Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.884
Filtrar
1.
Int J Biol Macromol ; : 132506, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38772466

RESUMEN

Hydrogels incorporating natural biopolymer and adhesive substances have extensively been used to develop bioactive drugs and to design cells encapsulating sturdy structure for biomedical applications. However, the conjugation of the adhesive in most hydrogels is insufficient to maintain long-lasting biocompatibility inadequate to accelerate internal organ tissue repair in the essential native cellular microenvironment. The current work elaborates the synthesis of charged choline-catechol ionic liquid (BIL) adhesive and a hydrogel with an electronegative atom rich polyphenol (PU)-laden gelatinmethacryloyl (GelMA) to improve the structural bioactivities for in vivo tracheal repair by inducing swift crosslinking along with durable mechanical and tissue adhesive properties. It was observed that Bioactive BIL and PU exhibited potent antioxidant (IC 50 % of 7.91 µg/mL and 24.55 µg/mL) and antibacterial activity against E. coli, P. aeruginosa and S. aureus. The novel integration of photocurable GelMA-BIL-PU revealed outstanding mechanical strength, biodegradability and sustained drug release. The in vitro study showed exceptional cell migration and proliferation in HBECs, while in vivo investigation of the GelMA-BIL-PU hydrogel on a rat's tracheal model revealed remarkable tracheal reconstruction, concurrently reducing tissue inflammation. Furthermore, the optimized GelMA-BIL-PU injectable adhesive bioink blend demonstrated superior MSCs migration and proliferation, which could be a strong candidate for developing stem cell-rich biomaterials to address multiple organ defects.

2.
J Health Popul Nutr ; 43(1): 59, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711145

RESUMEN

BACKGROUND: Choline, an indispensable nutrient, plays a pivotal role in various physiological processes. The available evidence regarding the nexus between dietary choline intake and health outcomes, encompassing cardiovascular disease (CVD), cancer, and all-cause mortality, is limited and inconclusive. This study aimed to comprehensively explore the relationship between dietary choline intake and the aforementioned health outcomes in adults aged > 20 years in the U.S. METHODS: This study utilized data from the National Health and Nutrition Examination Survey between 2011 and 2018. Dietary choline intake was evaluated using two 24-h dietary recall interviews. CVD and cancer status were determined through a combination of standardized medical status questionnaires and self-reported physician diagnoses. Mortality data were gathered from publicly available longitudinal Medicare and mortality records. The study utilized survey-weighted logistic and Cox regression analyses to explore the associations between choline consumption and health outcomes. Restricted cubic spline (RCS) analysis was used for dose‒response estimation and for testing for nonlinear associations. RESULTS: In our study of 14,289 participants (mean age 48.08 years, 47.71% male), compared with those in the lowest quintile (Q1), the adjusted odds ratios (ORs) of CVD risk in the fourth (Q4) and fifth (Q5) quintiles of choline intake were 0.70 (95% CI 0.52, 0.95) and 0.65 (95% CI 0.47, 0.90), respectively (p for trend = 0.017). Each 100 mg increase in choline intake was associated with a 9% reduced risk of CVD. RCS analysis revealed a linear correlation between choline intake and CVD risk. Moderate choline intake (Q3) was associated with a reduced risk of mortality, with an HR of 0.75 (95% CI 0.60-0.94) compared with Q1. RCS analysis demonstrated a significant nonlinear association between choline intake and all-cause mortality (P for nonlinearity = 0.025). The overall cancer prevalence association was nonsignificant, except for colon cancer, where each 100 mg increase in choline intake indicated a 23% reduced risk. CONCLUSION: Elevated choline intake demonstrates an inverse association with CVD and colon cancer, while moderate consumption exhibits a correlated reduction in mortality. Additional comprehensive investigations are warranted to elucidate the broader health implications of choline.


Asunto(s)
Enfermedades Cardiovasculares , Colina , Dieta , Neoplasias , Encuestas Nutricionales , Humanos , Colina/administración & dosificación , Masculino , Femenino , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Persona de Mediana Edad , Estados Unidos/epidemiología , Neoplasias/mortalidad , Neoplasias/epidemiología , Adulto , Prevalencia , Dieta/estadística & datos numéricos , Anciano , Mortalidad , Causas de Muerte
3.
Cells ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38727282

RESUMEN

Impaired neuronal plasticity and cognitive decline are cardinal features of Alzheimer's disease and related Tauopathies. Aberrantly modified Tau protein and neurotransmitter imbalance, predominantly involving acetylcholine, have been linked to these symptoms. In Drosophila, we have shown that dTau loss specifically enhances associative long-term olfactory memory, impairs foot shock habituation, and deregulates proteins involved in the regulation of neurotransmitter levels, particularly acetylcholine. Interestingly, upon choline treatment, the habituation and memory performance of mutants are restored to that of control flies. Based on these surprising results, we decided to use our well-established genetic model to understand how habituation deficits and memory performance correlate with different aspects of choline physiology as an essential component of the neurotransmitter acetylcholine, the lipid phosphatidylcholine, and the osmoregulator betaine. The results revealed that the two observed phenotypes are reversed by different choline metabolites, implying that they are governed by different underlying mechanisms. This work can contribute to a broader knowledge about the physiologic function of Tau, which may be translated into understanding the mechanisms of Tauopathies.


Asunto(s)
Colina , Proteínas de Drosophila , Memoria , Proteínas tau , Animales , Colina/metabolismo , Proteínas tau/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Habituación Psicofisiológica , Drosophila melanogaster/metabolismo , Drosophila/metabolismo , Acetilcolina/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38734385

RESUMEN

BACKGROUND: While the daily rhythm of allergic rhinitis (AR) has long been recognized, the molecular mechanism underlying this phenomenon remains enigmatic. OBJECTIVE: We aim to investigate the role of circadian clock in AR development and to clarify the mechanism by which the daily rhythm of AR is generated. METHODS: AR was induced in mice using the ovalbumin method. Toluidine blue staining, LC-MS/MS analysis, qPCR, and immunoblotting were performed with AR and control mice. RESULTS: Ovalbumin-induced AR is diurnally rhythmic and associated with clock gene disruption in nasal mucosa. In particular, Rev-erbα is generally down-regulated, and its rhythm retained but with a near 12-h phase shift. Furthermore, global knockout of the core clock gene Bmal1 or Rev-erbα increases the susceptibility of mice to AR and blunts AR rhythmicity. Importantly, nasal SCCs (solitary chemosensory cells) are rhythmically activated, and inhibition of the SCC pathway leads to attenuated AR and a loss of its rhythm. Moreover, rhythmic activation of SCCs is accounted for by diurnal expression of ChAT (an enzyme responsible for the synthesis of acetylcholine) and temporal generation of the neurotransmitter acetylcholine. Mechanistically, REV-ERBα trans-represses Chat through direct binding to a specific response element, generating a diurnal oscillation in this target gene. CONCLUSION: These findings identify SCCs, under the control of REV-ERBα, as a driver of AR rhythmicity, and suggest targeting SCCs as a new avenue for AR management.

5.
Clin Nutr ; 43(6): 1503-1515, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38729079

RESUMEN

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is related to muscle loss, but the precise mechanism underlying this association remains unclear. The aim of the present study was thus to determine the influence of maternal fatty liver and dietary choline deficiency during pregnancy and/or lactation periods on the skeletal muscle gene expression profile among 24-day-old male rat offspring. METHODS: Histological examination of skeletal muscle tissue specimens obtained from offspring of dams suffering from fatty liver, provided with proper choline intake during pregnancy and lactation (NN), fed a choline-deficient diet during both periods (DD), deprived of choline only during pregnancy (DN), or only during lactation (ND), was performed. The global transcriptome pattern was assessed using a microarray approach (Affymetrix® Rat Gene 2.1 ST Array Strip). The relative expression of selected genes was validated by real-time PCR (qPCR). RESULTS: Morphological differences in fat accumulation in skeletal muscle related to choline supply were observed. The global gene expression profile was consistent with abnormal morphological changes. Mettl21c gene was overexpressed in all choline-deficient groups compared to the NN group, while two genes, Cdkn1a and S100a4, were downregulated. Processes of protein biosynthesis were upregulated, and processes related to cell proliferation and lipid metabolism were inhibited in DD, DN, and ND groups compared to the NN group. CONCLUSIONS: Prenatal and early postnatal exposure to fatty liver and dietary choline deficiency leads to changes in the transcriptome profile in skeletal muscle of 24-day old male rat offspring and is associated with muscle damage, but the mechanism of it seems to be different at different developmental stages of life. Adequate choline intake during pregnancy and lactation can prevent severe muscle disturbance in the progeny of females suffering from fatty liver.

6.
J Nutr ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38782209

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder, with increasing prevalence due to population aging. Eggs provide many nutrients important for brain health, including choline, omega-3 fatty acids, and lutein. Emerging evidence suggests that frequent egg consumption may improve cognitive performance on verbal tests, but whether consumption influences the risk of Alzheimer's dementia and AD is unknown. OBJECTIVE: To examine the association of egg consumption with Alzheimer's dementia risk among the Rush Memory and Aging Project cohort. METHODS: Dietary assessment was collected using a modified Harvard semiquantitative food frequency questionnaire (FFQ). Participants' first FFQ was used as the baseline measure of egg consumption. Multivariable adjusted Cox proportional hazards regression models were used to investigate the associations of baseline egg consumption levels with Alzheimer's dementia risk adjusting for potential confounding factors. Subgroup analyses using Cox and logistic regression models were performed to investigate the associations with AD pathology in the brian. Mediation analysis was conducted to examine the mediation effect of dietary choline in the relationship between egg intake and incident Alzheimer's dementia . RESULTS: This study included 1024 older adults (mean [±Standard Deviation] age = 81.38 ± 7.20 y). Over a mean (±SD) follow-up of 6.7 ± 4.8 y, 280 participants (27.3%) were clinically diagnosed with Alzheimer's dementia. Weekly consumption of >1 egg/wk (Hazard Ratio = 0.53; 95% Confidence Interval: 0.34, 0.83) and ≥2 eggs/wk (HR = 0.53; 95% CI: 0.35, 0.81) was associated with a decreased risk of Alzheimer's dementia. Subgroup analysis of brain autopsies from 578 deceased participants showed that intakes of >1 egg/wk (HR = 0.51; 95% CI: 0.35, 0.76) and ≥2 eggs/wk (HR = 0.62; 95% CI: 0.44, 0.90) were associated with a lower risk of AD pathology in the brain. Mediation analysis showed 39% of the total effect of egg intake on incident Alzheimer's dementia were mediated through dietary choline. CONCLUSIONS: These findings suggest that frequent egg consumption is associated with a lower risk of Alzheimer's dementia and AD pathology, and the association with Alzheimer's dementia is partially mediated through the dietary choline.

7.
J Transl Med ; 22(1): 442, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730286

RESUMEN

INTRODUCTION: Lung cancer is a prevalent malignancy globally, and immunotherapy has revolutionized its treatment. However, resistance to immunotherapy remains a challenge. Abnormal cholinesterase (ChE) activity and choline metabolism are associated with tumor oncogenesis, progression, and poor prognosis in multiple cancers. Yet, the precise mechanism underlying the relationship between ChE, choline metabolism and tumor immune microenvironment in lung cancer, and the response and resistance of immunotherapy still unclear. METHODS: Firstly, 277 advanced non-small cell lung cancer (NSCLC) patients receiving first-line immunotherapy in Sun Yat-sen University Cancer Center were enrolled in the study. Pretreatment and the alteration of ChE after 2 courses of immunotherapy and survival outcomes were collected. Kaplan-Meier survival and cox regression analysis were performed, and nomogram was conducted to identify the prognostic and predicted values. Secondly, choline metabolism-related genes were screened using Cox regression, and a prognostic model was constructed. Functional enrichment analysis and immune microenvironment analysis were also conducted. Lastly, to gain further insights into potential mechanisms, single-cell analysis was performed. RESULTS: Firstly, baseline high level ChE and the elevation of ChE after immunotherapy were significantly associated with better survival outcomes for advanced NSCLC. Constructed nomogram based on the significant variables from the multivariate Cox analysis performed well in discrimination and calibration. Secondly, 4 choline metabolism-related genes (MTHFD1, PDGFB, PIK3R3, CHKB) were screened and developed a risk signature that was found to be related to a poorer prognosis. Further analysis revealed that the choline metabolism-related genes signature was associated with immunosuppressive tumor microenvironment, immune escape and metabolic reprogramming. scRNA-seq showed that MTHFD1 was specifically distributed in tumor-associated macrophages (TAMs), mediating the differentiation and immunosuppressive functions of macrophages, which may potentially impact endothelial cell proliferation and tumor angiogenesis. CONCLUSION: Our study highlights the discovery of ChE as a prognostic marker in advanced NSCLC, suggesting its potential for identifying patients who may benefit from immunotherapy. Additionally, we developed a prognostic signature based on choline metabolism-related genes, revealing the correlation with the immunosuppressive microenvironment and uncovering the role of MTHFD1 in macrophage differentiation and endothelial cell proliferation, providing insights into the intricate workings of choline metabolism in NSCLC pathogenesis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Colina , Células Endoteliales , Neoplasias Pulmonares , Microambiente Tumoral , Macrófagos Asociados a Tumores , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Colina/metabolismo , Masculino , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , Persona de Mediana Edad , Pronóstico , Inmunoterapia , Terapia de Inmunosupresión , Estimación de Kaplan-Meier , Nomogramas , Reprogramación Metabólica
8.
Folia Neuropathol ; 62(1): 13-20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741433

RESUMEN

The accurate diagnosis of brain tumour is very important in modern neuro-oncology medicine. Magnetic resonance spectroscopy (MRS) is supposed to be a promising tool for detecting cancerous lesions. However, the interpretation of MRS data is complicated by the fact that not all cancerous lesions exhibit elevated choline (Cho) levels. The main goal of our study was to investigate the lack of Cho lesion /Cho ref elevation in the population of grade II-III gliomas. 89 cases of gliomas grade II and III were used for the retrospective analysis - glioma (astrocytoma or oligodendroglioma) grade II (74 out of 89 cases [83%]) and III (15 out of 89 cases [17%]) underwent conventional MRI extended by MRS before treatment. Histopathological diagnosis was obtained either by biopsy or surgical resection. Gliomas were classified to the group of no-choline elevation when the ratio of choline measured within the tumour (Cho lesion ) to choline from NABT (Cho ref ) were equal to or lower than 1. Significant differences were observed between ratios of Cho lesion /Cr lesion calculated for no-choline elevation and glial tumour groups as well as in the NAA lesion /Cr lesion ratio between the no-choline elevation group and glial tumour group. With consistent data concerning choline level elevation and slightly lower NAA value, the Cho lesion /NAA lesion ratio is significantly higher in the WHO II glial tumour group compared to the no-choline elevation cases ( p < 0.000). In the current study the results demonstrated possibility of lack of choline elevation in patients with grade II-III gliomas, so it is important to remember that the lack of elevated choline levels does not exclude neoplastic lesion.


Asunto(s)
Neoplasias Encefálicas , Colina , Glioma , Humanos , Colina/metabolismo , Colina/análisis , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Glioma/patología , Glioma/diagnóstico , Glioma/metabolismo , Persona de Mediana Edad , Adulto , Femenino , Masculino , Estudios Retrospectivos , Espectroscopía de Protones por Resonancia Magnética/métodos , Anciano , Espectroscopía de Resonancia Magnética/métodos , Clasificación del Tumor , Adulto Joven
9.
Nutrients ; 16(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732511

RESUMEN

Prenatal alcohol exposure (AE) affects cognitive development. However, it is unclear whether prenatal AE influences the metabolic health of offspring and whether postnatal AE exacerbates metabolic deterioration resulting from prenatal AE. Choline is a semi-essential nutrient that has been demonstrated to mitigate the cognitive impairment of prenatal AE. This study investigated how maternal choline supplementation (CS) may modify the metabolic health of offspring with prenatal and postnatal AE (AE/AE). C57BL/6J female mice were fed either a Lieber-DeCarli diet with 1.4% ethanol between embryonic day (E) 9.5 and E17.5 or a control diet. Choline was supplemented with 4 × concentrations versus the control throughout pregnancy. At postnatal week 7, offspring mice were exposed to 1.4% ethanol for females and 3.9% ethanol for males for 4 weeks. AE/AE increased hepatic triglyceride accumulation in male offspring only, which was normalized by prenatal CS. Prenatal CS also improved glucose tolerance compared to AE/AE animals. AE/AE suppressed hepatic gene expression of peroxisome proliferator activated receptor alpha (Ppara) and low-density lipoprotein receptor (Ldlr), which regulate fatty acid catabolism and cholesterol reuptake, respectively, in male offspring. However, these changes were not rectified by prenatal CS. In conclusion, AE/AE led to an increased risk of steatosis and was partially prevented by prenatal CS in male mice.


Asunto(s)
Colina , Suplementos Dietéticos , Etanol , Hígado , Ratones Endogámicos C57BL , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Embarazo , Colina/administración & dosificación , Masculino , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones , Hígado Graso/prevención & control , Hígado Graso/etiología , Triglicéridos/metabolismo , PPAR alfa/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Intolerancia a la Glucosa/prevención & control , Metabolismo de los Lípidos/efectos de los fármacos
10.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(4. Vyp. 2): 92-99, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38696157

RESUMEN

OBJECTIVE: To study the efficacy and safety of the use of annual course therapy of choline alfoscerate (CA) as a drug potentially capable of slowing or preventing the transition of amnesic type mild cognitive impairment (aMCI) into clinically pronounced dementia in a three-year open comparative study, as well as to explore the possibility of predicting the preventive effect of such therapy based on a number of clinical and biological parameters. MATERIAL AND METHODS: The study included 100 patients with aMCI, randomly divided into 2 groups: the therapeutic group consisted of 50 patients who received CA course therapy once a year for 3 years (20 intravenous infusions of 1000 mg (4 ml) in 100 ml of saline solution for 4 weeks) and a comparison group of 50 patients who underwent an annual examination at the center and did not receive therapy. Clinical and psychopathological, psychometric, immunological, follow-up, and statistical methods were used. RESULTS: A comparative three-year prospective study conducted in a group of aMCI patients treated with annual course therapy of CA for 3 years and aMCI patients who did not receive therapy with similar initial demographic, diagnostic, psychometric and immunological characteristics showed a lower progression of cognitive deficits (12.2% and 39.1%, respectively) and a lower conversion rate (8.2% and 26.1%, respectively) to dementia in the therapeutic group compared with the comparison group. The differences between the initial and final (after 1, 2 and 3 years of follow-up) cognitive functioning indicators in the therapeutic group and the comparison group were significant (p<0.05) on all scales and tests in favor of the therapeutic group throughout the entire follow-up period. CONCLUSION: The results allow us to consider CA as a possible model of preventive dementia therapy aimed at preventing the progression of cognitive deficits and the development of dementia in people at high risk of developing AD - patients with aMCI.


Asunto(s)
Disfunción Cognitiva , Demencia , Glicerilfosforilcolina , Humanos , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/tratamiento farmacológico , Femenino , Masculino , Anciano , Demencia/prevención & control , Estudios Prospectivos , Glicerilfosforilcolina/uso terapéutico , Glicerilfosforilcolina/administración & dosificación , Resultado del Tratamiento , Persona de Mediana Edad , Progresión de la Enfermedad , Anciano de 80 o más Años
11.
Mol Pharm ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698500

RESUMEN

Unlocking the potential of metal nanoparticles (NPs) in biomedical applications represents a leading endeavor in contemporary research. Among these, gold NPs (AuNPs) and silver NPs (AgNPs) have shown promising strides in combatting complex neurodegenerative ailments like Alzheimer's disease. Yet, the unexplored realm of bimetallic Au/Ag-NP harbors immense potential, concealing undiscovered opportunities for enhanced therapeutic effectiveness through the synergistic interaction of metal ions. Nonetheless, the limitations of traditional synthesis methods have restricted the preparation, biocompatibility, and versatility of these NPs, prompting an urgent requirement for innovative approaches. Biobased synthetic methodologies have emerged as a noteworthy solution to address these challenges. Our study ventures into uncharted terrain, harnessing collagen-mimicking peptide nanofibers as a bioactive template for the synthesis of bimetallic NPs. These green NPs exhibit remarkable activity in inhibiting amyloid ß (Aß) protein aggregation with almost 74% inhibition, surpassing the individual impacts of Au and Ag NPs, which show inhibition percentages of 66 and 43, respectively. The bimetallic Au/Ag-NPs not only demonstrate powerful inhibition of Aß, but they also demonstrate inhibitory activity against esterase (∼50%) and against reactive oxygen species (ROS) (∼75%), metamorphosing into multifaceted therapeutic agents for Alzheimer's disease. Au/Ag-NPs have proven highly beneficial in surpassing cellular barriers, as evidenced by studies on tissue penetration, 3D uptake, and endosomal escape, and these attributes also hold promise for the future treatment modalities. The findings indicate that the intrinsic traits of Au/Ag-NPs provide numerous mechanistic benefits, such as inhibiting Aß and acetylcholinesterase (AChE), and reducing stress related to ROS, in addition to their advantageous internalization properties. This research represents a notable advancement in the development of multitargeted treatments for neurodegenerative disorders using bimetallic NPs, diverging from the prevalent emphasis on AuNPs in the current literature.

12.
Am J Otolaryngol ; 45(4): 104315, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38701728

RESUMEN

PURPOSE: For minimally invasive surgery of parathyroid adenomas, exact localization diagnostics are essential. Main imaging modalities used for diagnostics are sonography, SPECT with/without CT (traditional imaging) and 18F-choline-PET. The aim of our study was to identify predictors for inconclusive SPECT imaging and subsequently determine in which cases 18F-choline-PET is needed. METHODS: Retrospective analysis of 138 patients with histologically confirmed primary hyperparathyroidism (pHPT). After sonography, patients underwent SPECT or SPECT/CT imaging, with subsequent 18F-choline-PET in cases of disconcordant results. Logistic regression analysis was used to identify clinical and laboratory factors predictive for negative SPECT results. RESULTS: Sensitivity rates for sonography, SPECT, SPECT/CT, and choline-PET were 47 %, 49 %, 71.7 %, and 97 %, respectively. Logistic regression revealed lower PTH levels (p < 0.001), presence of structural thyroid disease (p = 0.018), and negative sonography (p < 0.001) as predictive of negative/equivocal SPECT outcome. An additional traditional imaging CT scan to a SPECT enhanced detection odds, as did greater adenoma weight. Urolithiasis, osteoporosis, and calcium values as measurement of activity and duration of disease showed no significant association with the detection rate. Furthermore, our study demonstrated that 18F-choline-PET exhibited remarkable sensitivity in detecting adenomas among patients with negative/equivocal SPECT results. CONCLUSION: Our study reveals potential predictive factors for a negative/equivocal SPECT outcome in pHPT. Identifying these factors might allow minimizing futile SPECT examinations and perhaps encourage timely utilization of 18F-choline-PET imaging. Our study reinforces the clinical significance of 18F-choline-PET, especially in complex cases with disconcordant results by conventional parathyroid imaging methods.

13.
Biol Reprod ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702845

RESUMEN

Betaine has important roles in preimplantation mouse embryos, including as an organic osmolyte that functions in cell volume regulation in the early preimplantation stages and as a donor to the methyl pool in blastocysts. The origin of betaine in oocytes and embryos was largely unknown. Here, we found that betaine was present from the earliest stage of growing oocytes. Neither growing oocytes nor early preantral follicles could take up betaine, but antral follicles were able to transport betaine and supply the enclosed oocyte. Betaine is synthesized by choline dehydrogenase, and female mice lacking Chdh did not have detectable betaine in their oocytes or early embryos. Supplementing betaine in their drinking water restored betaine in the oocyte only when supplied during the final stages of antral follicle development but not earlier in folliculogenesis. Together with the transport results, this implies that betaine can only be exogenously supplied during the final stages of oocyte growth. Previous work showed that the amount of betaine in the oocyte increases sharply during meiotic maturation due to upregulated activity of choline dehydrogenase within the oocyte. This betaine present in mature eggs was retained after fertilization until the morula stage. There was no apparent role for betaine uptake via the SIT1 (SLC6A20) betaine transporter that is active at the 1- and 2-cell stages. Instead, betaine was apparently retained because its major route of efflux, the volume-sensitive organic osmolyte - anion channel, remained inactive, even though it is expressed and capable of being activated by a cell volume increase.

14.
Int J Dev Neurosci ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721665

RESUMEN

The neuroprotective effects of choline chloride, an essential nutrient, a precursor for the acetylcholine and synthesis of membrane phospholipids, have been associated with neurological and neurodegenerative diseases. Its contribution to autism spectrum disorder, a neurodevelopmental disorder, remains unknown. Thus, we aimed to evaluate the effects of choline chloride on social behaviours, and histopathological and biochemical changes in a rat autism model. The autism model was induced by administration of 100 µg/kg lipopolysaccharide (LPS) on the 10th day of gestation. Choline chloride treatment (100 mg/kg/day) was commenced on PN5 and maintained until PN50. Social deficits were assessed by three-chamber sociability, open field, and passive avoidance learning tests. Tumour necrosis factor alpha (TNF-α), interleukin-2 (IL) and IL-17, nerve growth factor (NGF), and glutamate decarboxylase 67 (GAD67) levels were measured to assess neuroinflammatory responses. In addition, the number of hippocampal and cerebellar neurons and glial fibrillary acidic protein (GFAP) expression were evaluated. Social novelty and passive avoidance learning tests revealed significant differences in choline chloride-treated male rats compared with saline-treated groups. TNF-α, IL-2, and IL-17 were significantly decreased after choline chloride treatment in both males and females. NGF and GAD67 levels were unchanged in females, while there were significant differences in males. Histologically, significant changes in terms of gliosis were detected in hippocampal CA1 and CA3 regions and cerebellum in choline chloride-treated groups. The presence of ameliorative effects of choline chloride treatment on social behaviour and neuroinflammation through neuroinflammatory, neurotrophic, and neurotransmission pathways in a sex-dependent rat model of LPS-induced autism was demonstrated.

15.
Trials ; 25(1): 328, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760804

RESUMEN

BACKGROUND: The SARS CoV-2 pandemic has resulted in more than 1.1 million deaths in the USA alone. Therapeutic options for critically ill patients with COVID-19 are limited. Prior studies showed that post-infection treatment of influenza A virus-infected mice with the liponucleotide CDP-choline, which is an essential precursor for de novo phosphatidylcholine synthesis, improved gas exchange and reduced pulmonary inflammation without altering viral replication. In unpublished studies, we found that treatment of SARS CoV-2-infected K18-hACE2-transgenic mice with CDP-choline prevented development of hypoxemia. We hypothesize that administration of citicoline (the pharmaceutical form of CDP-choline) will be safe in hospitalized SARS CoV-2-infected patients with hypoxemic acute respiratory failure (HARF) and that we will obtain preliminary evidence of clinical benefit to support a larger Phase 3 trial using one or more citicoline doses. METHODS: We will conduct a single-site, double-blinded, placebo-controlled, and randomized Phase 1/2 dose-ranging and safety study of Somazina® citicoline solution for injection in consented adults of any sex, gender, age, or ethnicity hospitalized for SARS CoV-2-associated HARF. The trial is named "SCARLET" (Supplemental Citicoline Administration to Reduce Lung injury Efficacy Trial). We hypothesize that SCARLET will show that i.v. citicoline is safe at one or more of three doses (0.5, 2.5, or 5 mg/kg, every 12 h for 5 days) in hospitalized SARS CoV-2-infected patients with HARF (20 per dose) and provide preliminary evidence that i.v. citicoline improves pulmonary outcomes in this population. The primary efficacy outcome will be the SpO2:FiO2 ratio on study day 3. Exploratory outcomes include Sequential Organ Failure Assessment (SOFA) scores, dead space ventilation index, and lung compliance. Citicoline effects on a panel of COVID-relevant lung and blood biomarkers will also be determined. DISCUSSION: Citicoline has many characteristics that would be advantageous to any candidate COVID-19 therapeutic, including safety, low-cost, favorable chemical characteristics, and potentially pathogen-agnostic efficacy. Successful demonstration that citicoline is beneficial in severely ill patients with SARS CoV-2-induced HARF could transform management of severely ill COVID patients. TRIAL REGISTRATION: The trial was registered at www. CLINICALTRIALS: gov on 5/31/2023 (NCT05881135). TRIAL STATUS: Currently enrolling.


Asunto(s)
COVID-19 , Citidina Difosfato Colina , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2 , Humanos , Citidina Difosfato Colina/uso terapéutico , Método Doble Ciego , SARS-CoV-2/efectos de los fármacos , COVID-19/complicaciones , Tratamiento Farmacológico de COVID-19 , Ensayos Clínicos Fase II como Asunto , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Neumonía Viral/complicaciones , Resultado del Tratamiento , Hipoxia/tratamiento farmacológico , Masculino , Pandemias , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/complicaciones , Hospitalización , Femenino , Betacoronavirus , Ensayos Clínicos Fase I como Asunto , Insuficiencia Respiratoria/tratamiento farmacológico , Insuficiencia Respiratoria/virología , Administración Intravenosa , Adulto
16.
Sci Rep ; 14(1): 11366, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762543

RESUMEN

Placental leptin may impact foetal development. Maternal overnutrition has been linked to increased plasma leptin levels and adverse effects on offspring, whereas choline, an essential nutrient for foetal development, has shown promise in mitigating some negative impacts of maternal obesity. Here, we investigate whether a maternal obesogenic diet alters foetal growth and leptin levels in the foetal stomach, amniotic fluid (AF), and placenta in late gestation and explore the potential modulating effects of maternal choline supplementation. Female rats were fed a control (CD) or a western diet (WD) four weeks before mating and during gestation, half of them supplemented with choline (pregnancy days 11-17). Leptin levels (in foetal stomach, AF, and placenta) and leptin gene expression (in placenta) were assessed on gestation days 20 and 21. At day 20, maternal WD feeding resulted in greater leptin levels in foetal stomach, placenta, and AF. The increased AF leptin levels were associated with a premature increase in foetal weight in both sexes. Maternal choline supplementation partially prevented these alterations, but effects differed in CD dams, causing increased AF leptin levels and greater weight in male foetuses at day 20. Maternal choline supplementation effectively mitigates premature foetal overgrowth induced by an obesogenic diet, potentially linked to increased AF leptin levels. Further research is needed to explore the sex-specific effects.


Asunto(s)
Líquido Amniótico , Colina , Suplementos Dietéticos , Leptina , Animales , Femenino , Leptina/sangre , Leptina/metabolismo , Embarazo , Colina/administración & dosificación , Líquido Amniótico/metabolismo , Ratas , Masculino , Placenta/metabolismo , Placenta/efectos de los fármacos , Desarrollo Fetal/efectos de los fármacos , Obesidad/metabolismo , Obesidad/etiología , Peso Fetal/efectos de los fármacos , Ratas Sprague-Dawley , Dieta Occidental/efectos adversos
17.
Free Radic Biol Med ; 221: 64-74, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754744

RESUMEN

α-Tocopherol (α-T) is a vitamin, but the reasons for the α-T requirement are controversial. Given that α-T deficiency was first identified in embryos, we studied to the premier model of vertebrate embryo development, the zebrafish embryo. We developed an α-T-deficient diet for zebrafish and used fish consuming this diet to produce α-T deficient (E-) embryos. We showed that α-T deficiency causes increased lipid peroxidation, leading to metabolic dysregulation that impacts both biochemical and morphological changes at very early stages in development. These changes occur at an early developmental window, which takes place prior to an analogous time to when a human knows she is pregnant. We found that α-T limits the chain reaction of lipid peroxidation and protects metabolic pathways and integrated gene expression networks that control embryonic development. Importantly, not only is α-T critical during early development, but the neurodevelopmental process is highly dependent on α-T trafficking by the α-T transfer protein (TTPa). Data from both gene expression and evaluation of the metabolome in E- embryos suggest that the activity of the mechanistic Target of Rapamycin (mTOR) signaling pathway is dysregulated-mTOR is a master regulatory mechanism, which controls both metabolism and neurodevelopment. Our findings suggest that TTPa is needed not only for regulation of plasma α-T in adults but is a key regulator during embryogenesis.

18.
Cell Mol Life Sci ; 81(1): 166, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581583

RESUMEN

The Feline Leukemia Virus Subgroup C Receptor 1a (FLVCR1a) is a member of the SLC49 Major Facilitator Superfamily of transporters. Initially recognized as the receptor for the retrovirus responsible of pure red cell aplasia in cats, nearly two decades since its discovery, FLVCR1a remains a puzzling transporter, with ongoing discussions regarding what it transports and how its expression is regulated. Nonetheless, despite this, the substantial body of evidence accumulated over the years has provided insights into several critical processes in which this transporter plays a complex role, and the health implications stemming from its malfunction. The present review intends to offer a comprehensive overview and a critical analysis of the existing literature on FLVCR1a, with the goal of emphasising the vital importance of this transporter for the organism and elucidating the interconnections among the various functions attributed to this transporter.


Asunto(s)
Proteínas de Transporte de Membrana , Receptores Virales , Gatos , Animales , Proteínas de Transporte de Membrana/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo
19.
J Ren Nutr ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621431

RESUMEN

OBJECTIVES: Trimethylamine N-oxide (TMAO) is a gut bacteria-mediated liver metabolite of dietary betaine, choline, and carnitine, which is excreted by glomerular filtration. We studied whether TMAO is excreted by cardiovascular disease (CVD) in patients with chronic kidney disease (CKD). METHODS: Among 478 patients with CKD stage G2 (n = 104), G3a (n = 163), G3b (n = 123), and G4 (n = 88), we studied the association between fasting plasma concentrations of TMAO, choline, or betaine at baseline and kidney function, prevalent CVD, and future renal outcomes during a mean follow-up of 5.1 years. RESULTS: Decreased glomerular filtration rate was associated with higher plasma concentrations of TMAO, choline, and betaine. Baseline concentrations of TMAO were higher in participants with preexisting CVD compared to those without CVD (8.4 [10.1] vs. 7.8 [8.0] µmol/L; P = .047), but the difference was not significant after adjusting for confounders. During the follow-up, 147 participants experienced CVD or died, and 144 reached the predefined renal endpoint. In the adjusted regression analyses, TMAO or choline concentrations in the upper three quartiles (vs. the lowest quartile) were not associated with any of the study's clinical endpoints. In contrast, the adjusted hazard ratio of plasma betaine in the highest quartile versus the lowest quartile was 2.14 (1.32, 3.47) for the CVD endpoint and 1.64 (1.00, 2.67) for the renal endpoint. CONCLUSIONS: Elevated plasma TMAO concentrations were explained by impaired kidney function. Elevated plasma concentrations of betaine, but not those of TMAO or choline, constituted a risk factor for adverse outcomes. TMAO might not be an appropriate target to reduce CVD or renal outcomes in patients with preexisting CKD.

20.
Int J Biol Macromol ; 268(Pt 1): 131740, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653428

RESUMEN

Alzheimer's disease (AD) is challenging due to its irreversible declining cognitive symptoms and multifactorial nature. This work tackles targeting both acetylcholinesterase (AChE) and BuChE with a multitarget-directed ligand (MTDL) through design, synthesis, and biological and in silico evaluation of a series of twenty eight new 5-substituted-2-anilino-1,3,4-oxadiazole derivatives 4a-g, 5a-g, 9a-g and 13a-g dual inhibitors of the target biomolecules. In vitro cholinesterases inhibition and selectivity assay of the synthesized derivatives showed excellent nanomolar level inhibitory activities. Compound 5a, the most potent inhibitor, elicited IC50s of 46.9 and 3.5 nM against AChE and BuChE, respectively (SI = 0.07), 5 folds better than the known dual inhibitor Rivastagmine. In vivo and ex vivo investigation showed that 5a significantly inhibited MDA levels and increased GSH contents, thus, attenuating the brain tissue oxidative stress. Additionally, 5a significantly decreased AChE and BuChE levels and inhibited self-mediated ß-amyloid aggregation in brains of treated rats. Histopathological and immunohistochemical evaluation demonstrated lessened damage and decreased caspase-3 and VEGF expression levels. In silico prediction of 5a's pharmacokinetics and toxicity profiles reflected promising results. Finally, 5a demonstrated tight binding interactions with the two target biomolecules upon docking along with stable complex formation with its bio-targets throughout the 100 ns MD trajectories.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Simulación del Acoplamiento Molecular , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/síntesis química , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Ratas , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Humanos , Simulación por Computador , Estrés Oxidativo/efectos de los fármacos , Ligandos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Masculino , Péptidos beta-Amiloides/metabolismo , Relación Estructura-Actividad , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...