RESUMEN
Animals exhibit sociability behaviors and spatial use patterns that are important for species survival. Bats are animals that exhibit complex patterns of aggregation of individuals, which can vary according to sex and age. Aggregation can be explained by active or passive mechanisms. In this behavioural note, we report a group of female Artibeus lituratus in the reproductive stage that exhibits aggregation behavior supporting the active mechanism hypothesis. The females returned to the same roost, for two reproductive season, maintaining the aggregation with the same individuals with which the social bonds were already established.
Os animais exibem comportamentos de sociabilidade e padrões de uso espacial que são importantes para a sobrevivência das espécies. Os morcegos são animais que apresentam padrões complexos de agregação de indivíduos, que podem variar de acordo com o sexo e a idade. A agregação pode ser explicada por mecanismos ativos ou passivos. Nesta nota comportamental, relatamos um grupo de fêmeas de Artibeus lituratus em fase reprodutiva que exibe comportamento de agregação apoiando a hipótese do mecanismo ativo. As fêmeas retornaram ao mesmo poleiro, por duas estações reprodutivas, mantendo a agregação com os mesmos indivíduos com os quais os laços sociais já foram estabelecidos.
Asunto(s)
AnimalesRESUMEN
Despite the great diversity of bats (64 species) in the State of Acre, northwestern Brazil, there are no studies on occurrence and diversity of Bartonella spp. in bats in this region. The present study investigated the occurrence and molecular identity of Bartonella spp. in spleen samples (n = 271) from bats of 30 different species from this region, within the Amazon biome. Twenty-one out of 208 (10.1%) samples positive in the PCR for the mammalian gapdh endogenous genes were positive in the qPCR for Bartonella spp. based on the nuoG gene. The two gltA Bartonella genotypes detected grouped with those previously identified in bats from other locations, expanding the diversity of genotypes associated with bats. This study provided the first molecular evidence of the presence of Bartonella spp. in bats in the state of Acre and in bats of the species Lophostoma silvicolum, Vampyressa thyone, Tonatia saurophila and Phyllostomus elongatus.
RESUMEN
Some species within the family Plasmodiidae (Haemosporida) have been extensively studied due to their implications for human health. However, for other haemosporidians that infect wild animals the knowledge is limited. Species within the genus Polychromophilus have thus far been documented exclusively as hemoparasites of bats. Records of Polychromophilus are primarily from Africa, Europe, and Southeast Asia, with limited information available for the Americas. Here, we assessed the state of knowledge on Polychromophilus species infecting bats worldwide and searched for the presence of Polychromophilus in blood samples of neotropical bats from Colombia. We found a total of 65 records of Polychromophilus in 46 bat species belonging to the families Emballonuridae, Hipposideridae, Miniopteridae, Rhinolophidae, Rhinonycteridae, and Vespertilionidae worldwide, except for Antarctica. In the Americas, records of the genus Polychromophilus are exclusively from Vespertilionidae bats in Brazil, Colombia, the United States, and Panama. The morphological and molecular analyses of blood from 125 bats, belonging to 39 species and captured in seven localities within the departments of Arauca and Caldas (Colombia), confirmed the presence of Polychromophilus deanei in a silver-tipped myotis, Myotis albescens (Vespertilionidae). This finding represents the first morphological and molecular confirmation of P. deanei in the Americas. Additionally, it expands the knowledge on the diversity and distribution of Polychromophilus in Neotropical bats.
RESUMEN
Bartonella is a bacterial genus that comprises arthropod-borne microorganisms. Several Bartonella isolates have been detected from bats worldwide, which are thought to be undescribed species. We aimed to test the presence of Bartonella spp. among bats from Colombia, and evaluate the genetic diversity of bat-associated Bartonella spp. through phylogenetic analyses. A total of 108 bat blood samples were collected from three bat species (Carollia perspicillata, Mormoops megalophylla, and Natalus tumidirostris) that inhabit the Macaregua cave. The Bartonella ssrA gene was targeted through real-time and end-point PCR; additionally, the gltA and rpoB genes were detected by end-point PCR. All obtained amplicons were purified and bidirectionally sequenced for phylogenetic analysis using a concatenated supermatrix and a supertree approaches. A detection frequency of 49.1 % (53/108) for Bartonella spp. was evidenced among bat blood samples, of which 59.1 % (26/44), 54.3 % (19/35) and 27.6 % (8/29) were identified in Carollia perspicillata, Natalus tumidirostris and Mormoops megalophylla respectively. A total of 35 ssrA, 5 gltA and 4 rpoB good-quality sequences were obtained which were used for phylogenetic analysis. All obtained bat sequences clustered together with sequences obtained from Neotropical bat species into two bat-restricted clades namely clade A and clade N. We detected the presence of Bartonella spp. that clustered within two different bat-associated Bartonella clades, giving the first data of the genetic diversity of these bacteria among bats from Colombia.
Asunto(s)
Infecciones por Bartonella , Bartonella , Cuevas , Quirópteros , Variación Genética , Filogenia , Animales , Quirópteros/microbiología , Bartonella/genética , Bartonella/clasificación , Bartonella/aislamiento & purificación , Colombia , Cuevas/microbiología , Infecciones por Bartonella/veterinaria , Infecciones por Bartonella/microbiología , Infecciones por Bartonella/epidemiología , ADN Bacteriano/genética , Análisis de Secuencia de ADNRESUMEN
We describe here the first characterization of the genome of the bat Pteronotus mexicanus, an endemic species of Mexico, as part of the Mexican Bat Genome Project which focuses on the characterization and assembly of the genomes of endemic bats in Mexico. The genome was assembled from a liver tissue sample of an adult male from Jalisco, Mexico provided by the Texas Tech University Museum tissue collection. The assembled genome size was 1.9 Gb. The assembly of the genome was fitted in a framework of 110,533 scaffolds and 1,659,535 contigs. The ecological importance of bats such as P. mexicanus, and their diverse ecological roles, underscores the value of having complete genomes in addressing information gaps and facing challenges regarding their function in ecosystems and their conservation.
Asunto(s)
Quirópteros , Genoma , Animales , Quirópteros/genética , Quirópteros/clasificación , México , Masculino , Análisis de Secuencia de ADN/métodosRESUMEN
Sleep is associated with many costs, but is also important to survival, with a lack of sleep impairing cognitive function and increasing mortality. Sleeping in groups could alleviate sleep-associated costs, or could introduce new costs if social sleeping disrupts sleep. Working with the Jamaican fruit bat (Artibeus jamaicensis), we aimed to: (1) describe sleep architecture, (2) assess how sleeping in groups affects sleep, and (3) quantify total sleep time and identify rapid eye movement (REM) sleep using behavioral indicators that complement physiological evidence of sleep. Twenty-five adult bats were captured in Panama and recorded sleeping in an artificial roost enclosure. Three bats were fitted with an electromyograph and accelerometer and video recorded sleeping alone in controlled laboratory settings. The remaining 22 bats were assigned to differing social configurations (alone, dyad, triad, and tetrad) and video recorded sleeping in an outdoor flight cage. We found that sleep was highly variable among individuals (ranging from 2 h 53 min to 9 h 39 min over a 12-h period). Although we did not detect statistically significant effects and our sample size was limited, preliminary trends suggest that male bats may sleep longer than females, and individuals sleeping in groups may sleep longer than individuals sleeping alone. We also found a high correspondence between total sleep time quantified visually and quantified using actigraphy (with a 2-min immobility threshold) and identified physiological correlates of behaviorally-defined REM. These results serve as a starting point for future work on the ecology and evolution of sleep in bats and other wild mammals.
Dormir está asociado con muchos costos, pero también es importante para la supervivencia, ya que la falta de sueño perjudica la función cognitiva y aumenta la mortalidad. Dormir en grupos podría disminuir los costos asociados con el sueño o podría introducir nuevos costos si este descanso grupal interrumpe el sueño. Trabajando con el murciélago frugívoro jamaicano (A. jamaicensis), nos propusimos: (1) describir la arquitectura del sueño, (2) evaluar cómo dormir en grupos afecta el sueño y (3) cuantificar el tiempo total de sueño e identificar el sueño REM empleando indicadores de comportamiento que complementen la evidencia fisiológica del sueño. Se capturaron 25 murciélagos adultos en Panamá y se les grabó durmiendo en un recinto artificial de descanso. A tres murciélagos se les equipó con un electromiógrafo y un acelerómetro y se les grabó en video durmiendo solos en entornos de laboratorio controlados. Los 22 murciélagos restantes fueron asignados a diferentes configuraciones sociales (solo, díada, tríada, tétrada) y se grabaron en video durmiendo en una jaula de vuelo al aire libre. El sueño fue muy variable entre individuos (desde 2 h 53 min hasta 9 h 39 min durante un período de 12 h). Aunque no detectamos efectos estadísticamente significativos, y nuestro tamaño muestral fue limitado, las tendencias preliminares sugieren que los murciélagos macho pueden dormir más que las hembras, y que los individuos que duermen en grupos pueden dormir más que los individuos que duermen solos. Encontramos una alta correspondencia entre el tiempo total de sueño cuantificado visualmente y cuantificado mediante actigrafía (con un umbral de inmovilidad de 2 minutos) e identificamos correlaciones fisiológicas de lo que definimos como REM en términos de comportamiento. Estos resultados sirven como punto de partida para futuros estudios sobre la ecología y la evolución del sueño en murciélagos y otros mamíferos salvajes.
RESUMEN
Although bats (Mammalia: Chiroptera) act as natural reservoirs for many zoonotic pathogens around the world, few studies have investigated the occurrence of Anaplasmataceae agents in bats, especially vampire bats. The family Anaplasmataceae (order Rickettsiales) encompasses obligate intracellular bacteria of the genera Anaplasma, Ehrlichia, Neorickettsia, Neoehrlichia, Wolbachia, and Allocryptoplasma. The present study aimed to investigate, using molecular techniques, the presence of species of Anaplasma, Ehrlichia, and Neorickettsia in vampire bats sampled in northern Brazil. Between 2017 and 2019, spleen samples were collected from vampire bats belonging to two species, Desmodus rotundus (n = 228) from the states of Pará (n = 207), Amazonas (n = 1), Roraima (n = 18) and Amapá (n = 3), and Diaemus youngii (n = 1) from Pará. Positivity rates of 5.2% (12/229), 3% (7/229), and 10.9% (25/229) were found in PCR assays for Anaplasma spp. (16S rRNA gene), Ehrlichia spp. (dsb gene) and Neorickettsia spp. (16S rRNA gene), respectively. The present study revealed, for the first time, the occurrence of Anaplasma spp. and different genotypes of Ehrlichia spp. in vampire bats from Brazil. While phylogenetic analyses based on the dsb and ftsZ genes of Ehrlichia and 16S rRNA of Anaplasma spp. revealed phylogenetic proximity of the genotypes detected in vampire bats with Anaplasmataceae agents associated with domestic ruminants, phylogenetic inferences based on the gltA and groEL genes evidenced the occurrence of genotypes apparently exclusive to bats. Neorickettsia sp. phylogenetically associated with N. risticii was also detected in vampire bats sampled in northern Brazil.
RESUMEN
Bats are the second most diverse order of mammals and play a central role in ecosystem dynamics. They are also important reservoirs of potentially zoonotic microorganisms, of which rabies virus is the most lethal among the bat-transmitted zoonotic pathogens. Importantly, recent outbreaks of human rabies have been reported from the Brazilian Amazon. Here we present a survey of bat species and rabies virus (RABV) circulation in a bat assemblage in the Marajó region, northern Brazil. Using data from mist-net captures and bioacoustic sampling, 56 bat species were recorded along the Jacundá River basin over a 10-day expedition in November 2022. For the investigation of RABV, we used the direct fluorescent antibody test (DFAT) and the rapid fluorescent focus inhibition test (RFFIT). In total, 159 bat individuals from 22 species were investigated for RABV. Five adults of the common vampire bat, Desmodus rotundus, showed RABV-specific antibodies in serum samples. Additionally, we report on local residents with injuries caused by D. rotundus bites and the occurrence of colonies of non-hematophagous bats from different species roosting inside human residences. This scenario raises concerns about the risks of new cases of human rabies and other zoonotic diseases associated with bats in the region and highlights the need for epidemiological surveillance and mitigation measures to prevent outbreaks of emerging infectious diseases.
Asunto(s)
Anticuerpos Antivirales , Quirópteros , Brotes de Enfermedades , Virus de la Rabia , Rabia , Zoonosis , Quirópteros/virología , Animales , Brasil/epidemiología , Virus de la Rabia/inmunología , Virus de la Rabia/aislamiento & purificación , Virus de la Rabia/clasificación , Rabia/epidemiología , Rabia/veterinaria , Rabia/virología , Humanos , Zoonosis/epidemiología , Zoonosis/virología , Anticuerpos Antivirales/sangre , Femenino , Masculino , Adulto , Persona de Mediana Edad , AdolescenteRESUMEN
Hyperparasitism is defined as the interaction where one parasite is infected by another parasite. In bat flies (Streblidae and Nycteribiidae), both hyperparasites and microparasites (bacteria, viruses, fungi, and arthropods such as mites) have been documented. Fungi belonging to the order Laboulbeniales are microscopic parasites of a wide diversity of arthropod hosts. Three genera exclusively target bat flies: Arthrorhynchus, which parasitizes species within Nycteribiidae in the Eastern Hemisphere, while genus Gloeandromyces and Nycteromyces parasitize Streblidae in the Western Hemisphere. Among the hyperparasitic arthropods, mites of family Neothrombidiidae, particularly the monospecific genus Monunguis, are known to parasitize bat flies. Here we present the first records of the hyperparasites Monunguis streblida and Gloeandromyces pageanus f. polymorphus parasitizing Streblidae bat flies in Colombia and a summary of these hyperparasitic interactions in the Neotropics. We detected fungi and mites parasitizing bat flies that were collected in the Magdalena River Basin, Colombia, in field expeditions in 2018, 2022, and 2023. We identified 17 bat flies and two species of hyperparasites, specifically M. streblida and the fungi Gloeandromyces. Our search for reports of these interactions in the Neotropics revealed that seven species of Trichobius (Streblidae) are parasitized by M. streblida, whereas Paratrichobius longicrus (Streblidae) is parasitized by Gloeandromyces pageanus f. polymorphus. These interactions have been reported in 11 countries, but our records are the first of M. streblida and Laboulbeniales fungi parasitizing bat flies in Colombia. So far, a total of 14 species of fungi and one species of mite have been associated with 19 species of bat flies, which in turn, are linked to 15 species of Neotropical bats.
Asunto(s)
Quirópteros , Dípteros , Animales , Dípteros/microbiología , Dípteros/parasitología , Quirópteros/parasitología , Colombia , Ácaros/microbiología , Ácaros/fisiología , Interacciones Huésped-ParásitosRESUMEN
This study aimed to investigate the presence of ectoparasites and the occurrence of natural infection by Rickettsia spp. and Trypanosoma spp. in bats from Rio Grande do Sul (RS), Brazil. The evaluated animals were obtained from the Instituto de Pesquisas Veterinárias Desidério Finamor, sent by the Centro Estadual de Vigilância Sanitária, to carry out rabies diagnostic tests, during the period from 2016 to 2021. The bats came from 34 municipalities in RS. Of the 109 animals surveyed, 35.8% (39/109) had 385 ectoparasites, with an average of 9.9 parasites per animal. Of these bats, all had insectivorous feeding habits, with 35.9% (14/39) females and 64.1% (25/39) males. The co-parasitism of Chirnyssoides sp., Ewingana inaequalis, and Chiroptonyssus robustipes on Molossus currentium (Mammalia, Chiroptera) was recorded for the first time. All bats surveyed were negative for infection by the protozoan and bacteria. Thus, the expansion of the occurrence of these ectoparasites in insectivorous bats in RS was observed. Furthermore, this study corresponds to the first recorded interspecific associations for the species.
Asunto(s)
Quirópteros , Rickettsia , Trypanosoma , Animales , Femenino , Masculino , Brasil/epidemiologíaRESUMEN
INTRODUCTION: Bats are a diverse group of mammals that have unique features allowing them to act as reservoir hosts for several zoonotic pathogens such as Leptospira. Leptospires have been classified into pathogenic, intermediate, and saprophytic groups and more recently into clades P1, P2, S1, and S2, being all the most important pathogenic species related to leptospirosis included within the P1/pathogenic clade. Leptospira has been detected from bats in several regions worldwide; however, the diversity of leptospires harboured by bats is still unknown. AIM: The aim of the present study was to determine the genetic diversity of Leptospira spp. harboured by bats worldwide. METHODS: A systematic review was conducted on four databases to retrieve studies in which Leptospira was detected from bats. All studies were screened to retrieve all available Leptospira spp. 16S rRNA sequences from the GenBank database and data regarding their origin. Sequences obtained were compared with each other and reference sequences of Leptospira species and analysed through phylogenetic analysis. RESULTS: A total of 418 Leptospira spp. 16S rRNA sequences isolated from 55 bat species from 14 countries were retrieved from 15 selected manuscripts. From these, 417 sequences clustered within the P1/pathogenic group, and only one sequence clustered within the P2/intermediate group. Six major clades of P1/pathogenic Leptospira spp. were identified, three of them composed exclusively of sequences obtained from bats. CONCLUSION: We identified that bats harbour a great genetic diversity of Leptospira spp. that form part of the P1/pathogenic clade, some of which are closely related to leptospirosis-associated species. This finding contributes to the knowledge of the diversity of leptospires hosted by bats worldwide and reinforces the role of bats as reservoirs of P1/pathogenic Leptospira spp.
Asunto(s)
Quirópteros , Variación Genética , Leptospira , Leptospirosis , Filogenia , Animales , Quirópteros/microbiología , Leptospira/genética , Leptospira/clasificación , Leptospira/aislamiento & purificación , Leptospirosis/veterinaria , Leptospirosis/microbiología , Leptospirosis/epidemiología , Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/microbiología , ARN Ribosómico 16S/genética , ZoonosisRESUMEN
Insectivorous bats play a crucial role in agroecosystems by providing invaluable pest control services. With the escalating impacts of climate change, a comprehensive understanding of the environmental factors influencing bat activity becomes imperative for their conservation in agricultural landscapes. This study investigates the influence of weather conditions, specifically air temperature and relative humidity, on the timing activity and the relative abundance of five insectivorous bat species in central Chile. Data from automatic bat detectors and climatological stations are utilized for analysis. Our results unveil species-specific behaviors, with Tadarida brasiliensis exhibiting early emergence and extended activity periods compared to other bat species. Histiotus montanus and Lasiurus villosissimus display delayed onsets on more humid evenings, whereas Lasiurus varius and T. brasiliensis initiate activity earlier on colder nights compared to warmer ones. Relative humidity emerges as a key factor influencing relative abundance for all species, with more minutes with bat passes detected on drier nights. These findings suggest that global warming may influence observed bat behaviors, potentially altering foraging patterns and activity levels of these bat species. Moreover, as climate change continues, understanding the long-term impact on bat populations and their adaptive strategies is crucial for effective conservation measures. Further studies exploring these dynamics can provide valuable insights for shaping conservation efforts in the face of evolving environmental challenges.
RESUMEN
Bats have a long evolutionary history with trypanosomatids, but the role of these flying mammals on parasite transmission cycles in urban areas, especially for Trypanosoma and Leishmania species, remains poorly known. The objective of this study was to evaluate the species richness of trypanosomatids parasitizing a bat community in Campo Grande (CG), a state capital within the Cerrado of the Brazilian Midwest. We evaluated 237 bats of 13 species by means of hemoculture and molecular detection in spleen samples. The bat community of CG appears to participate in the transmission cycles of various species of trypanosomatids. We report an overall trypanosomatid detection rate of 34.2% (n = 81), involving 11 out of 13 sampled bat species. We identified six species of trypanosomatids from 61 bats by analyzing SSU rRNA and/or kDNA: Trypanosoma cruzi DTU TcI, T. c. marinkellei, T. dionisii, Leishmania infantum, L. amazonensis, and T. janseni, with this latter being detected by hemoculture for the first time in a bat species. We also detected a Molecular Operational Taxonomic Unit, Trypanosoma sp. DID, in the phyllostomids Glossophaga soricina and Platyrrhinus lineatus. The highest trypanosomatid richness was observed for Sturnira lilium, which hosted three species: L. infantum, T. dionisii and T. janseni. Given that visceral leishmaniasis is endemic in CG, special focus should be placed on L. infantum. Moreover, L. amazonensis and T. cruzi warrant attention, since these are zoonotic parasites responsible for human cases of tegumentary leishmaniasis and Chagas disease, respectively. In this respect, we discuss how bat communities may influence the Leishmania spp. transmission in endemic areas.
Asunto(s)
Enfermedad de Chagas , Quirópteros , Leishmania infantum , Trypanosoma cruzi , Animales , Humanos , Quirópteros/parasitología , Brasil/epidemiología , Trypanosoma cruzi/genética , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/veterinaria , Enfermedad de Chagas/parasitología , MamíferosRESUMEN
Global changes have increased the risk of emerging infectious diseases, which can be prevented or mitigated by studying host-parasite interactions, among other measures. Bats and their ectoparasitic flies of the families Streblidae and Nycteribiidae are an excellent study model but, so far, our knowledge has been restricted to fragmented records at a local scale. To help boost research, we assembled a data set of bat-fly interactions from 174 studies published between 1904 and 2022 plus three original data sets. Altogether, these studies were carried out at 650 sites in the Neotropics, mainly distributed in Mexico, Brazil, Argentina, southern USA, and Colombia, among other countries. In total, our data set contains 3984 interaction records between 237 bat species and 255 fly species. The bat species with the largest number of recorded interactions were Carollia perspicillata (357), Artibeus jamaicensis (263), and Artibeus lituratus (228). The fly species with the largest number of recorded interactions were Trichobius joblingi (256), Megistopoda aranea (235), and Megistopoda proxima (215). The interaction data were extracted, filtered, taxonomically harmonized, and made available in a tidy format together with linked data on bat population, fly population, study reference, sampling methods and geographic information from the study sites. This interconnected structure enables the expansion of information for each interaction record, encompassing where and how each interaction occurred, as well as the number of bats and flies involved. We expect BatFly to open new avenues for research focused on different levels of ecological organization and spatial scales. It will help consolidate knowledge about ecological specialization, resource distribution, pathogen transmission, and the drivers of parasite prevalence over a broad spatial range. It may also help to answer key questions such as: Are there differences in fly prevalence or mean infestation across Neotropical ecoregions? What ecological drivers explain those differences? How do specialization patterns vary among fly species in the Neotropics? Furthermore, we expect BatFly to inspire research aimed at understanding how climate and land-use changes may impact host-parasite interactions and disease outbreaks. This kind of research may help us reach Sustainable Development Goal 3, Good Health and Wellbeing, outlined by the United Nations. The data are released under a Creative Commons Attribution 4.0 International License.
Asunto(s)
Quirópteros , Dípteros , Parásitos , Animales , Brasil/epidemiología , Interacciones Huésped-ParásitosRESUMEN
Introducción: Los murciélagos se destacan por ser los únicos mamíferos voladores, con alrededor de 1 400 especies que cumplen un rol fundamental como controladores de plagas y polinizadores de plantas nocturnas. Sin embargo, su influencia sobre la salud humana se ha evidenciado cada vez más, en particular después del surgimiento de brotes epidémicos de enfermedades virales asociadas a estos mamíferos. Objetivo: Analizar la influencia de los murciélagos en la salud humana, centrándose en su papel como portadores de enfermedades virales y su potencial como reservorios y vectores de enfermedades. Métodos: Se realizó una revisión bibliográfica de la literatura utilizando descriptores MeSH y términos como: Animals, Wild Chiroptera, Virus Diseases, Zoonoses, Disease Vectors, Disease Reservoirs, Public Health, bats, Communicable Disease Control, Disease Outbreaks, Prevention and Control. Se revisaron 1 442 artículos en bases de datos y documentos oficiales, se seleccionaron las fuentes relevantes con Mendeley Desktop 1.19.4. y se obtuvieron al final 47 artículos. Resultados: Existen varias especies de murciélagos que pueden afectar la salud del ser humano y que albergan en especial virus de las familias Filoviridae, Coronaviridae y Paramixoviridae. Los murciélagos se consideran incubadoras óptimas para la propagación de virus debido a su sistema inmune único que lo hace resistente a estos agentes infecciosos. Conclusiones: La vigilancia y monitoreo de los murciélagos, junto con acciones de educación pública y una gestión adecuada de sus hábitats, son fundamentales para la detección temprana y prevención de la transmisión de nuevos virus de estos mamíferos a los humanos.
Introduction: Bats are the only flight mammals, with around 1,400 species playing critical roles as pest controllers and nocturnal plant pollinators. However, its impact on human health has become increasingly evident, especially after the appearance of epidemic outbreaks of viral diseases related to these mammals. Objetive: To analyze the influence of bats on human health, focusing on their role as carriers of viral diseases and their potential as reservoirs and vectors of diseases. Methods: A literature bibliographical review was conducted using MeSH descriptors and keywords such as: Animals, Wild Chiroptera, Virus Diseases, Zoonosis, Disease Vectors, Disease Reservoirs, Public Health, bats, Communicable Disease Control, Disease Outbreaks, Prevention and Control. 1442 articles in databases and official documents were reviewed, selecting the relevant sources with Mendeley Desktop 1.19.4., obtaining 47 articles at the end. Results: There are several species of bats that can affect human health and that mainly harbor viruses from the Filoviridae families, Coronaviridae and Paramyxoviridae. Bats are considered optimal incubators for the spread of the virus due to their unique immune system that makes them particularly resistant to these infectious agents. Conclusions: Surveillance and monitoring of bats, together with public education actions and proper management of their habitats, are essential for early detection and prevention of transmission of new viruses from these mammals to humans.
RESUMEN
Males of the bat Eptesicus furinalis show at least one process of testicular regression, in which the testes regress and temporarily interrupt the production of sperm, during its annual reproductive cycle. As the process of spermatogenesis is under hormonal control, mainly of pituitary and androgen hormones, our aim was to analyze the morphological variations and the hormonal control of the testes of E. furinalis during the four phases of its reproductive cycle. Testes of 18 adult males, divided into four sample groups (active, regressing, regressed, and recrudescence phases), were submitted to morphological, morphometric, and immunohistochemical analyzes. The results demonstrate that the processes of testicular regression and recrudescence of E. furinalis are under the control of pituitary, androgen and estrogen hormones. The regulation is exerted mainly through the activation and cross signaling of AR and FSHR in Sertoli cells and of LHR in Leydig cells. The testicular regression appears to be activated by an inhibition/reduction of AR expression in Sertoli cells, which inhibits the proliferation and differentiation of new spermatogonia and causes the deactivation of spermatogenesis. Conversely, the testicular recrudescence occurs by the increasing of the expression of LHR in Leydig cells, and AR and FSHR in Sertoli cells, which reactivates the testicular production of androgens and estrogens, the proliferation of spermatogonia and restarts the spermatogenesis.
RESUMEN
Introduction: Bats, along with their ectoparasites, harbor a wide diversity of symbiotic and potential pathogenic bacteria. Despite the enormous diversity of bats (181 species), few studies aimed to investigate the bacterial microbiome of Brazilian chiropterans and associated ectoparasites. This study aimed to characterize the bacterial microbiome of non-hematophagous bats and associated Streblidae flies and Macronyssidae and Spinturnicidae mites in the state of Mato Grosso do Sul, midwestern Brazil. Methods: Oral and rectal swabs were collected from 30 bats (Artibeus lituratus [n = 13], Artibeus planirostris [n = 9], Eptesicus furinalis [n = 5], Carollia perspicillata [n = 2], and Platyrrhinus lineatus [n = 1]). In addition, a total of 58 mites (15 Macronyssidae and 43 Spinturnicidae) and 48 Streblidae bat flies were collected from the captured bats. After DNA extraction and purification, each sample's bacterial composition was analyzed with metagenomic sequencing. Results: The microbiome composition of both oral and rectal bat swab samples showed that Gammaproteobacteria was the most abundant bacterial class. Spiroplasma, Wolbachia and Bartonella represented the most abundant genera in Streblidae flies. While Wolbachia (Alphaproteobacteria) was the most abundant genus found in Spinturnicidae, Arsenophonus (Gammaproteobacteria) was found in high abundance in Macronyssidae mites. In addition to characterizing the microbiome of each sample at the class and genus taxonomic levels, we identified medically significant bacteria able to infect both animals and humans in oral (Streptococcus and Anaplasma) and rectal swabs (Enterobacter, Klebsiella, Escherichia, Enterococcus, Streptococcus), Macronyssidae (Anaplasma, Bartonella, Ehrlichia) and Spinturnicidae (Anaplasma, Bartonella) mites as well as Streblidae flies (Spiroplasma, Bartonella). Discussion and conclusion: Besides expanding the knowledge on the bacterial microbiome of non-hematophagous bats and Streblidae flies from Brazil, the present work showed, for the first time, the bacterial community of bat-associated Macronyssidae and Spinturnicidae mites.
RESUMEN
Molossus molossus is an insectivorous molossid bat that is important in the control of nocturnal insects. It is the nominal and the most representative species of the family. However, there are few studies about its reproduction. Thus, this study aimed to evaluate variations of its female reproductive organs during the different reproductive phases. Twenty adult females, divided into four sample groups (non-reproductive, early and advanced pregnancy and lactation), were submitted to morphological and morphometric analyses. Results show that the female reproductive system of M. molossus is composed of ovaries, a short bicornuate uterus, slightly convoluted uterine tubes and vagina. The system presents a distinct morphofunctional asymmetry, with a marked dextro-dominance. The right ovaries of all analyzed groups (NON, P1, P2, and LAC) showed follicles at different stages of development, a large number of interstitial glands and a small, but persistent corpus luteum. Ovulation is simple, unilateral and preferential, occurring exclusively in the right ovary. Follicular development in the left ovary usually does not pass the secondary stage. Implantation is fundic and preferential, occurring exclusively in the right uterine horn. The placenta is formed with two distinct chorioallantoic portions, one diffuse endotheliochorial, which covers the entire uterine cavity and regresses in the final stages of pregnancy, and the principal discoidal hemochorial portion, formed in the implantation site. The uterine cervix presents a pseudostratified epithelium, while the vagina has a little keratinized stratified epithelium, which does not accentually vary in the different reproductive stages, but can disrupt and shed in some cases.
Asunto(s)
Quirópteros , Embarazo , Animales , Femenino , Quirópteros/anatomía & histología , Útero , Reproducción/fisiología , Placenta , VaginaRESUMEN
We present a list of bats collected above 2000 meters in Río Abiseo National Park. Sixteen bat species belonging to the Phyllostomidae and Vespertilionidae families were collected during four expeditions between 1987 and 1990. Twelve species were found within expected altitudinal ranges, but four exceeded their previously reported maximum altitudinal ranges. A comparison with other bat lists from other localities at similar altitudes is presented.
Se presenta una lista de murciélagos colectados por encima de los 2000 m en el Parque Nacional Río Abiseo. Dieciséis especies de murciélagos pertenecientes tanto a las familias Phyllostomidae y Vespertilionidae fueron colectadas durante cuatro expediciones realizadas entre 1987 y 1990. Doce especies fueron encontradas dentro de los rangos altitudinales esperados, pero cuatro excedieron su altitud máxima previamente reportada. Se presenta una comparación con otras listas de murciélagos de otras localidades a altitudes similares.
RESUMEN
Sperm morphology is considered a species-specific character and has been used as a tool in the classification of numerous mammalian taxa. Neotropical bats have been poorly studied, and important aspects on sperm morphology have not been elucidated. The aim of the present study was to describe and compare the sperm morphology and morphometry of Molossus molossus and Molossops temminckii. A total of 14 adults specimens were analyzed from the Colección Mamíferos Lillo, Universidad Nacional de Tucumán: five M. molossus and nine M. temminckii. The epididymis were extracted and macerated in Farmer's solution, followed by a coloration with different stains. To carry out the description and morphometric analysis, microphotographs were taken under an optical, epifluorescence, and scanning electron microscope (SEM). A total of 50 sperm from each individual were measured for morphometric analysis. The length and width of the head, midpiece and tail were taken as variables. Sperm from M. molossus and M. temminckii were practically identical, both morphologically and morphometrically. In both species, a distal bulge was observed at the end of the intermediate piece in a percentage greater than 85%. The main characteristics shared between the species were: presence of acrosomal blebs in the upper half of the head of the spermatozoa; cephalic equatorial segment with filiform ornamentations; intermembrane space of head apex wedge-shaped; helical middle piece and annulus at the end of middle piece. In the present study, SEM allowed us to visualize structures, such as acrosomal vesicles, that were not detected with other types of microscopy. RESEARCH HIGHLIGHTS: The similarities in the sperm morphology between M. molossus and M. temminckii were observed with three types of microscopy: optical, epifluorescence and scanning electron, and supported by morphometric and statistical analyses.