic polysaccharide monooxygenases. Polymerized products of glucose were also detected at low intensity.


Asunto(s)
Deshidrogenasas de Carbohidratos , Celulosa/química , Proteínas Fúngicas , Termitomyces/enzimología , Deshidrogenasas de Carbohidratos/química , Deshidrogenasas de Carbohidratos/aislamiento & purificación , Estabilidad de Enzimas , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Especificidad por Sustrato , Termitomyces/crecimiento & desarrollo
19.
Angew Chem Int Ed Engl ; 60(5): 2385-2392, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33090629

RESUMEN

Long-range electron transfer (ET) in metalloenzymes is a general and fundamental process governing O2 activation and reduction. Lytic polysaccharide monooxygenases (LPMOs) are key enzymes for the oxidative cleavage of insoluble polysaccharides, but their reduction mechanism by cellobiose dehydrogenase (CDH), one of the most commonly used enzymatic electron donors, via long-range ET is still an enigma. Using multiscale simulations, we reveal that interprotein ET between CDH and LPMO is mediated by the heme propionates of CDH and solvent waters. We also show that oxygen binding to the copper center of LPMO is coupled with the long-range interprotein ET. This process, which is spin-regulated and enhanced by the presence of O2 , directly leads to LPMO-CuII -O2- , bypassing the formation of the generally assumed LPMO-CuI species. The uncovered ET mechanism rationalizes experimental observations and might have far-reaching implications for LPMO catalysis as well as the O2 - or CO-binding-enhanced long-range ET processes in other metalloenzymes.


Asunto(s)
Deshidrogenasas de Carbohidratos/metabolismo , Transporte de Electrón/fisiología , Oxigenasas de Función Mixta/metabolismo , Oxígeno/metabolismo , Polisacáridos/metabolismo , Humanos
20.
Enzymes ; 47: 457-489, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32951832

RESUMEN

Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoenzyme secreted by fungi to assist lignocellulolytic enzymes in biomass degradation. Its catalytic flavodehydrogenase (DH) domain is a member of the glucose-methanol-choline oxidoreductase family similar to glucose oxidase. The catalytic domain is linked to an N-terminal electron transferring cytochrome (CYT) domain which interacts with lytic polysaccharide monooxygenase (LPMO) in oxidative cellulose and hemicellulose depolymerization. Based on CDH sequence analysis, four phylogenetic classes were defined. CDHs in these classes exhibit different structural and catalytic properties in regard to cellulose binding, substrate specificity, and the pH optima of their catalytic reaction or the interdomain electron transfer between the DH and CYT domain. The structure, reaction mechanism and kinetics of CDHs from Class-I and Class-II have been characterized in detail and recombinant expression allows the application in many areas, such as biosensors, biofuel cells biomass hydrolysis, biosynthetic processes, and the antimicrobial functionalization of surfaces.


Asunto(s)
Deshidrogenasas de Carbohidratos/química , Proteínas Fúngicas/química , Deshidrogenasas de Carbohidratos/clasificación , Celulosa/metabolismo , Transporte de Electrón , Proteínas Fúngicas/clasificación , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA