Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.607
Filtrar
1.
Methods Mol Biol ; 2856: 11-22, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39283444

RESUMEN

The Structural Maintenance of Chromosomes (SMC) protein complexes are DNA-binding molecular machines required to shape chromosomes into functional units and to safeguard the genome through cell division. These ring-shaped multi-subunit protein complexes, which are present in all kingdoms of life, achieve this by organizing chromosomes in three-dimensional space. Mechanistically, the SMC complexes hydrolyze ATP to either stably entrap DNA molecules within their lumen, or rapidly reel DNA into large loops, which allow them to link two stretches of DNA in cis or trans. In this chapter, the canonical structure of the SMC complexes is first introduced, followed by a description of the composition and general functions of the main types of eukaryotic and prokaryotic SMC complexes. Thereafter, the current model for how SMC complexes perform in vitro DNA loop extrusion is presented. Lastly, chromosome loop formation by SMC complexes is introduced, and how the DNA loop extrusion mechanism contributes to chromosome looping by SMC complexes in cells is discussed.


Asunto(s)
Cromosomas , Cromosomas/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , ADN/química , ADN/metabolismo , ADN/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/química , Adenosina Trifosfato/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química
2.
Methods Mol Biol ; 2856: 71-78, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39283447

RESUMEN

Hi-C reads, which represent ligation events between different regions of the genome, must be processed into matrices of interaction frequencies for downstream analysis. Here, I describe a procedure for mapping Hi-C reads to the genome and conversion of mapped reads into the HOMER tag directory format and interaction matrix format for visualization with Juicebox. The method is demonstrated for the mouse composite X chromosome in which reads from the active and inactive X chromosomes are combined after mock DMSO treatment or targeted degradation of cohesin.


Asunto(s)
Cromosoma X , Animales , Cromosoma X/genética , Ratones , Programas Informáticos , Cohesinas , Mapeo Cromosómico/métodos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Biología Computacional/métodos
3.
Methods Mol Biol ; 2856: 433-444, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39283467

RESUMEN

Hi-C is a powerful method for obtaining genome-wide chromosomal structural information. The typical Hi-C analysis utilizes a two-dimensional (2D) contact matrix, which poses challenges for quantitative comparisons, visualizations, and integrations across multiple datasets. Here, we present a protocol for extracting one-dimensional (1D) features from chromosome structure data by HiC1Dmetrics. Leveraging these 1D features enables integrated analysis of Hi-C and epigenomic data.


Asunto(s)
Epigenómica , Epigenómica/métodos , Humanos , Cromosomas/genética , Programas Informáticos , Biología Computacional/métodos
4.
bioRxiv ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39257810

RESUMEN

Great apes have maintained a stable karyotype with few large-scale rearrangements; in contrast, gibbons have undergone a high rate of chromosomal rearrangements coincident with rapid centromere turnover. Here we characterize assembled centromeres in the Eastern hoolock gibbon, Hoolock leuconedys (HLE), finding a diverse group of transposable elements (TEs) that differ from the canonical alpha satellites found across centromeres of other apes. We find that HLE centromeres contain a CpG methylation centromere dip region, providing evidence this epigenetic feature is conserved in the absence of satellite arrays; nevertheless, we report a variety of atypical centromeric features, including protein-coding genes and mismatched replication timing. Further, large structural variations define HLE centromeres and distinguish them from other gibbons. Combined with differentially methylated TEs, topologically associated domain boundaries, and segmental duplications at chromosomal breakpoints, we propose that a "perfect storm" of multiple genomic attributes with propensities for chromosome instability shaped gibbon centromere evolution.

5.
Mol Ecol ; : e17525, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268700

RESUMEN

Large structural variants in the genome, such as inversions, may play an important role in producing population structure and local adaptation to the environment through suppression of recombination. However, relatively few studies have linked inversions to phenotypic traits that are sexually selected and may play a role in reproductive isolation. Here, we found that geographic differences in the sexually selected plumage of a warbler, the common yellowthroat (Geothlypis trichas), are largely due to differences in the Z (sex) chromosome (males are ZZ), which contains at least one putative inversion spanning 40% (31/77 Mb) of its length. The inversions on the Z chromosome vary dramatically east and west of the Appalachian Mountains, which provides evidence of cryptic population structure within the range of the most widespread eastern subspecies (G. t. trichas). In an eastern (New York) and western (Wisconsin) population of this subspecies, female prefer different male ornaments; larger black facial masks are preferred in Wisconsin and larger yellow breasts are preferred in New York. The putative inversion also contains genes related to vision, which could influence mating preferences. Thus, structural variants on the Z chromosome are associated with geographic differences in male ornaments and female choice, which may provide a mechanism for maintaining different patterns of sexual selection in spite of gene flow between populations of the same subspecies.

6.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273111

RESUMEN

If one must prioritize among the vast array of contributing factors to cancer evolution, environmental-stress-mediated chromosome instability (CIN) should easily surpass individual gene mutations. CIN leads to the emergence of genomically unstable life forms, enabling them to grow dominantly within the stable life form of the host. In contrast, stochastic gene mutations play a role in aiding the growth of the cancer population, with their importance depending on the initial emergence of the new system. Furthermore, many specific gene mutations among the many available can perform this function, decreasing the clinical value of any specific gene mutation. Since these unstable life forms can respond to treatment differently than stable ones, cancer often escapes from drug treatment by forming new systems, which leads to problems during the treatment for patients. To understand how diverse factors impact CIN-mediated macroevolution and genome integrity-ensured microevolution, the concept of two-phased cancer evolution is used to reconcile some major characteristics of cancer, such as bioenergetic, unicellular, and multicellular evolution. Specifically, the spiral of life function model is proposed, which integrates major historical evolutionary innovations and conservation with information management. Unlike normal organismal evolution in the microevolutionary phase, where a given species occupies a specific location within the spiral, cancer populations are highly heterogenous at multiple levels, including epigenetic levels. Individual cells occupy different levels and positions within the spiral, leading to supersystems of mixed cellular populations that exhibit both macro and microevolution. This analysis, utilizing karyotype to define the genetic networks of the cellular system and CIN to determine the instability of the system, as well as considering gene mutation and epigenetics as modifiers of the system for information amplification and usage, explores the high evolutionary potential of cancer. It provides a new, unified understanding of cancer as a supersystem, encouraging efforts to leverage the dynamics of CIN to develop improved treatment options. Moreover, it offers a historically contingent model for organismal evolution that reconciles the roles of both evolutionary innovation and conservation through macroevolution and microevolution, respectively.


Asunto(s)
Inestabilidad Cromosómica , Neoplasias , Neoplasias/genética , Humanos , Evolución Biológica , Animales , Mutación , Evolución Molecular , Epigénesis Genética , Inestabilidad Genómica
7.
Int J Mol Sci ; 25(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39273162

RESUMEN

Eukaryotic genomes exhibit a dynamic interplay between single-copy sequences and repetitive DNA elements, with satellite DNA (satDNA) representing a substantial portion, mainly situated at telomeric and centromeric chromosomal regions. We utilized Illumina next-generation sequencing data from Adalia bipunctata to investigate its satellitome. Cytogenetic mapping via fluorescence in situ hybridization was performed for the most abundant satDNA families. In silico localization of satDNAs was carried out using the CHRISMAPP (Chromosome In Silico Mapping) pipeline on the high-fidelity chromosome-level assembly already available for this species, enabling a meticulous characterization and localization of multiple satDNA families. Additionally, we analyzed the conservation of the satellitome at an interspecific scale. Specifically, we employed the CHRISMAPP pipeline to map the satDNAs of A. bipunctata onto the genome of Adalia decempunctata, which has also been sequenced and assembled at the chromosome level. This analysis, along with the creation of a synteny map between the two species, suggests a rapid turnover of centromeric satDNA between these species and the potential occurrence of chromosomal rearrangements, despite the considerable conservation of their satellitomes. Specific satDNA families in the sex chromosomes of both species suggest a role in sex chromosome differentiation. Our interspecific comparative study can provide a significant advance in the understanding of the repeat genome organization and evolution in beetles.


Asunto(s)
Centrómero , Escarabajos , ADN Satélite , Hibridación Fluorescente in Situ , Animales , Escarabajos/genética , ADN Satélite/genética , Centrómero/genética , Hibridación Fluorescente in Situ/métodos , Mapeo Cromosómico/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino , Cromosomas de Insectos/genética , Cromosomas Sexuales/genética , Sintenía , Femenino , Especificidad de la Especie
8.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39273586

RESUMEN

A narrow genetic basis limits further the improvement of modern Gossypium hirsutum cultivar. The abundant genetic diversity of wild species provides available resources to solve this dilemma. In the present study, a chromosome segment substitution line (CSSL) population including 553 individuals was established using G. darwinii accession 5-7 as the donor parent and G. hirsutum cultivar CCRI35 as the recipient parent. After constructing a high-density genetic map with the BC1 population, the genotype and phenotype of the CSSL population were investigated. A total of 235 QTLs, including 104 QTLs for fiber-related traits and 132 QTLs for seed-related traits, were identified from four environments. Among these QTLs, twenty-seven QTLs were identified in two or more environments, and twenty-five QTL clusters consisted of 114 QTLs. Moreover, we identified three candidate genes for three stable QTLs, including GH_A01G1096 (ARF5) and GH_A10G0141 (PDF2) for lint percentage, and GH_D01G0047 (KCS4) for seed index or oil content. These results pave way for understanding the molecular regulatory mechanism of fiber and seed development and would provide valuable information for marker-assisted genetic improvement in cotton.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas , Fibra de Algodón , Gossypium , Fenotipo , Sitios de Carácter Cuantitativo , Semillas , Gossypium/genética , Semillas/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Fitomejoramiento/métodos , Genotipo
9.
Mol Ecol ; : e17526, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258972

RESUMEN

Under allopatric speciation, populations of a species become isolated by a geographic barrier and develop reproductive isolation through genetic differentiation. When populations meet in secondary contact, the strength of evolved reproductive barriers determines the extent of hybridization and whether the populations will continue to diverge or merge together. The yellowhammer (Emberiza citrinella) and pine bunting (E. leucocephalos) are avian sister species that diverged in allopatry on either side of Eurasia during the Pleistocene glaciations. Though they differ greatly in plumage and form distinct genetic clusters in allopatry, these taxa show negligible mitochondrial DNA differentiation and hybridize extensively where they overlap in central Siberia, lending uncertainty to the state of reproductive isolation in the system. To assess the strength of reproductive barriers between taxa, we examined genomic differentiation across the system. We found that extensive admixture has occurred in sympatry, indicating that reproductive barriers between taxa are weak. We also identified a putative Z chromosome inversion region that underlies plumage variation in the system, with the 'pine bunting' haplotype showing dominance over the 'yellowhammer' haplotype. Our results suggest that yellowhammers and pine buntings are currently at a crossroads and that evolutionary forces may push this system towards either continued differentiation or population merging. However, even if these taxa merge, recombination suppression between putative chromosome Z inversion haplotypes may maintain divergent plumage phenotypes within the system. In this way, our findings highlight the important role hybridization plays in increasing the genetic and phenotypic variation as well as the evolvability of a system.

10.
Mol Biol Rep ; 51(1): 977, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259380

RESUMEN

BACKGROUND: B chromosomes are extra non-essential elements present in several eukaryotes. Unlike A chromosomes which are essential and present in all individuals of a species, B chromosomes are not necessary for normal functioning of an organism. Formerly regarded as genetically inactive, B chromosomes have been discovered to not only express their own genes, but also to exert influence on gene expression in A chromosomes. Recent studies have shown that, in some Psalidodon (Characiformes, Characidae) species, B chromosomes might be associated with phenotypic effects, such as changes in the reproductive cycle and gene expression. METHODS AND RESULTS: In this study, we aimed to establish stable reference genes for RT-qPCR experiments conducted on gonads of three fish species within Psalidodon genus, both in the presence and absence of B chromosomes. The stability of five selected reference genes was assessed using NormFinder, geNorm, BestKeeper, and RefFinder algorithms. We determined ppiaa and pgk1 as the most stable genes in P. fasciatus, whereas ppiaa and hmbsa showed the highest stability in P. bockmanni. For P. paranae, tbp and hprt1 were the most stable genes in females, and ppiaa and hprt1 were the most stable in males. CONCLUSIONS: We determined the most stable reference genes in gonads of three Psalidodon species considering the presence of B chromosomes. This is the first report of reference gene stability in the genus and provides valuable tools to better understand the effects of B chromosomes at gene expression level.


Asunto(s)
Cromosomas , Animales , Masculino , Femenino , Cromosomas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Estándares de Referencia , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Gónadas/metabolismo , Characidae/genética , Characiformes/genética
11.
Front Plant Sci ; 15: 1407840, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309182

RESUMEN

Cultivated and wild species of the genus rye (Secale) are important but underexploited gene sources for increasing the genetic diversity of bread wheat. Gene transfer is possible via bridge genetic materials derived from intergeneric hybrids. During this process, it is essential to precisely identify the rye chromatin in the wheat genetic background. In the present study, backcross generation BC2F8 from a cross between Triticum aestivum (Mv9kr1) and S. cereanum ('Kriszta,' a cultivar from the artificial hybrid of S. cereale and S. strictum) was screened using in-situ hybridization (GISH and FISH) and analyzed by DArTseq genotyping in order to select potentially agronomically useful genotypes for prebreeding purposes. Of the 329,267 high-quality short sequence reads generated, 27,822 SilicoDArT and 8,842 SNP markers specific to S. cereanum 1R-7R chromosomes were identified. Heatmaps of the marker densities along the 'Lo7' rye reference pseudomolecules revealed subtle differences between the FISH- and DArTseq-based results. This study demonstrates that the "exotic" rye chromatin of S. cereanum introgressed into wheat can be reliably identified by high-throughput DArTseq genotyping. The Mv9kr1-'Kriszta' addition and translocation lines presented here may serve as valuable prebreeding genetic materials for the development of stress-tolerant or disease-resistant wheat varieties.

12.
Heliyon ; 10(18): e36583, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309767

RESUMEN

The interaction between lamin A and the cytoplasmic skeleton plays a key role in maintaining nuclear mechanical properties. However, the effect of destruction of the cytoplasmic skeleton on the 3D submicroscopic structure of lamin A has not been elucidated. In this study, we developed an image quantization algorithm to quantify changes in the submicroscopic structure of the intact lamin A 3D network within the nucleus. We used blebbistatin or nocodazole to disrupt the fibrillar structure of F-actin or tubulin, respectively, and then quantified changes in the lamin A super-resolution network structure, the morphological and mechanical properties of the nucleus and the spatial distribution of chromosomes. Ultimately, we found for the first time that disruption of the cytoplasmic skeleton changes the lamin A submicroscopic network and nuclear structural characteristics. In summary, this study contributes to understanding the trans-nuclear membrane interaction characteristics of lamin A and the cytoplasmic skeleton.

13.
Cureus ; 16(8): e67593, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39310605

RESUMEN

Y chromosome analysis is used in a number of practical applications, including investigations of criminal cases, establishment of paternity, searching for missing persons, studies on human migration, evolutionary research, and historical and genealogical investigations. Questions about the origin of individual ethnic groups are addressed not only through archaeological, linguistic, and ethnographic methods but also through molecular genetics methods. The study of genetic diversity in Romania is particularly interesting from several perspectives because Romania, located in Southeast Europe, is distinguished by the fact that the Carpathians and the Danube served as natural barriers against the migrations of peoples for centuries, thus influencing the genetic mixture of the population. This is relevant for understanding the history and formation of ethnic groups in the region. In addition, many ethnic minorities live in Romania, which adds an additional dimension of genetic and cultural diversity. This article aims to provide an updated picture of the genetic diversity in Romania and to highlight the significant studies carried out among the Romanian population. By analyzing the articles published in the Web of Science, Scopus, or PubMed databases, which explore genetic diversity using the Y chromosome, the aim is to better understand the current genetic panorama in Romania.

14.
iScience ; 27(9): 110826, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39310780

RESUMEN

During DNA repair, ATM-induced H2AX histone phosphorylation and MDC1 recruitment spread megabases beyond the damage site. While loop extrusion has been suggested to drive this spread, the underlying mechanism remains unclear. Herein, we provide two lines of evidence that loop extrusion is not the only driver of damage-induced γH2AX spread. First, cohesin loader NIPBL and cohesin subunit RAD21 accumulate considerably later than the phosphorylation of H2AX and MDC1 recruitment at micro-IR-induced damage. Second, auxin-induced RAD21 depletion does not affect γH2AX/MDC1 spread following micro-irradiation or DSB induction by zeocin. To determine if diffusion of activated ATM could account for the observed behavior, we measured the exchange rate and diffusion constants of ATM and MDC1 within damaged and unperturbed chromatin. Using these measurements, we introduced a quantitative model in which the freely diffusing activated ATM phosphorylates H2AX. This model faithfully describes the dynamics of ATM and subsequent γH2AX/MDC1 spread at complex DNA lesions.

15.
Mol Genet Genomic Med ; 12(9): e70010, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39311797

RESUMEN

BACKGROUND: Congenital disorders of glycosylation (CDG) are a group of neurometabolic diseases that result from genetic defects in the glycosylation of proteins and/or lipids. Multiple pathogenic genes contribute to the varying reported phenotypes of individuals with CDG-1 syndromes, most of which are inherited as autosomal recessive traits, although X-linked inheritance has also been reported. Pathogenic variants in the asparagine-linked glycosylation 13 homolog (ALG13) gene have been implicated in the aetiology of developmental and epileptic encephalopathy (DEE) 36 (OMIM:*300776, DEE36). The NM_001099922.3:c.320A>G; p.(Asn107Ser) variant is the most frequently described pathogenic variant in ALG13, with 59 females and 2 males with this variant reported to date. METHODS: We report on a male with a de novo, hemizygous variant in ALG13: c.320A>G; p.(Asn107Ser), whose phenotype resembles that of two previously reported males with the same variant. RESULTS: All three males have a de novo mutation, infantile spasms, DEE, drug-resistant epilepsy, intellectual disability, dysmorphic findings, recurrent infections, skeletal anomalies, brain abnormalities and a movement disorder: a phenotype not consistently reported in males with other pathogenic variants in ALG13. CONCLUSION: The similarity of phenotype in the three males with the c.320A>G variant in ALG13, suggests a possible genotype-phenotype correlation.


Asunto(s)
Fenotipo , Humanos , Masculino , Lactante , Preescolar , Niño , Espasmos Infantiles/genética , Espasmos Infantiles/patología , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Hemicigoto , Estudios de Asociación Genética , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , N-Acetilglucosaminiltransferasas
16.
Genes Chromosomes Cancer ; 63(9): e23265, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39297564

RESUMEN

INTRODUCTION: The molecular basis and mechanisms of juvenile nasopharyngeal angiofibromas (JNA) pathogenesis are still unknown. Despite being a rare and benign neoplasm, JNA is a locally aggressive and potentially destructive head and neck neoplasm, typically found in young males. The advancement of genome technologies and analytical tools has provided an unparalleled opportunity to explore the intricacy of JNA. The present study provides the first evidence of the involvement of Y-chromosome genes in JNA. METHODS: A total of 13 JNA patients at an advanced disease stage and five age-matched male controls were registered for this study. Whole-exome sequencing (WES) analysis was conducted followed by functional analysis to understand the molecular mechanism of the JNA. RESULTS: WES analysis revealed a high prevalence of mutations in 14 genes within the protein-coding, male-specific region of the Y-chromosome of young males (mean age: 13.8 ± 2.4) with JNA. These mutations, occurring at 28 distinct positions, were characterized as moderate to high impact and were prevalent in nine JNA patients but not in the control group. The most frequently mutated genes were USP9Y and UTY, followed by KDM5D, DDX3Y, and TSPY4. The expression of USP9Y, UTY, and DDX3Y was found to be co-modulated, implying their coordinated regulation as a complex. Furthermore, somatic mutations were detected in genes previously linked to JNA. CONCLUSION: The wide array of genetic mutations in the Y-chromosome male-specific region, along with the somatic alterations identified in JNA, provides novel insights into JNA pathophysiology.


Asunto(s)
Angiofibroma , Secuenciación del Exoma , Mutación , Neoplasias Nasofaríngeas , Humanos , Angiofibroma/genética , Angiofibroma/patología , Masculino , Secuenciación del Exoma/métodos , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Adolescente , Niño , Ubiquitina Tiolesterasa/genética
17.
Cell Mol Life Sci ; 81(1): 410, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305343

RESUMEN

Rett syndrome (RTT) is a neurodevelopmental disorder caused by de novo mutations in the MECP2 gene. Although miRNAs in extracellular vesicles (EVs) have been suggested to play an essential role in several neurological conditions, no prior study has utilized brain organoids to profile EV-derived miRNAs during normal and RTT-affected neuronal development. Here we report the spatiotemporal expression pattern of EV-derived miRNAs in region-specific forebrain organoids generated from female hiPSCs with a MeCP2:R255X mutation and the corresponding isogenic control. EV miRNA and protein expression profiles were characterized at day 0, day 13, day 40, and day 75. Several members of the hsa-miR-302/367 cluster were identified as having a time-dependent expression profile with RTT-specific alterations at the latest developmental stage. Moreover, the miRNA species of the chromosome 14 miRNA cluster (C14MC) exhibited strong upregulation in RTT forebrain organoids irrespective of their spatiotemporal location. Together, our results suggest essential roles of the C14MC and hsa-miR-302/367 clusters in EVs during normal and RTT-associated neurodevelopment, displaying promising prospects as biomarkers for monitoring RTT progression.


Asunto(s)
Encéfalo , Vesículas Extracelulares , Proteína 2 de Unión a Metil-CpG , MicroARNs , Organoides , Síndrome de Rett , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Humanos , Organoides/metabolismo , Organoides/patología , Femenino , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Mutación , Prosencéfalo/metabolismo
18.
Clin Chim Acta ; : 119973, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307333

RESUMEN

OBJECTIVE: This study aimed to investigate the genetic etiology of male infertility patients. METHOD: A total of 1600 male patients with infertility, including 1300 cases of azoospermia and 300 cases of severe oligozoospermia, underwent routine semen analysis, chromosomal karyotype analysis and sex hormone level testing. The Azoospermia factor (AZF) on the Y chromosome was detected using the multiple fluorescence quantitative PCR technique. Additionally, copy number variation (CNV) analysis was performed on patients with Sertoli-cell-only syndrome who had a normal karyotype and AZF. RESULT: Chromosomal abnormalities were found in 334 cases (20.88 %) of the 1600 male infertility patients. The most common type of abnormality was sex chromosome abnormalities (18.94 %), with 47, XXY being the most frequent abnormal karyotype. The rates of chromosomal abnormalities were significantly different between the azoospermia group and the severe oligospermia group (23.69 % and 8.67 %, respectively; P<0.05). AZF microdeletions were detected in 155 cases (9.69 %), with various deletion types and AZFc region microdeletion being the most prevalent. The rates of AZF microdeletions were not significantly different between the azoospermia group and the severe oligospermia group (9.15 % and 12 %, respectively; P=0.133). In 92 patients with Sertoli-cell-only syndrome who had a normal karyotype and AZF, the detection rate of CNV was 16.3 %. Compared to the severe oligospermia group, the azoospermia group had higher levels of FSH and LH and lower levels of T and E2, and the differences were statistically significant (P<0.05). CONCLUSIONS: Male infertility is a complex multifactorial disease, with chromosomal abnormalities and Y chromosome microdeletions being important genetic factors leading to the disease. Initial genetic testing of infertile men should include karyotyping and Y chromosome microdeletions. If necessary, CNV testing should be performed to establish a clinical diagnosis and provide individualized treatment for male infertility.

19.
Food Sci Biotechnol ; 33(13): 3131-3152, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39220321

RESUMEN

Cyto/genotoxicity have been widespread utilized for the safety risk assessment of synthetic/natural chemicals. Plants can protect organisms from harmful effects of xenobiotics. On the other hand, plants can extract toxic molecules from the environment which may disrupt mitosis and cytokinesis. However, the precise role of Cirsium steriolepis during this process is unknown. We showed that steriolepis didn't cause cyto/genotoxicity. Findings showed powerful inhibition in micronucleus formation and they are safe for healthy human lymphocytes in terms of their capacity to generate chromosomal aberrations. They caused significant increases in sister chromatid exchange (SCE) compared to control but they were able to decrease SCE frequency caused by H2O2. Additionally, the antibacterial efficiencies of the samples against Escherichia coli and Staphylococcus aureus were up to 50% of the effectivity of penicillin/streptomycin. Steriolepis was able to protect the organism from the oxidative damage and didn't affect the normal developmental phases of Drosophila melanogaster.

20.
Heliyon ; 10(16): e35329, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220888

RESUMEN

The remarkable geographical situation of the Mediterranean region, located between Europe, Africa, and Asia, with numerous migratory routes, has made this area a crucible of cultures. Studying the Y-chromosome variability is a very performant tool to explore the genetic ancestry and evaluate scenarios that may explain the current Mediterranean gene pool. Here, six Mediterranean populations, including three Balearic Islands (Ibiza, Majorca, and Minorca) and three Southern Italian regions (Catanzaro, Cosenza, and Reggio di Calabria) were typed using 23 Y-STR loci and up to 39 Y-SNPs and compared to geographically targeted key reference populations to explore their genetic relationship and provide an overview of Y-chromosome variation across the Mediterranean basin. Pairwise RST genetic distances calculated with STRs markers and Y-haplogroups mirror the West to East geographic distribution of European and Asian Mediterranean populations, highlighting the North-South division of Italy, with a higher Eastern Mediterranean component in Southern Italian populations. In contrast, the African populations from the Southern coast of the Mediterranean clustered separately. Overall, these results support the notion that migrations from Magna Graecia or the Byzantine Empire, which followed similar Neolithic and post-Neolithic routes into Southern Italy, may have contributed to maintaining and/or reinforcing the Eastern Mediterranean genetic component in Southern Italian populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA