Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Intervalo de año de publicación
1.
BMC Ecol Evol ; 24(1): 90, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38956464

RESUMEN

BACKGROUND: Assessing the historical dynamics of key food web components is crucial to understand how climate change impacts the structure of Arctic marine ecosystems. Most retrospective stable isotopic studies to date assessed potential ecosystem shifts in the Arctic using vertebrate top predators and filter-feeding invertebrates as proxies. However, due to long life histories and specific ecologies, ecosystem shifts are not always detectable when using these taxa. Moreover, there are currently no retrospective stable isotopic studies on various other ecological and taxonomic groups of Arctic biota. To test whether climate-driven shifts in marine ecosystems are reflected in the ecology of short-living mesopredators, ontogenetic changes in stable isotope signatures in chitinous hard body structures were analysed in two abundant squids (Gonatus fabricii and Todarodes sagittatus) from the low latitude Arctic and adjacent waters, collected between 1844 and 2023. RESULTS: We detected a temporal increase in diet and habitat-use generalism (= opportunistic choice rather than specialization), trophic position and niche width in G. fabricii from the low latitude Arctic waters. These shifts in trophic ecology matched with the Atlantification of the Arctic ecosystems, which includes increased generalization of food webs and higher primary production, and the influx of boreal species from the North Atlantic as a result of climate change. The Atlantification is especially marked since the late 1990s/early 2000s. The temporal patterns we found in G. fabricii's trophic ecology were largely unreported in previous Arctic retrospective isotopic ecology studies. Accordingly, T. sagittatus that occur nowadays in the high latitude North Atlantic have a more generalist diet than in the XIXth century. CONCLUSIONS: Our results suggest that abundant opportunistic mesopredators with short life cycles (such as squids) are good candidates for retrospective ecology studies in the marine ecosystems, and to identify ecosystem shifts driven by climate change. Enhanced generalization of Arctic food webs is reflected in increased diet generalism and niche width in squids, while increased abundance of boreal piscivorous fishes is reflected in squids' increased trophic position. These findings support opportunism and adaptability in squids, which renders them as potential winners of short-term shifts in Arctic ecosystems.


Asunto(s)
Cambio Climático , Decapodiformes , Ecosistema , Cadena Alimentaria , Animales , Regiones Árticas , Cambio Climático/historia , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Dieta/historia
2.
Bull Math Biol ; 86(8): 98, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937322

RESUMEN

We used computer simulations of growth, mating and death of cephalopods and fishes to explore the effect of different life-history strategies on the relative prevalence of alternative male mating strategies. Specifically, we investigated the consequences of single or multiple matings per lifetime, mating strategy switching, cannibalism, resource stochasticity, and altruism towards relatives. We found that a combination of single (semelparous) matings, cannibalism and an absence of mating strategy changes in one lifetime led to a more strictly partitioned parameter space, with a reduced region where the two mating strategies co-exist in similar numbers. Explicitly including Hamilton's rule in simulations of the social system of a Cichlid led to an increase of dominant males, at the expense of both sneakers and dwarf males ("super-sneakers"). Our predictions provide general bounds on the viable ratios of alternative male mating strategies with different life-histories, and under possibly rapidly changing ecological situations.


Asunto(s)
Cefalópodos , Simulación por Computador , Peces , Modelos Biológicos , Conducta Sexual Animal , Animales , Masculino , Conducta Sexual Animal/fisiología , Cefalópodos/fisiología , Peces/fisiología , Femenino , Reproducción/fisiología , Canibalismo , Conceptos Matemáticos , Cíclidos/fisiología
3.
Swiss J Palaeontol ; 143(1): 23, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827169

RESUMEN

Belemnite rostra are very abundant in Mesozoic marine deposits in many regions. Despite this abundance, soft-tissue specimens of belemnites informing about anatomy and proportions of these coleoid cephalopods are extremely rare and limited to a few moderately large genera like Passaloteuthis and Hibolithes. For all other genera, we can make inferences on their body proportions and body as well as mantle length by extrapolating from complete material. We collected data of the proportions of the hard parts of some Jurassic belemnites in order to learn about shared characteristics in their gross anatomy. This knowledge is then applied to the Bajocian genus Megateuthis, which is the largest known belemnite genus worldwide. Our results provide simple ratios that can be used to estimate belemnite body size, where only the rostrum is known.

5.
Swiss J Palaeontol ; 143(1): 14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584612

RESUMEN

Orthoconic cephalopods are subordinate, but persistent, widespread and regionally abundant components of Triassic marine ecosystems. Here, we describe unpublished specimens from the Anisian (Middle Triassic) Besano Formation at Monte San Giorgio, Switzerland. They can be assigned to two major but unrelated lineages, the Coleoidea and the Orthoceratoidea. The orthoceratoids belong to Trematoceras elegans (Münster, 1841) and occur regularly within the Besano Formation, are uniform in size, and have few available morphological characters. In contrast, coleoids are more diverse and appear to be restricted to shorter intervals. A new coleoid is described as Ticinoteuthis chuchichaeschtli gen. et sp. nov. To better put the orthoceratoids of the Besano Formation into perspective, we also synthesise the current taxonomy of Triassic orthoceratoids on a global scale. The currently used scheme is largely outdated, with very little taxonomic progress in the past 100 years. Despite previous research showing the distinctness of Triassic orthoceratoids from Palaeozoic taxa, they are still commonly labelled as "Orthoceras" or "Michelinoceras", which are confined to the Palaeozoic. We show that Triassic orthoceratoids probably belong to a single lineage, the Trematoceratidae, which can be assigned to the Pseudorthocerida based on the embryonic shell and endosiphuncular deposits. Many Triassic species can probably be assigned to Trematoceras, but there are at least two additional Triassic orthoceratoid genera, Paratrematoceras and Pseudotemperoceras. Finally, we review the palaeobiogeographic and stratigraphic distribution of the group and outline possible future research directions.

6.
Ecol Evol ; 14(2): e10852, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38314312

RESUMEN

Visual display is a crucial aspect of courtship, and their success relies on both display quality and the surrounding environment, such as the visual background. Cephalopods may release ink when attacked by predators or during aggressive interactions with conspecifics. Here, we report that ink is used as a part of the courtship display by males of the cuttlefish species Sepia andreana. Males of this species engage in a highly ritualized multimodal courtship using a pair of markedly long sexually dimorphic arms. At the climax of the courtship, the male releases a diffuse backdrop of ink near himself and then performs the specific courtship display by extending his sexually dimorphic arms and altering his body pattern to pale in front of this ink backdrop, and then proceeds to mate. This novel use of cephalopod ink could make the surroundings darker and more homogeneous, potentially serving as a temporary modification of the visual environment for courtship display.

7.
Mol Biol Rep ; 51(1): 21, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38108856

RESUMEN

BACKGROUND: The Octopus vulgaris species complex consists of numerous morphologically similar but genetically distinct species. The current publicly available mitogenome of this species has been generated from a specimen collected from Tsukiji Fish Market, Tokyo, Japan. Octopus from the northwestern Pacific Ocean are now considered to be a separate species, Octopus sinensis. For this reason, we hypothesised that the current record of O. vulgaris was sequenced from a specimen of O. sinensis. Here, we sequenced the first complete mitogenome of a specimen of Octopus vulgaris sensu stricto that was collected from the species' confirmed distribution areas in northeastern Atlantic. METHODS AND RESULTS: The complete mitogenome was assembled de novo and annotated using 250 bp paired-end sequences. A single circular contig 15,655 bp in length with a mean read coverage of 1089 reads was reconstructed. The annotation pipeline identified 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNA) and two ribosomal RNAs. A maximum likelihood phylogenetic tree recovered the assembled mitogenome as the sister taxon of a monophyletic group comprising O. sinensis and the previously published mitogenome of "O. vulgaris" from Japan. This confirms that the latter was a Japanese specimen of O. sinensis. CONCLUSION: The mitogenome sequenced here is the first to be published for Octopus vulgaris sensu stricto. It represents an important first step in genetics-informed research on the evolution, conservation, and management of this commercially important species.


Asunto(s)
Genoma Mitocondrial , Octopodiformes , Animales , Genoma Mitocondrial/genética , Octopodiformes/genética , Filogenia , Japón , Océano Pacífico
8.
Swiss J Palaeontol ; 142(1): 22, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780806

RESUMEN

Although patchy, the fossil record of coleoids bears a wealth of information on their soft part anatomy. Here, we describe remains of the axial nerve cord from both decabrachian (Acanthoteuthis, Belemnotheutis, Chondroteuthis) and octobrachian (Plesioteuthis, Proteroctopus, Vampyronassa) coleoids from the Jurassic. We discuss some hypotheses reflecting on possible evolutionary drivers behind the neuroanatomical differentiation of the coleoid arm crown. We also propose some hypotheses on potential links between habitat depth, mode of life and the evolution of the Coleoidea. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-023-00285-3.

9.
Animals (Basel) ; 13(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37835627

RESUMEN

Welfare metrics have been established for octopuses in the laboratory, but not for octopuses living in the wild. Wild octopuses are constantly exposed to potentially harmful situations, and the ability to assess the welfare status of wild octopuses could provide pertinent information about individuals' health and species' resilience to stressors. Here, we used underwater photos and videos to identify injuries and stress-related behaviors in wild Octopus insularis in a variety of contexts, including interacting with fishermen, interacting with other octopuses and fish, proximity to predators, in den, foraging, and in senescence. We adapted established metrics of octopus welfare from the laboratory to these wild octopuses. In addition to observing all of the stress measures, we also identified two previously unknown measures associated with decreased welfare: (1) a half white eye flash and (2) a half-and-half blotch body pattern. More than half of the individuals analyzed had arm loss, and almost half of the individuals had skin injuries. We also observed that irregular chromatophore expression and abnormal motor coordination were associated with interactions with fishermen. This is the first study to apply measures of welfare from the laboratory to wild octopuses. Our results may also aid in the identification of welfare measures for other wild invertebrates.

10.
J Agric Food Chem ; 71(31): 12029-12042, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37500067

RESUMEN

Mollusks belong to the group of shellfish, which are considered to be among the elicitors of severe food allergies worldwide. In recent years, numerous PCR detection methods have been developed for other shellfish such as crustaceans. However, cephalopods and gastropods were not considered in the development of these shellfish detection systems. In this study, we have developed highly specific real-time PCR methods for the comprehensive detection of all commercially relevant cephalopod species and the gastropod families Helicidae, Buccinidae, and Muricidae in food matrices. In total, we cross-tested over 100 animal and plant species to show the specificity of our systems. The limit of detection (LOD12) was set at 1 pg of cephalopod and gastropod DNA or 10 ppm (mg/kg) spiked in a vegetarian food product. The robustness of the protocol was confirmed by testing multiple parameters while cooking and autoclaving of samples ensured the practical applicability of the systems.


Asunto(s)
Cefalópodos , Gastrópodos , Animales , Gastrópodos/genética , Cefalópodos/genética , Alérgenos/genética , Alérgenos/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Alimentos Marinos/análisis
11.
Proc Biol Sci ; 290(2001): 20230640, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37357857

RESUMEN

Deep-sea cephalopods are diverse, abundant, and poorly understood. The Cirrata are gelatinous finned octopods and among the deepest-living cephalopods ever recorded. Their natural feeding behaviour remains undocumented. During deep-sea surveys in the Arctic, we observed Cirroteuthis muelleri. Octopods were encountered with their web spread wide, motionless and drifting in the water column 500-2600 m from the seafloor. Individuals of C. muelleri were also repeatedly observed on the seafloor where they exhibited a repeated, behavioural sequence interpreted as feeding. The sequence (11-21 s) consisted of arm web spreading, enveloping and retreating. Prey capture happened during the enveloping phase and lasted 5-49 s. Numerous traces of feeding activity were also observed on the seafloor. The utilization of the water column for drifting and the deep seafloor for feeding is a novel migration behaviour for cephalopods, but known from gelatinous fishes and holothurians. By benthic feeding, the octopods benefit from the enhanced nutrient availability on the seafloor. Drifting in the water column may be an energetically efficient way of transportation while simultaneously avoiding seafloor-associated predators. In situ observations are indispensable to discover the behaviour of abundant megafauna, and the energetic coupling between the pelagic and benthic deep sea.


Asunto(s)
Almuerzo , Octopodiformes , Animales , Peces , Conducta Alimentaria , Agua , Ecosistema
12.
Mol Phylogenet Evol ; 186: 107827, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37257797

RESUMEN

The blue-ringed octopus species complex (Hapalochlaena spp.), known to occur from Southern Australia to Japan, currently contains four formally described species (Hapalochlaena maculosa, Hapalochlaena fasciata, Hapalochlaena lunulata and Hapalochlaena nierstraszi). These species are distinguished based on morphological characters (iridescent blue rings and/or lines) along with reproductive strategies. However, the observation of greater morphological diversity than previously captured by the current taxonomic framework indicates that a revision is required. To examine species boundaries within the genus we used mitochondrial (12S rRNA, 16S rRNA, cytochrome c oxidase subunit 1 [COI], cytochrome c oxidase subunit 3 [COIII] and cytochrome b [Cytb]) and genome-wide SNP data (DaRT seq) from specimens collected across its geographic range including variations in depth from 3 m to >100 m. This investigation indicates substantially greater species diversity present within the genus Hapalochlaena than is currently described. We identified 10,346 SNPs across all locations, which when analysed support a minimum of 11 distinct clades. Bayesian phylogenetic analysis of the mitochondrial COI gene on a more limited sample set dates the diversification of the genus to âˆ¼30 mya and corroborates eight of the lineages indicated by the SNP analyses. Furthermore, we demonstrate that the diagnostic lined patterning of H. fasciata found in North Pacific waters and NSW, Australia is polyphyletic and therefore likely the result of convergent evolution. Several "deep water" (>100 m) lineages were also identified in this study with genetic convergence likely to be driven by external selective pressures. Examination of morphological traits, currently being undertaken in a parallel morphological study, is required to describe additional species within the complex.


Asunto(s)
Octopodiformes , Animales , Filogenia , Octopodiformes/genética , ARN Ribosómico 16S/genética , Complejo IV de Transporte de Electrones/genética , Teorema de Bayes , Polimorfismo de Nucleótido Simple , Asia
13.
Mol Phylogenet Evol ; 182: 107729, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36773750

RESUMEN

Phylogenies for Octopoda have, until now, been based on morphological characters or a few genes. Here we provide the complete mitogenomes and the nuclear 18S and 28S ribosomal genes of twenty Octopoda specimens, comprising 18 species of Cirrata and Incirrata, representing 13 genera and all five putative families of Cirrata (Cirroctopodidae, Cirroteuthidae, Grimpoteuthidae, Opisthoteuthidae and Stauroteuthidae) and six families of Incirrata (Amphitretidae, Argonautidae, Bathypolypodidae, Eledonidae, Enteroctopodidae, and Megaleledonidae) which were assembled using genome skimming. Phylogenetic trees were built using Maximum Likelihood and Bayesian Inference with several alignment matrices. All mitochondrial genomes had the 'typical' genome composition and gene order previously reported for octopodiforms, except Bathypolypus ergasticus, which appears to lack ND5, two tRNA genes that flank ND5 and two other tRNA genes. Argonautoidea was revealed as sister to Octopodidae by the mitochondrial protein-coding gene dataset, however, it was recovered as sister to all other incirrate octopods with strong support in an analysis using nuclear rRNA genes. Within Cirrata, our study supports two existing classifications suggesting neither is likely in conflict with the true evolutionary history of the suborder. Genome skimming is useful in the analysis of phylogenetic relationships within Octopoda; inclusion of both mitochondrial and nuclear data may be key.


Asunto(s)
Genoma Mitocondrial , Octopodiformes , Animales , Octopodiformes/genética , Filogenia , Teorema de Bayes , Mitocondrias/genética , ARN de Transferencia
14.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555472

RESUMEN

Protein domains are independent structural and functional modules that can rearrange to create new proteins. While the evolution of multidomain proteins through the shuffling of different preexisting domains has been well documented, the evolution of domain repeat proteins and the origin of new domains are less understood. Metallothioneins (MTs) provide a good case study considering that they consist of metal-binding domain repeats, some of them with a likely de novo origin. In mollusks, for instance, most MTs are bidomain proteins that arose by lineage-specific rearrangements between six putative domains: α, ß1, ß2, ß3, γ and δ. Some domains have been characterized in bivalves and gastropods, but nothing is known about the MTs and their domains of other Mollusca classes. To fill this gap, we investigated the metal-binding features of NpoMT1 of Nautilus pompilius (Cephalopoda class) and FcaMT1 of Falcidens caudatus (Caudofoveata class). Interestingly, whereas NpoMT1 consists of α and ß1 domains and has a prototypical Cd2+ preference, FcaMT1 has a singular preference for Zn2+ ions and a distinct domain composition, including a new Caudofoveata-specific δ domain. Overall, our results suggest that the modular architecture of MTs has contributed to MT evolution during mollusk diversification, and exemplify how modularity increases MT evolvability.


Asunto(s)
Gastrópodos , Metales , Animales , Metales/metabolismo , Metalotioneína/metabolismo , Dominios Proteicos , Gastrópodos/genética , Gastrópodos/metabolismo , Cadmio/metabolismo
15.
Biology (Basel) ; 11(11)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36358261

RESUMEN

Nociception is the neural process of encoding noxious stimuli and is typically accompanied by a reflex withdrawal response away from the potentially injurious stimulus. Studies on nociception in cephalopods have so far focused on octopus and squid, with no investigations to our knowledge on cuttlefish. Yet, these are an important species both in scientific and commercial use. Therefore, the present study demonstrated that a standard pain stimulus, acetic acid, induced grooming behaviour directed towards the injection site in cuttlefish and that the injection of lidocaine reduces grooming behaviours in acetic-acid-injected cuttlefish. Wound-directed behaviour demonstrates that the animal is aware of the damage; thus, when subjecting these animals to any painful treatments in the laboratory, researchers should consider alleviating pain by the administration of pain-relieving drugs.

16.
Genomics Proteomics Bioinformatics ; 20(6): 1053-1065, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36216027

RESUMEN

Pelagic cephalopods have evolved a series of fascinating traits, such as excellent visual acuity, high-speed agility, and photophores for adaptation to open pelagic oceans. However, the genetic mechanisms underpinning these traits are not well understood. Thus, in this study, we obtained high-quality genomes of two purpleback flying squid species (Sthenoteuthis oualaniensis and Sthenoteuthis sp.), with sizes of 5450 Mb and 5651 Mb, respectively. Comparative genomic analyses revealed that the S-crystallin subfamily SL20-1 associated with visual acuity in the purpleback flying squid lineage was significantly expanded, and the evolution of high-speed agility for the species was accompanied by significant positive selection pressure on genes related to energy metabolism. These molecular signals might have contributed to the evolution of their adaptative predatory and anti-predatory traits. In addition, the transcriptomic analysis provided clear indications of the evolution of the photophores of purpleback flying squids, especially the recruitment of new genes and energy metabolism-related genes which may have played key functional roles in the process.


Asunto(s)
Cefalópodos , Animales , Cefalópodos/genética , Decapodiformes/genética
17.
Foods ; 11(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35741937

RESUMEN

In terms of species identification, the ultimate aim of extracting DNA is the subsequent amplification of the selected marker; therefore, the quality and quantity of the extracted DNA must be sufficient for PCR-based methods. The purpose of this study is to compare five DNA extraction methods according to the parameters of quantity, quality and simplicity, among others, in order to determine the most suitable method for identification for Cephalopoda, Gadiformes and Pleuronectiformes. The Wizard DNA clean-up system kit (Promega), MPure-12TM automated nucleic acid purification system (MP Biomedicals), Chelex 100 resin (Biorad), DNeasy blood and tissue kit (Qiagen) and a swab method were examined. The obtained DNA quantity was determined by fluorescence, and quality was evaluated with ratios of absorbance of A260/A280 and A260/A230 by agarose gel visualization of the extracts and by analyzing the success of PCR amplifications of 720 bp fragments of cytochrome c oxidase I (COI) for Cephalopods and 465 bp fragments of cytochrome b for Gadiformes and Pleuronectiformes. Statistical results confirmed significant differences between the tested methods according to yield, efficiency and purity and no significant differences with respect to the species employed. The best yields were obtained with the Wizard kit, whereas other methods stand out in terms of their affordability (Chelex) and automation (Mpure).

18.
BMC Biol ; 20(1): 88, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35421982

RESUMEN

BACKGROUND: Despite the excellent fossil record of cephalopods, their early evolution is poorly understood. Different, partly incompatible phylogenetic hypotheses have been proposed in the past, which reflected individual author's opinions on the importance of certain characters but were not based on thorough cladistic analyses. At the same time, methods of phylogenetic inference have undergone substantial improvements. For fossil datasets, which typically only include morphological data, Bayesian inference and in particular the introduction of the fossilized birth-death model have opened new possibilities. Nevertheless, many tree topologies recovered from these new methods reflect large uncertainties, which have led to discussions on how to best summarize the information contained in the posterior set of trees. RESULTS: We present a large, newly compiled morphological character matrix of Cambrian and Ordovician cephalopods to conduct a comprehensive phylogenetic analysis and resolve existing controversies. Our results recover three major monophyletic groups, which correspond to the previously recognized Endoceratoidea, Multiceratoidea, and Orthoceratoidea, though comprising slightly different taxa. In addition, many Cambrian and Early Ordovician representatives of the Ellesmerocerida and Plectronocerida were recovered near the root. The Ellesmerocerida is para- and polyphyletic, with some of its members recovered among the Multiceratoidea and early Endoceratoidea. These relationships are robust against modifications of the dataset. While our trees initially seem to reflect large uncertainties, these are mainly a consequence of the way clade support is measured. We show that clade posterior probabilities and tree similarity metrics often underestimate congruence between trees, especially if wildcard taxa are involved. CONCLUSIONS: Our results provide important insights into the earliest evolution of cephalopods and clarify evolutionary pathways. We provide a classification scheme that is based on a robust phylogenetic analysis. Moreover, we provide some general insights on the application of Bayesian phylogenetic inference on morphological datasets. We support earlier findings that quartet similarity metrics should be preferred over the Robinson-Foulds distance when higher-level phylogenetic relationships are of interest and propose that using a posteriori pruned maximum clade credibility trees help in assessing support for phylogenetic relationships among a set of relevant taxa, because they provide clade support values that better reflect the phylogenetic signal.


Asunto(s)
Cefalópodos , Animales , Teorema de Bayes , Cefalópodos/genética , Fósiles , Filogenia , Probabilidad
19.
Mar Pollut Bull ; 175: 113339, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35093780

RESUMEN

Benthic octopuses have been widely documented in artificial shelters for decades, and this use is apparently increasing. Despite any possible positive effects, the use of litter as shelter could have negative implications. In this work, we aimed to elucidate the interactions of octopuses with marine litter, identifying types of interactions and affected species and regions. To achieve this, we obtained 261 underwater images from 'citizen science' records, and identified 8 genera and 24 species of benthic octopuses interacting with litter. Glass objects were present in 41.6% of interactions, and plastic in 24.7%. Asia presented the highest number of images, and most records were from 2018 to 2021. Citizen science provided important evidence on octopus/marine litter interactions, highlighting its value and the need for more investigations on the subject. This information is fundamental to help prevent and mitigate the impacts of litter on octopuses, and identify knowledge gaps that require attention.


Asunto(s)
Ciencia Ciudadana , Octopodiformes , Animales , Asia , Monitoreo del Ambiente/métodos , Plásticos , Alimentos Marinos , Residuos/análisis
20.
Mar Pollut Bull ; 174: 113185, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34861606

RESUMEN

Few studies focused on behaviour adaptations of organisms to marine litter (ML) pollution in Mediterranean Sea. This research, investigates on some behavior traits of Octopus vulgaris, focusing on the interaction with ML during the artisanal fishing activities by the bottom traps in a small coastal area of the southern Tyrrhenian Sea. For the first time, this pilot study uses an integrated approach based on the Fishermen Ecological Knowledge as well as the analysis of ML found in the traps. First assessment of plastic ingestion in this species are also reported. Plastic and metal were the predominant ML categories observed into the bottom traps. A total of 62 plastics, mainly small microplastics and fibres shaped, were ingested. The ML finding in the bottom traps suggests an interesting behavior of the common octopus regarding its interaction with ML, in fact, it seems to bring ML inside its dens, as a collector.


Asunto(s)
Octopodiformes , Plásticos , Animales , Ingestión de Alimentos , Monitoreo del Ambiente , Caza , Mar Mediterráneo , Proyectos Piloto , Residuos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA