Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 830
Filtrar
1.
Phytomedicine ; 133: 155894, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39089090

RESUMEN

BACKGROUND: According to recent research, treating heart failure (HF) by inhibiting G protein-coupled receptor kinase 2 (GRK2) to improve myocardial energy metabolism has been identified as a potential approach. Cinnamaldehyde (CIN), a phenylpropyl aldehyde compound, has been demonstrated to exhibit beneficial effects in cardiovascular diseases. However, whether CIN inhibits GRK2 to ameliorate myocardial energy metabolism in HF is still unclear. PURPOSE: This study examines the effects of CIN on GRK2 and myocardial energy metabolism to elucidate its underlying mechanism to treat HF. METHODS: The isoproterenol (ISO) induced HF model in vivo and in vitro were constructed using Sprague-Dawley (SD) rats and primary neonatal rat cardiomyocytes (NRCMs). Based on this, the effects of CIN on myocardial energy metabolism and GRK2 were investigated. Additionally, validation experiments were conducted after interfering and over-expressing GRK2 in ISO-induced NRCMs to verify the regulatory effect of CIN on GRK2. Furthermore, binding capacity between GRK2 and CIN was explored by Cellular Thermal Shift Assay (CETSA) and Microscale Thermophoresis (MST). RESULTS: In vivo and in vitro, CIN significantly improved HF as demonstrated by reversing abnormal changes in myocardial injury markers, inhibiting myocardial hypertrophy and decreasing myocardial fibrosis. Additionally, CIN promoted myocardial fatty acid metabolism to ameliorate myocardial energy metabolism disorder by activating AMPK/PGC-1α signaling pathway. Moreover, CIN reversed the inhibition of myocardial fatty acid metabolism and AMPK/PGC-1α signaling pathway by GRK2 over-expression in ISO-induced NRCMs. Meanwhile, CIN had no better impact on the stimulation of cardiac fatty acid metabolism and the AMPK/PGC-1α signaling pathway in ISO-induced NRCMs when GRK2 was disrupted. Noticeably, CETSA and MST confirmed that CIN binds to GRK2 directly. The binding of CIN and GRK2 promoted the ubiquitination degradation of GRK2 mediated by murine double mimute 2. CONCLUSION: This study demonstrates that CIN exerts a protective intervention in HF by targeting GRK2 and promoting its ubiquitination degradation to activate AMPK/PGC-1α signaling pathway, ultimately improving myocardial fatty acid metabolism.

2.
J Hum Reprod Sci ; 17(2): 102-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091438

RESUMEN

Background: Male sterility results from high testicular temperatures, which affect mammalian spermatogenesis. High testicular temperatures affect sperm motility, morphology and fertility according to their magnitude and duration. Aim: The aim of the current study is to examine the effects of heat-induced oxidative stress and cinnamaldehyde on Wistar rat testicular structure and function. Settings and Design: The rats used in this experiment were Wistar albino rats. Materials and Methods: This research has six animals per group. Male Wistar albino rats of 2.5-3 months old and 275-300 g. (I) control, (II) heat stress (HS) in a closed chamber at 41°C for 14 days and (III) HS with cinnamaldehyde (CA) 50 mg/kg body weight for 14 days. (IV) CA alone. After the study, the animals were euthanised, and test samples were taken for sperm count, morphology, haematoxylin and eosin stain for normal cellular morphology, antioxidants and DNA integrity assessments. Statistical Analysis Used: The data were analysed statistically using one- and two-way ANOVA tests for comparisons between groups. Results: The stress group had significantly lower sperm counts and poor sperm morphology. The stress group's antioxidant capacity is much lower than that of the control group. Animals under stress have fragmented DNA. Treatment with cinnamaldehyde increased overall antioxidant capacity and seminal parameters, and rats behaved most like controls. Conclusion: CA restores malondialdehyde levels, total antioxidant capacity, sperm characteristics and mitigates testicular damage in rats exposed to experimental HS.

3.
Int J Biol Macromol ; 278(Pt 2): 134862, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39163961

RESUMEN

Although cinnamaldehyde (CA) is an excellent antimicrobial agent, its application in the food industry was limited by its volatility and lack of antimicrobial persistence. Herein, aminated hollow mesoporous silica (NH2-HMSN) was prepared by selective etching and amino-modified. Subsequently, long-acting antibacterials with regulated release (NH2-HMSN@CA) were obtained by using NH2-HMSN as cinnamaldehyde carrier. NH2-HMSN@CA can effectively regulate the release of CA, and has 100 % inhibition effect on the growth of E. coli, S. aureus and C. acutatum. In addition, nanocellulose/NH2-HMSN@CA (CHA) coating film was prepared for postharvest preservation of loquat. The coating film effectively improved the storage quality and shelf life of loquat, and delayed the postharvest decay of loquat. The prepared coating film active packaging for long-term preservation is expected to provide a scheme for promoting sustainable preservation of postharvest loquat.

4.
J Appl Microbiol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122661

RESUMEN

AIMS: This study aimed to explore the effectiveness of dietary citronellol, thymol, and trans-cinnamaldehyde (CTC) essential oils blend on broilers` growth performance, immunity, intestinal microbial count, gut integrity, and resistance against Clostridium perfringens utilizing the necrotic enteritis (NE) challenge model. METHODS AND RESULTS: A total of 200 Ross 308 male broiler chicks received either a control diet or diet supplemented with three graded levels of CTC blend including 300, 600, and 900 mg of CTC blend/Kg diet and experimentally infected with C. perfringens strain at 23 days of age. Herein, dietary CTC blend fortifications significantly improved the broilers` growth performance, which was supported by upregulating the expression levels of MUC-2, occludin, and JAM-2 genes. Moreover, dietary CTC blend inclusion significantly enhanced the levels of blood phagocytic percentage and serum IgA, IgG, and MPO, and reduced the values of serum CRP, and NO at 5 days pre-infection, 10-, and 15 days post-infection (dpi) with C. perfringens. At 15 dpi, CTC blend inclusion significantly reduced the intestinal digesta pH, coliforms and C. perfringens loads, and the expression levels of genes related to C. perfringens virulence (cpe, cnaA, and nanI), proinflammatory cytokines (IL-1ß and TNF-α), and chemokines (CCL20), in addition to increasing the count of beneficial total Lactobacillus and total aerobic bacteria, and the expression levels of genes related to anti-inflammatory cytokines (IL-10) and chemokines (AvBD6, and AvBD612). CONCLUSION: Our results point to the growth-provoking, immunostimulant, antibacterial, anti-inflammatory, and antivirulence characteristics of the CTC blend, which improves the broilers' resistance to C. perfringens and ameliorates the negative impacts of NE.

5.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125968

RESUMEN

The use of cinnamaldehyde and Vitamin C can improve immunity and intestinal health. A two-way factorial design was employed to investigate the main and interactive effects of cinnamaldehyde and vitamin C on the growth, carcass, and intestinal health of broiler chickens. A total of 288 one-day-old female Arbor Acres broiler chicks were randomly distributed among four treatment groups, consisting of six replicate cages with 12 birds each. Four treatments were basal diet or control (CON), supplemental cinnamaldehyde (CA) 300 g/ton (g/t), vitamin C (VC) 300 g/t, and cinnamaldehyde 300 g/t, and vitamin C 300 g/t (CA + VC), respectively. The results showed that supplemental CA did not affect the growth performance or slaughter performance of broilers at 21 days (d), 42 days (d), and 1-42 days (d); however, it could improve intestinal barrier function at 42 d of age and reduce the mRNA expression of inflammatory factors in the intestine at 21 d and 42 d of age. Supplemental VC showed a trend towards increasing body weight gain (BWG) at 21 d (p = 0.094), increased breast muscle rate (at 21-d 5.33%, p < 0.05 and at 42-d 7.09%, p = 0.097), and decreased the abdominal fat (23.43%, p < 0.05) and drip loss (20.68%, p < 0.05) at 42-d. Moreover, VC improves intestinal morphology and intestinal barrier function and maintains a balanced immune response. The blend of CA and VC significantly upregulated the mRNA expression of myeloid differentiation factor 88 (MyD-88) in the intestine at 21 d of age, the mRNA expression of catalase (CAT), Occludin, Claudin-1, Mucin-2, nuclear factor-kappa B (NF-κB) and toll-like receptor 4 (TLR-4) in the intestine at 42 d of age (p < 0.01), and downregulated the mRNA expression of interleukin 10 (IL-10), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α) in the intestine at 21-d and 42-d of age, and interleukin-1 beta (IL-1ß) mRNA in intestine at 42 d of age (p < 0.01). This study suggested that the combination of CA and VC had the potential to regulate intestinal health and result in better carcass character of broilers.


Asunto(s)
Acroleína , Ácido Ascórbico , Pollos , Intestinos , Animales , Acroleína/análogos & derivados , Acroleína/farmacología , Ácido Ascórbico/farmacología , Intestinos/efectos de los fármacos , Femenino , Suplementos Dietéticos , Alimentación Animal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos
6.
Microb Pathog ; : 106877, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173853

RESUMEN

BACKGROUND: Candida albicans is an opportunistic pathogen commonly found in human mucous membranes. In light of the escalating challenge posed by antibiotic resistance of C. albicans strains worldwide, it is an urgently necessary to explore alternative therapeutic options. OBJECTIVE: This study aims to assess the efficacy of two Cinnamaldehyde derivatives, 2-Cl Cinnamaldehyde (2-Cl CA) and 4-Cl Cinnamaldehyde (4-Cl CA), against C. albicans through both in vitro experiments and in vivo murine models and to evaluate their potential as new drug candidates for treating C. albicans. METHODS AND RESULTS: The minimum inhibitory concentrations (MICs) of Cinnamaldehyde 2-Cl and 4-Cl benzene ring derivatives against C. albicans were 25 µg/mL. Time-killing experiments revealed that both Cinnamaldehyde derivatives exhibited fungicidal activity against C. albicans at concentrations of 5 MIC and 10 MIC. In the checkerboard experiment, 4-Cl CA did not show any antagonistic effect when combined with first-line antifungal drugs. Instead, it exhibited additive effects in combination with nystatin. Both 2-Cl and 4-Cl CA demonstrated inhibitory activity against C. albicans biofilm formation, especially at 8 MIC and 16 MIC concentrations. In C. albicans biofilm eradication experiments, although high drug concentrations of 2-Cl and 4-Cl CA were unable to eradicate the biofilm completely, they were still effective in killing C. albicans cells within the biofilm. Moreover, sub-inhibitory concentrations of 4-Cl CA (ranging from 5 to 20 µg/mL) significantly inhibited cell aggregation and hyphal formation. Furthermore, 4-Cl CA effectively inhibited intracellular C. albicans infection in macrophages. Lastly, the effectiveness of 4-Cl CA was evaluated in a mouse model of hematogenous disseminated candidiasis caused by C. albicans, which revealed that 4-Cl CA significantly reduced fungal burden and improved mouse survival compared to the untreated controls. CONCLUSION: The 4-Cl CA exhibited inhibitory effects against C. albicans through both in vivo and in vitro models, demonstrating its therapeutic potential as a promising new drug candidate for treating drug-resistant candidiasis albicans.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39066966

RESUMEN

PURPOSE: Colistin is used as a last resort antibiotic against infections caused by multidrug-resistant gram-negative bacteria, especially carbapenem-resistant bacteria. However, colistin-resistance in clinical isolates is becoming more prevalent. Cinnamaldehyde and baicalin, which are the major active constituents of Cinnamomum and Scutellaria, have been reported to exhibit antibacterial properties. The aim of this study was to evaluate the capacity of cinnamaldehyde and baicalin to enhance the antibiotic activity of colistin in Enterobacterales and Acinetobacter baumannii strains. METHODS: The MICs of colistin were determined with and without fixed concentrations of cinnamaldehyde and baicalin by the broth microdilution method. The FIC indices were also calculated. In addition, time-kill assays were performed with colistin alone and in combination with cinnamaldehyde and baicalin to determine the bactericidal action of the combinations. Similarly, the effects of L-arginine, L-glutamic acid and sucrose on the MICs of colistin combined with cinnamaldehyde and baicalin were studied to evaluate the possible effects of these compounds on the charge of the bacterial cell- wall. RESULTS: At nontoxic concentrations, cinnamaldehyde and baicalin partially or fully reversed resistance to colistin in Enterobacterales and A. baumannii. The combinations of the two compounds with colistin had bactericidal or synergistic effects on the most resistant strains. The ability of these agents to reverse colistin resistance could be associated with bacterial cell wall damage and increased permeability. CONCLUSION: Cinnamaldehyde and baicalin are good adjuvants for the antibiotic colistin against Enterobacterales- and A. baumannii-resistant strains.

8.
J Pharmacol Sci ; 156(1): 1-8, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068030

RESUMEN

Accumulation of advanced glycation end-products (AGEs) in the brain contributes significantly to cognitive impairment in patients with diabetes by disrupting the post-mitotic state of neuronal cells, thereby triggering ectopic cell cycle re-entry (CCR) and subsequent neuronal apoptosis. Cinnamaldehyde (CINA), a potential mitigator of cognitive impairment due to its blood glucose-lowering properties, warrants exploration for its role in counteracting diabetes-related neurological damage. In this study, we examined the neuroprotective effect of CINA on AGE-damaged SH-SY5Y human neuroblastoma cells differentiated in vitro. We investigated the impact of CINA on AGE-induced neuronal CCR and apoptosis, finding that it substantially suppressed aberrant DNA replication, precluded cells from entering the mitotic preparatory phase, and diminished apoptosis. Additionally, CINA inhibited the expression of eIF4E without altering S6K1 phosphorylation. These findings indicate that CINA safeguards neuronal cells from AGE-related damage by preventing abnormal CCR, preserving the post-mitotic state of neuronal cells, and reducing AGE-induced apoptosis, potentially through the inhibition of eIF4E-controlled cell proliferation. Our results highlight the prospective utility of CINA in managing diabetic neuropathy.


Asunto(s)
Acroleína , Apoptosis , Ciclo Celular , Productos Finales de Glicación Avanzada , Neuronas , Fármacos Neuroprotectores , Acroleína/análogos & derivados , Acroleína/farmacología , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Apoptosis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ciclo Celular/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Línea Celular Tumoral , Neuropatías Diabéticas/prevención & control , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/tratamiento farmacológico , Replicación del ADN/efectos de los fármacos , Fosforilación/efectos de los fármacos
9.
mLife ; 3(2): 291-306, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38948140

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a current global public health problem due to its increasing resistance to the most recent antibiotic therapies. One critical approach is to develop ways to revitalize existing antibiotics. Here, we show that the phytogenic compound cinnamaldehyde (CIN) and ß-lactam antibiotic combinations can functionally synergize and resensitize clinical MRSA isolates to ß-lactam therapy and inhibit MRSA biofilm formation. Mechanistic studies indicated that the CIN potentiation effect on ß-lactams was primarily the result of inhibition of the mecA expression by targeting the staphylococcal accessory regulator sarA. CIN alone or in combination with ß-lactams decreased sarA gene expression and increased SarA protein phosphorylation that impaired SarA binding to the mecA promoter element and downregulated virulence genes such as those encoding biofilm, α-hemolysin, and adhesin. Perturbation of SarA-mecA binding thus interfered with PBP2a biosynthesis and this decreased MRSA resistance to ß-lactams. Furthermore, CIN fully restored the anti-MRSA activities of ß-lactam antibiotics in vivo in murine models of bacteremia and biofilm infections. Together, our results indicated that CIN acts as a ß-lactam adjuvant and can be applied as an alternative therapy to combat multidrug-resistant MRSA infections.

10.
Front Microbiol ; 15: 1416628, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989015

RESUMEN

Background: Multidrug-resistant bacteria and the shortage of new antibiotics constitute a serious health problem. This problem has led to increased interest in the use of bacteriophages, which have great potential as antimicrobial agents but also carry the risk of inducing resistance. The objective of the present study was to minimize the development of phage resistance in Klebsiella pneumoniae strains by inhibiting quorum sensing (QS) and thus demonstrate the role of QS in regulating defense mechanisms. Results: Cinnamaldehyde (CAD) was added to K. pneumoniae cultures to inhibit QS and thus demonstrate the role of the signaling system in regulating the anti-phage defense mechanism. The QS inhibitory activity of CAD in K. pneumoniae was confirmed by a reduction in the quantitative expression of the lsrB gene (AI-2 pathway) and by proteomic analysis. The infection assays showed that the phage was able to infect a previously resistant K. pneumoniae strain in the cultures to which CAD was added. The results were confirmed using proteomic analysis. Thus, anti-phage defense-related proteins from different systems, such as cyclic oligonucleotide-based bacterial anti-phage signaling systems (CBASS), restriction-modification (R-M) systems, clustered regularly interspaced short palindromic repeat-Cas (CRISPR-Cas) system, and bacteriophage control infection (BCI), were present in the cultures with phage but not in the cultures with phage and CAD. When the QS and anti-phage defense systems were inhibited by the combined treatment, proteins related to phage infection and proliferation, such as the tail fiber protein, the cell division protein DamX, and the outer membrane channel protein TolC, were detected. Conclusion: Inhibition of QS reduces phage resistance in K. pneumoniae, resulting in the infection of a previously resistant strain by phage, with a significant increase in phage proliferation and a significant reduction in bacterial growth. QS inhibitors could be considered for therapeutic application by including them in phage cocktails or in phage-antibiotic combinations to enhance synergistic effects and reduce the emergence of antimicrobial resistance.

11.
Mol Med Rep ; 30(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38994757

RESUMEN

Cancer incidence is increasing globally, presenting a growing public health challenge. While anticancer drugs are crucial in treatment, their limitations, including poor targeting ability and high toxicity, hinder effectiveness and patient safety, requiring relentless scientific research and technological advancements to develop safer and more effective therapeutics. Cinnamaldehyde (CA), an active compound derived from the natural plant cinnamon, has garnered attention in pharmacological research due to its diverse therapeutic applications. CA has potential in treating a wide array of conditions, including cardiovascular diseases, diabetes, inflammatory disorders and various forms of cancer. The present review comprehensively summarizes the physicochemical and pharmacokinetic profiles of CA, and delves into the latest advancements in elucidating its potential mechanisms and targets across various cancer types. CA and its derivatives have antitumor effects, which encompass inhibiting cell proliferation, arresting the cell cycle, inducing apoptosis, limiting cell migration and invasion, and suppressing angiogenesis. Additionally, the present review explores targeted formulations of CA, laying a scientific foundation for further exploration of its implications in cancer prevention and treatment strategies.


Asunto(s)
Acroleína , Antineoplásicos , Neoplasias , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacología , Acroleína/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
12.
Phytopathology ; 114(7): 1502-1514, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023506

RESUMEN

Late blight, caused by the notorious pathogen Phytophthora infestans, poses a significant threat to potato (Solanum tuberosum) crops worldwide, impacting their quality as well as yield. Here, we aimed to investigate the potential use of cinnamaldehyde, carvacrol, and eugenol as control agents against P. infestans and to elucidate their underlying mechanisms of action. To determine the pathogen-inhibiting concentrations of these three plant essential oils (PEOs), a comprehensive evaluation of their effects using gradient dilution, mycelial growth rate, and spore germination methods was carried out. Cinnamaldehyde, carvacrol, and eugenol were capable of significantly inhibiting P. infestans by hindering its mycelial radial growth, zoospore release, and sporangium germination; the median effective inhibitory concentration of the three PEOs was 23.87, 8.66, and 89.65 µl/liter, respectively. Scanning electron microscopy revealed that PEOs caused the irreversible deformation of P. infestans, resulting in hyphal shrinkage, distortion, and breakage. Moreover, propidium iodide staining and extracellular conductivity measurements demonstrated that all three PEOs significantly impaired the integrity and permeability of the pathogen's cell membrane in a time- and dose-dependent manner. In vivo experiments confirmed the dose-dependent efficacy of PEOs in reducing the lesion diameter of potato late blight. Altogether, these findings provide valuable insight into the antifungal mechanisms of PEOs vis-à-vis late blight-causing P. infestans. By utilizing the inherent capabilities of these natural compounds, we could effectively limit the harmful impacts of late blight on potato crops, thereby enhancing agricultural practices and ensuring the resilience of global potato food production.


Asunto(s)
Cimenos , Eugenol , Aceites Volátiles , Phytophthora infestans , Enfermedades de las Plantas , Solanum tuberosum , Phytophthora infestans/efectos de los fármacos , Phytophthora infestans/fisiología , Solanum tuberosum/microbiología , Aceites Volátiles/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Eugenol/farmacología , Cimenos/farmacología , Monoterpenos/farmacología , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Aceites de Plantas/farmacología , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Esporas/efectos de los fármacos , Esporas/fisiología , Acroleína/análogos & derivados
13.
Int J Mol Sci ; 25(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39000370

RESUMEN

Osteoarthritis (OA) is a degenerative joint disorder that is distinguished by inflammation and chronic cartilage damage. Interleukin-1ß (IL-1ß) is a proinflammatory cytokine that plays an important role in the catabolic processes that underlie the pathogenesis of OA. In this study, we investigate the therapeutic efficacy of exosomes derived from untreated bone-marrow-derived mesenchymal stem cells (BMMSC-Exo) and those treated with cinnamaldehyde (BMMSC-CA-Exo) for preventing the in vitro catabolic effects of IL-1ß on chondrocytes. We stimulated chondrocytes with IL-1ß to mimic the inflammatory microenvironment of OA. We then treated these chondrocytes with BMMSC-Exo and BMMSC-CA-Exo isolated via an aqueous two-phase system and evaluated their effects on the key cellular processes using molecular techniques. Our findings revealed that treatment with BMMSC-Exo reduces the catabolic effects of IL-1ß on chondrocytes and alleviates inflammation. However, further studies directly comparing treatments with BMMSC-Exo and BMMSC-CA-Exo are needed to determine if CA preconditioning can provide additional anti-inflammatory benefits to the exosomes beyond those of CA preconditioning or treatment with regular BMMSC-Exo. Through a comprehensive molecular analysis, we elucidated the regulatory mechanisms underlying this protective effect. We found a significant downregulation of proinflammatory signaling pathways in exosome-infected chondrocytes, suggesting the potential modulation of the NF-κB and MAPK signaling cascades. Furthermore, our study identified the molecular cargo of BMMSC-Exo and BMMSC-CA-Exo, determining the key molecules, such as anti-inflammatory cytokines and cartilage-associated factors, that may contribute to their acquisition of chondroprotective properties. In summary, BMMSC-Exo and BMMSC-CA-Exo exhibit the potential as therapeutic agents for OA by antagonizing the in vitro catabolic effects of IL-1ß on chondrocytes. The regulation of the proinflammatory signaling pathways and bioactive molecules delivered by the exosomes suggests a multifaceted mechanism of action. These findings highlight the need for further investigation into exosome-based therapies for OA and joint-related diseases.


Asunto(s)
Acroleína , Condrocitos , Exosomas , Inflamación , Interleucina-1beta , Células Madre Mesenquimatosas , Transducción de Señal , Exosomas/metabolismo , Interleucina-1beta/metabolismo , Acroleína/análogos & derivados , Acroleína/farmacología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Inflamación/metabolismo , Animales , Osteoartritis/metabolismo , Osteoartritis/tratamiento farmacológico , Humanos , Células Cultivadas
14.
J Endod ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019323

RESUMEN

INTRODUCTION: The aim of this study was to test the hypothesis that a combination of D-amino acids (DAAs) and trans-cinnamaldehyde (TC) demonstrates superior antibiofilm activity to calcium hydroxide (CH) and untreated controls. METHODS: In this 3-part in vitro study, the concentration of DAAs (D-methionine, D-leucine, D-tyrosine, and D-tryptophan) that would significantly decrease Enterococcus faecalis and Actinomyces naeslundii biofilm biomass was first determined. Then, the effect of TC + selected DAAs on polymicrobial biofilms was characterized by quantifying the biomass and biofilm viability. Finally, the antibiofilm effects of TC + DAA was compared with CH and untreated controls by (i) determining bacterial viability and (ii) quantifying biofilm matrix composition using selective fluorescence-binding analysis. Statistical analysis was performed using one-way ANOVA and appropriate multiple comparisons test, with P < .05 considered as statistically significant. RESULTS: TC (0.06%) + D-tyrosine (1 mM) + D-tryptophan (25 mM) significantly reduced the biomass and biofilm viability compared to the control (P < .05). While no significant difference was observed between TC + DAA and CH in the cultivable bacterial counts (P > .05), confocal microscopy demonstrated a significantly greater percentage of dead bacteria in TC + DAA-treated biofilms compared to CH and the control (P < .05). TC + DAA significantly decreased the biovolume and all the examined components of the biofilm matrix quantity compared to the control, while CH significantly reduced only the exopolysaccharide quantity (P < .05). CONCLUSION: The combination of TC + D-tyrosine + D-tryptophan demonstrated superior antibiofilm activity (biofilm bacterial killing and reduction of matrix quantity) to CH and has potential to be developed as an intracanal medicament.

15.
J Proteome Res ; 23(8): 3682-3695, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39037832

RESUMEN

Dental caries is a chronic oral infectious disease, and Streptococcus mutans (S. mutans) plays an important role in the formation of dental caries. Trans-cinnamaldehyde (CA) exhibits broad-spectrum antibacterial activity; however, its target and mechanism of action of CA on S. mutans needs to be further explored. In this study, it was verified that CA could inhibit the growth and biofilm formation of S. mutans. Further proteomic analysis identified 33, 55, and 78 differentially expressed proteins (DEPs) in S. mutans treated with CA for 1, 2, and 4 h, respectively. Bioinformatics analysis showed that CA interfered with carbohydrate metabolism, glycolysis, pyruvate metabolism, and the TCA cycle, as well as amino acid metabolism of S. mutans. Protein interactions suggested that pyruvate dehydrogenase (PDH) plays an important role in the antibacterial effect of CA. Moreover, the upstream and downstream pathways related to PDH were verified by various assays, and the results proved that CA not only suppressed the glucose and sucrose consumption and inhibited glucosyltransferase (GTF) and lactate dehydrogenase (LDH) activities but also decreased the ATP production. Interestingly, the protein interaction, qRT-PCR, and molecular docking analysis showed that PDH might be the target of CA to fight S. mutans. In summary, the study shows that CA interferes with the carbohydrate metabolism of bacteria by inhibiting glycolysis and the tricarboxylic acid (TCA) cycle via binding to PDH, which verifies that PDH is a potential target for the development of new drugs against S. mutans.


Asunto(s)
Acroleína , Metabolismo de los Hidratos de Carbono , Simulación del Acoplamiento Molecular , Complejo Piruvato Deshidrogenasa , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/genética , Streptococcus mutans/enzimología , Acroleína/farmacología , Acroleína/análogos & derivados , Acroleína/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Complejo Piruvato Deshidrogenasa/antagonistas & inhibidores , Antibacterianos/farmacología , Glucólisis/efectos de los fármacos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteómica/métodos , Caries Dental/microbiología , Ciclo del Ácido Cítrico/efectos de los fármacos , Adenosina Trifosfato/metabolismo
16.
Foods ; 13(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998538

RESUMEN

Many studies have suggested that the encapsulation of natural antimicrobials increases their antimicrobial activity. In this sense, the objective was to study the inactivation of microorganisms with encapsulated cinnamaldehyde and vanillin (E-CIN and E-VN), in comparison with the unencapsulated antimicrobials (CIN and VN) in protein beverages. Additionally, the microbial response was quantified through mathematical modeling. Cinnamaldehyde and vanillin were encapsulated using whey protein concentrate (WPC) as the encapsulating agent. The effectiveness at inactivating Escherichia coli, Listeria innocua, and Saccharomyces cerevisiae was evaluated in a protein-apple juice beverage during storage (4 °C). Encapsulation increased the effectiveness of cinnamaldehyde, reaching reductions of 1.8, 3.3, and 5.3 log CFU/mL in E. coli, L. innocua, and S. cerevisiae, respectively, while vanillin encapsulation had little effect on antimicrobial activity, reducing by 0.5, 1.4, and 1.1 log cycles, respectively. The combined treatments (E-CIN + E-VN) had an additive effect in reducing E. coli and a synergistic effect against S. cerevisiae. The Gompertz model was more versatile and better described the biphasic curves, whereas the Weibull model complemented the information regarding the spectrum of resistances within the microbial population. In conclusion, the encapsulation of cinnamaldehyde with WPC enhanced its activity. However, further studies are necessary to improve the antimicrobial activity of vanillin.

17.
Turkiye Parazitol Derg ; 48(2): 72-76, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38958374

RESUMEN

Objective: Trichomonas vaginalis is a sexually transmitted protozoan parasite that usually causes infections in women. Metronidazole is used as the first choice in the treatment of this parasitic disease, but there is a need for new drugs since 1980's with increasing numbers of reported resistance. In this study, it was aimed to determine the antitrichomonal activity of the major components of Cinnamomum zeylanicum (cinnamon) and Thymus vulgaris (thyme) essential oils, cinnamaldehyde, carvacrol and thymol against metronidazole resistant and susceptible T. vaginalis strains, and to determine their interaction with metronidazole by checkerboard method. Methods: Cinnamaldehyde, carvacrol, thymol and metronidazole were obtained commercially. Two clinical isolates and one metronidazole resistant T. vaginalis reference strain were used in the study. MIC50 and MLC values of essential oil components and metronidazole were determined by broth microdilution method. The combinations of essential oil components with metronidazole were determined by the checkerboard method. Results: According to in vitro activity tests, cinnamaldehyde was determined to be most effective essential oil component. Clinical isolates were susceptible to metronidazole. In combination study, metronidazole showed synergy with cinnamaldehyde and carvacrol, and partial synergy with thymol. Conclusion: It was determined that cinnamaldehyde, carvacrol and thymol, which are known to have high antimicrobial activity, also have strong activity against T. vaginalis isolates and show a synergistic interaction with metronidazole. The use of metronidazole at lower doses in the synergistic interaction may contribute to the literature in terms of reducing drug side effects, creating a versatile antimicrobial target, and reducing the rate of resistance development.


Asunto(s)
Acroleína , Cimenos , Sinergismo Farmacológico , Metronidazol , Monoterpenos , Aceites Volátiles , Timol , Thymus (Planta) , Trichomonas vaginalis , Acroleína/análogos & derivados , Acroleína/farmacología , Timol/farmacología , Cimenos/farmacología , Metronidazol/farmacología , Humanos , Aceites Volátiles/farmacología , Thymus (Planta)/química , Trichomonas vaginalis/efectos de los fármacos , Monoterpenos/farmacología , Femenino , Cinnamomum zeylanicum/química , Antiprotozoarios/farmacología , Pruebas de Sensibilidad Microbiana , Resistencia a Medicamentos
18.
Phytomedicine ; 132: 155845, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964154

RESUMEN

BACKGROUND: Compounds of natural origin are potent source of drugs with unique mechanisms of action. Among phytochemicals, trans-cinnamaldehyde (t-CA) exhibits a wide range of biological activity, thus has been used for centuries to fight bacterial and fungal infections. However, the molecular basis of these properties has not been fully covered. Considering that difficult-to-control infections are becoming a rising global problem, there is a need to elucidate the molecular potential of t-CA. PURPOSE: To evaluate the antibacterial activity of t-CA against Shiga-toxigenic E. coli strains and elucidate its mechanism of action based on the inhibition of the virulence factor expression. METHODS: The antimicrobial potential of t-CA was assessed with two-fold microdilution and time-kill assays. Further evaluation included bioluminescence suppression assays, quantification of reactive oxygen species (ROS) and assessment of NAD+/NADH ratios. Morphological changes post t-CA exposure were examined using transmission electron microscopy. RNA sequencing and radiolabeling of nucleotides elucidated the metabolic alterations induced by t-CA. Toxin expression level was monitored through the application of fusion proteins, monitoring of bacteriophage development, and fluorescence microscopy studies. Lastly, the therapeutic efficacy in vivo was assessed using Galleria mellonella infection model. RESULTS: A comprehensive study of t-CA's bioactivity showed unique properties affecting bacterial metabolism and morphology, resulting in significant bacterial cell deformation and effective virulence inhibition. Elucidation of the underlying mechanisms indicated that t-CA activates the global regulatory system, the stringent response, manifested by its alarmone, (p)ppGpp, overproduction mediated by the RelA enzyme, thereby inhibiting bacterial proliferation. Intriguingly, t-CA effectively downregulates Shiga toxin gene expression via alarmone molecules, indicating its potential for therapeutic effect. In vivo validation demonstrated a significant improvement in larval survival rates post- t-CA treatment with 50 mg/kg (p < 0.05), akin to the efficacy observed with azithromycin, thus indicating its effectiveness against EHEC infections (p < 0.05). CONCLUSIONS: Collectively, these results reveal the robust antibacterial capabilities of t-CA, warranting its further exploration as a viable anti-infective agent.


Asunto(s)
Acroleína , Antibacterianos , Escherichia coli Enterohemorrágica , Pruebas de Sensibilidad Microbiana , Acroleína/análogos & derivados , Acroleína/farmacología , Antibacterianos/farmacología , Escherichia coli Enterohemorrágica/efectos de los fármacos , Animales , Especies Reactivas de Oxígeno/metabolismo , Factores de Virulencia
19.
Int J Biol Macromol ; 277(Pt 2): 133908, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39019362

RESUMEN

Developing bifunctional innovative food packaging for maintaining and monitoring food freshness is crucial for food safety. Here, we prepared tannic acid cinnamaldehyde nanoemulsions through self-assembly and ionic cross-linking between the natural emulsifiers tannic acid and cinnamaldehyde, and were incorporated into chitosan as a protective outer layer. Sodium alginate anchored with alizarin was employed as the sensing inner layer. A pH-sensitive bilayer film integrating real-time monitoring and maintenance of food fresh food freshness was designed using layer-by-layer assembly (LBL) technology. The prepared bilayer film exhibited 100 % UV protection, >99 % antimicrobial effect, and 94.86 % and 97.91 % clearance rates for DPPH and ABTS free radicals, respectively. In addition, the bilayer film exhibited high biosafety and sensitive, reversible, and rapid response to pH/NH3. Shrimp preservation experiments showed that the smart bilayer film could effectively slow down the growth of microorganisms on the surface of shrimp, extend the freshness period of shrimp, and could monitor the freshness of shrimp in real-time through color changes. In conclusion, the prepared SL-CCT bilayer film has excellent potential for food preservation and freshness monitoring, providing a new perspective for design and development of multifunctional smart food packaging films.


Asunto(s)
Alginatos , Quitosano , Embalaje de Alimentos , Quitosano/química , Alginatos/química , Embalaje de Alimentos/métodos , Animales , Penaeidae/química , Taninos/química , Conservación de Alimentos/métodos , Concentración de Iones de Hidrógeno , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Picratos/química , Compuestos de Bifenilo/química , Rayos Ultravioleta , Ácidos Sulfónicos , Benzotiazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA