Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
New Phytol ; 243(5): 1840-1854, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39010685

RESUMEN

The B chromosomes exhibit diverse behaviour compared with conventional genetic models. The capacity of the B chromosome either to accumulate or to be eliminated in a tissue-specific manner is dependent on biological processes related to aberrant cell division(s), but here yet remains compatible with normal development. We studied B chromosome elimination in Sorghum purpureosericeum embryos through cryo-sections and demonstrated the B chromosome instability during plant growth using flow cytometry, molecular markers and fluorescent in situ hybridization techniques. Consequently, using B chromosome-specific probes we revealed the non-Mendelian inheritance of B chromosomes in developing pollen. We disclosed that the occurrence of the B chromosome is specific to certain tissues or organs. The distribution pattern is mainly caused by an extensive elimination that functions primarily during embryo development and persists throughout plant development. Furthermore, we described that B chromosome accumulation can occur either by nondisjunction at first pollen mitosis (PMI) or the initiation of extra nuclear division(s) during pollen development. Our study demonstrates the existence of a not-yet-fully described B chromosome drive process, which is likely under the control of the B chromosome.


Asunto(s)
Cromosomas de las Plantas , Mitosis , No Disyunción Genética , Polen , Sorghum , Sorghum/genética , Polen/genética , Polen/citología , Cromosomas de las Plantas/genética , Semillas/genética , Semillas/crecimiento & desarrollo
2.
Chromosome Res ; 31(3): 26, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37658970

RESUMEN

In many species, the transmission of B chromosomes (Bs) does not follow the Mendelian laws of equal segregation and independent assortment. This deviation results in transmission rates of Bs higher than 0.5, a process known as "chromosome drive". Here, we studied the behavior of the 103 Mbp-large B chromosome of Festuca pratensis during all meiotic and mitotic stages of microsporogenesis. Mostly, the B chromosome of F. pratensis segregates during meiosis like standard A chromosomes (As). In some cases, the B passes through meiosis in a non-Mendelian segregation leading to their accumulation already in meiosis. However, a true drive of the B happens during the first pollen mitosis, by which the B preferentially migrates to the generative nucleus. During second pollen mitosis, B divides equally between the two sperms. Despite some differences in the frequency of drive between individuals with different numbers of Bs, at least 82% of drive was observed. Flow cytometry-based quantification of B-containing sperm nuclei agrees with the FISH data.


Asunto(s)
Festuca , Semillas , Núcleo Celular , Meiosis , Cromosomas
3.
Chromosome Res ; 30(4): 335-349, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35781770

RESUMEN

The B chromosome (B) is a dispensable component of the genome in many species. To evaluate the impact of Bs on the transcriptome of the standard A chromosomes (A), comparative RNA-seq analyses of rye and wheat anthers with and without additional rye Bs were conducted. In both species, 5-6% of the A-derived transcripts across the entire genomes were differentially expressed in the presence of 2Bs. The GO term enrichment analysis revealed that Bs influence A chromosome encoded processes like "gene silencing"; "DNA methylation or demethylation"; "chromatin silencing"; "negative regulation of gene expression, epigenetic"; "post-embryonic development"; and "chromosome organization." 244 B chromosome responsive A-located genes in + 2B rye and + B wheat shared the same biological function. Positively correlated with the number of Bs, 939 and 1391 B-specific transcripts were identified in + 2B and + 4B wheat samples, respectively. 85% of B-transcripts in + 2B were also found in + 4B transcriptomes. 297 B-specific transcripts were identified in + 2B rye, and 27% were common to the B-derived transcripts identified in + B wheat. Bs encode mobile elements and housekeeping genes, but most B-transcripts were without detectable similarity to known genes. Some of these genes are involved in cell division-related functions like Nuf2 and might indicate their importance in maintaining Bs. The transcriptome analysis provides new insights into the complex interrelationship between standard A chromosomes and supernumerary B chromosomes.


Asunto(s)
Genoma de Planta , Secale , Secale/genética , Hibridación Fluorescente in Situ , Cromosomas , Mitosis
4.
Chromosome Res ; 30(2-3): 229-239, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35412169

RESUMEN

B chromosomes, also known as supernumerary chromosomes, are dispensable elements in the genome of many plants, animals, and fungi. Many B chromosomes have evolved one or more drive mechanisms to transmit themselves at a higher frequency than predicted by Mendelian genetics, and these mechanisms counteract the tendency of non-essential genetic elements to be lost over time. The frequency of Bs in a population results from a balance between their effect on host fitness and their transmission rate. Here, we will summarize the findings of the drive process of plant B chromosomes, focusing on maize and rye.


Asunto(s)
Cromosomas de las Plantas , Cromosomas , Animales , Cromosomas de las Plantas/genética , Zea mays/genética
5.
Dev Biol ; 486: 15-25, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35321809

RESUMEN

Typically, all cells of a given organism have the same set of chromosomes. However, there are exceptions to this rule, and in many organisms, the somatic cells and germ cells, various types of somatic cells or organs, or females and males, have different genomes. One of the sources of such differences is chromosome/DNA elimination/chromatin diminution that is a naturally programmed phenomenon. We describe chromosome/DNA elimination in various organisms and present the current hypotheses on its origin, mechanisms, significance, and consequences.


Asunto(s)
Cromatina , Cromosomas , ADN/genética , Femenino , Ingeniería Genética , Genoma/genética , Humanos , Masculino
6.
New Phytol ; 223(3): 1340-1352, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31038752

RESUMEN

B chromosomes (Bs) are supernumerary chromosomes, which are often preferentially inherited. When transmission rates of chromosomes are higher than 0.5, not obeying the Mendelian law of equal segregation, the resulting transmission advantage is collectively referred to as 'chromosome drive'. Here we analysed the drive mechanism of Aegilops speltoides Bs. The repeat AesTR-183 of A. speltoides Bs, which also can be detected on the Bs of Aegilops mutica and rye, was used to track Bs during pollen development. Nondisjunction of CENH3-positive, tubulin interacting B sister chromatids and an asymmetric spindle during first pollen grain mitosis are key for the accumulation process. A quantitative flow cytometric approach revealed that, independent of the number of Bs present in the mother plant, Bs accumulate in the generative nuclei to > 93%. Nine out of 11 tested (peri)centromeric repeats were shared by A and B chromosomes. Our findings provide new insights into the process of chromosome drive. Quantitative flow cytometry is a useful and reliable method to study the drive frequency of Bs. Nondisjunction and unequal spindle organization accompany during first pollen mitosis the drive of A. speltoides Bs. The prerequisites for the drive process seems to be common in Poaceae.


Asunto(s)
Aegilops/genética , Cromosomas de las Plantas/genética , No Disyunción Genética , Secuencia de Bases , Núcleo Celular/genética , Centrómero/metabolismo , Secuencia Conservada/genética , Mitosis/genética , Polen/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Secale/genética , Huso Acromático/metabolismo
7.
J Evol Biol ; 30(6): 1185-1194, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28402000

RESUMEN

Selfish genes that bias their own transmission during meiosis can spread rapidly in populations, even if they contribute negatively to the fitness of their host. Driving X chromosomes provide a clear example of this type of selfish propagation. These chromosomes have important evolutionary and ecological consequences, and can be found in a broad range of taxa including plants, mammals and insects. Here, we report a new case of X chromosome drive (X drive) in a widespread woodland fly, Drosophila testacea. We show that males carrying the driving X (SR males) sire 80-100% female offspring and possess a diagnostic X chromosome haplotype that is perfectly associated with the sex ratio distortion phenotype. We find that the majority of sons produced by SR males are sterile and appear to lack a Y chromosome, suggesting that meiotic defects involving the Y chromosome may underlie X drive in this species. Abnormalities in sperm cysts of SR males reflect that some spermatids are failing to develop properly, confirming that drive is acting during gametogenesis. By screening wild-caught flies using progeny sex ratios and a diagnostic marker, we demonstrate that the driving X is present in wild populations at a frequency of ~ 10% and that suppressors of drive are segregating in the same population. The testacea species group appears to be a hot spot for X drive, and D. testacea is a promising model to compare driving X chromosomes in closely related species, some of which may even be younger than the chromosomes themselves.


Asunto(s)
Drosophila/genética , Tecnología de Genética Dirigida , Razón de Masculinidad , Cromosoma X , Cromosoma Y , Animales , Femenino , Bosques , Masculino , Meiosis
8.
Evolution ; 69(8): 2005-17, 2015 08.
Artículo en Inglés | MEDLINE | ID: mdl-26102479

RESUMEN

Deciphering the genetic and developmental causes of the disproportionate rarity, inviability, and sterility of hybrid males, Haldane's rule, is important for understanding the evolution of reproductive isolation between species. Moreover, extrinsic and prezygotic factors can contribute to the magnitude of intrinsic isolation experienced between species with partial reproductive compatibility. Here, we use the nematodes Caenorhabditis briggsae and C. nigoni to quantify the sensitivity of hybrid male viability to extrinsic temperature and developmental timing, and test for a role of mito-nuclear incompatibility as a genetic cause. We demonstrate that hybrid male inviability manifests almost entirely as embryonic, not larval, arrest and is maximal at the lowest rearing temperatures, indicating an intrinsic-by-extrinsic interaction to hybrid inviability. Crosses using mitochondrial substitution strains that have reciprocally introgressed mitochondrial and nuclear genomes show that mito-nuclear incompatibility is not a dominant contributor to postzygotic isolation and does not drive Haldane's rule in this system. Crosses also reveal that competitive superiority of X-bearing sperm provides a novel means by which postmating prezygotic factors exacerbate the rarity of hybrid males. These findings highlight the important roles of gametic, developmental, and extrinsic factors in modulating the manifestation of Haldane's rule.


Asunto(s)
Caenorhabditis/embriología , Caenorhabditis/genética , Hibridación Genética , Aislamiento Reproductivo , Animales , Caenorhabditis/crecimiento & desarrollo , Núcleo Celular/genética , Embrión no Mamífero , Infertilidad/genética , Masculino , Mitocondrias/genética , Cromosomas Sexuales , Espermatozoides/fisiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA