Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 224: 122-129, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30036806

RESUMEN

The Australian Antarctic Division (AAD) operates Australia's Davis Station in the Antarctic. In 2005, Davis Station's wastewater treatment plant failed and since then untreated, macerated effluent has been discharged to the ocean. The objectives of this study were to determine whether an advanced water treatment plant (AWTP) commissioned by the AAD and featuring a multi-barrier process involving ozonation, ceramic microfiltration, biologically activated carbon filtration, reverse osmosis, ultraviolet disinfection and chlorination was capable of producing potable water and a non-toxic brine concentrate that can be discharged with minimal environmental impact. The AWTP was tested using water from a municipal wastewater treatment plant in Tasmania, Australia. We used spot water and passive sampling combined with two multi-residue chromatographic-mass spectrometric methods and a range of recombinant receptor-reporter gene bioassays to screen trace organic chemicals (TrOCs), toxicity and receptor activity in the Feed water, in the environmental discharge (reject water), and product water from the AWTP for six months during 2014-15, and then again for three months in 2016. Across the two surveys we unambiguously detected 109 different TrOCs in the feed water, 39 chemicals in the reject water, and 34 chemicals in the product water. Sample toxicity and receptor activity in the feed water samples was almost totally removed in both testing periods, confirming that the vast majority of the receptor active TrOCs were removed by the treatment process. All the NDMA entering the AWTP in the feed and/or produced in the plant (typically < 50 ng/L), was retained into the reject water with no NDMA observed in the product water. In conclusion, the AWTP was working to design, and releases of TrOCs at the concentrations observed in this study would be unlikely cause adverse effects on populations of aquatic organisms in the receiving environment or users of the potable product water.


Asunto(s)
Reciclaje , Aguas Residuales , Purificación del Agua , Regiones Antárticas , Australia , Compuestos Orgánicos , Tasmania , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua
2.
Talanta ; 179: 57-63, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29310277

RESUMEN

Metaldehyde is a potent molluscicide. It is the active ingredient in most slug pellets used for crop protection. This polar compound is considered an emerging pollutant. Due to its environmental mobility, metaldehyde is frequently detected at impacted riverine sites, often at concentrations above the EU Drinking Water Directive limit of 0.1µgL-1 for an individual pesticide. This presents a problem when such waters are abstracted for use in the production of potable water supplies, as this chemical is difficult to remove using conventional treatment processes. Understanding the sources, transport and fate of this pollutant in river catchments is therefore important. We developed a new variant of the Chemcatcher® passive sampler for monitoring metaldehyde comprising a Horizon Atlantic™ HLB-L disk as the receiving phase overlaid with a polyethersulphone membrane. The sampler uptake rate (Rs) was measured in semi-static laboratory (Rs = 15.7mLday-1) and in-field (Rs = 17.8mLday-1) calibration experiments. Uptake of metaldehyde was linear over a two-week period, with no measurable lag phase. Field trials (five consecutive 14day periods) using the Chemcatcher® were undertaken in eastern England at three riverine sites (4th September-12th November 2015) known to be impacted by the seasonal agricultural use of metaldehyde. Spot samples of water were collected regularly during the deployments, with concentrations of metaldehyde varying widely (~ 0.03-2.90µgL-1) and often exceeding the regulatory limit. Time weighted average concentrations obtained using the Chemcatcher® increased over the duration of the trial corresponding to increasing stochastic inputs of metaldehyde into the catchment. Monitoring data obtained from these devices gives complementary information to that obtained by the use of infrequent spot sampling procedures. This information can be used to develop risk assessments and catchment management plans and to assess the effectiveness of any mitigation and remediation strategies.

3.
Environ Sci Pollut Res Int ; 23(6): 5881-91, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26593725

RESUMEN

Water and sediment samples were collected from up to 17 sites in waterways entering the Corner Inlet Marine National Park monthly between November 2009 and April 2010, with the Chemcatcher passive sampler system deployed at these sites in November 2009 and March 2010. Trace metal concentrations were low, with none occurring at concentrations with the potential for adverse ecological effects. The agrochemical residues data showed the presence of a small number of pesticides at very low concentration (ng/L) in the surface waters of streams entering the Corner Inlet, and as widespread, but still limited contamination of sediments. Concentrations of pesticides detected were relatively low and several orders of magnitude below reported ecotoxicological effect and hazardous concentration values. The low levels of pesticides detected in this study indicate that agricultural industries were responsible agrochemical users. This research project is a rarity in aligning both agrochemical usage data obtained from chemical resellers in the target catchment with residue analysis of environmental samples. Based on frequency of detection and concentrations, prometryn is the priority chemical of concern for both the water and sediments studied, but this chemical was not listed in reseller data. Consequently, the risks may be greater than the field data would suggest, and priorities for monitoring different since some commonly used herbicides (such as glyphosate, phenoxy acid herbicides, and sulfonyl urea herbicides) were not screened. Therefore, researchers, academia, industry, and government need to identify ways to achieve a more coordinated land use approach for obtaining information on the use of chemicals in a catchment, their presence in waterways, and the longer term performance of chemicals, particularly where they are used multiple times in a year.


Asunto(s)
Sedimentos Geológicos/química , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Bahías , Monitoreo del Ambiente , Herbicidas/análisis , Metales/análisis , Parques Recreativos , Ríos/química , Oligoelementos/análisis , Victoria
4.
Bull Environ Contam Toxicol ; 95(6): 758-63, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26071881

RESUMEN

This pilot study was initiated to provide new information on the 'hormonal' activity of Victorian rivers. Chemcatcher™ passive sampler systems containing Empore™ C18FF disks were deployed at eight riverine sites near Melbourne. Little estrogenic activity [<0.4-1.8 ng estradiol equivalents (EQ)/disk] and no retinoic acid activity (RAR, all samples <0.8 ng trans-retinoic acid EQ/disk) was observed. Almost all sample extracts showed aryl hydrocarbon receptor activity (from <4 to 29 ng ß-naphthoflavone EQ/disk). Overall, the disk extracts were eminently compatible with the bioassay screening technology, enabling the relative levels of 'hormonal activity' to be observed in the surface waters in and around Melbourne. From a practical perspective, the in situ sampling and pre-concentration provided by passive sampling reduces the manual handling risks associated with sample transport, and the number of laboratory operations required to obtain assay-ready solutions for analysis.


Asunto(s)
Monitoreo del Ambiente/métodos , Ríos/química , Contaminantes Químicos del Agua/análisis , Animales , Bioensayo , Genes Reporteros , Humanos , Oryzias/metabolismo , Proyectos Piloto , Receptores de Hidrocarburo de Aril/química , Receptores de Estrógenos/química , Receptores de Ácido Retinoico/química , Victoria , Contaminantes Químicos del Agua/química , Calidad del Agua , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA