Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(37): e2321032121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39226341

RESUMEN

Finding optimal bipartite matchings-e.g., matching medical students to hospitals for residency, items to buyers in an auction, or papers to reviewers for peer review-is a fundamental combinatorial optimization problem. We found a distributed algorithm for computing matchings by studying the development of the neuromuscular circuit. The neuromuscular circuit can be viewed as a bipartite graph formed between motor neurons and muscle fibers. In newborn animals, neurons and fibers are densely connected, but after development, each fiber is typically matched (i.e., connected) to exactly one neuron. We cast this synaptic pruning process as a distributed matching (or assignment) algorithm, where motor neurons "compete" with each other to "win" muscle fibers. We show that this algorithm is simple to implement, theoretically sound, and effective in practice when evaluated on real-world bipartite matching problems. Thus, insights from the development of neural circuits can inform the design of algorithms for fundamental computational problems.


Asunto(s)
Algoritmos , Neuronas Motoras , Neuronas Motoras/fisiología , Animales , Humanos , Redes Neurales de la Computación , Modelos Neurológicos
2.
J Comp Neurol ; 532(7): e25657, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987912

RESUMEN

The tectofugal pathway is a highly conserved visual pathway in all amniotes. In birds and mammals, retinorecipient neurons located in the midbrain roof (optic tectum/superior colliculus) are the source of ascending projections to thalamic relays (nucleus rotundus/caudal pulvinar), which in turn project to specific pallial regions (visual dorsal ventricular ridge [vDVR]/temporal cortex) organized according to a columnar recurrent arrangement of interlaminar circuits. Whether or to which extent these striking hodological correspondences arise from comparable developmental processes is at present an open question, mainly due to the scarcity of data about the ontogeny of the avian tectofugal system. Most of the previous developmental studies of this system in birds have focused on the establishment of the retino-tecto-thalamic connectivity, overlooking the development of the thalamo-pallial-intrapallial circuit. In this work, we studied the latter in chicken embryos by means of immunohistochemical assays and precise ex vivo crystalline injections of biocytin and DiI. We found that the layered organization of the vDVR as well as the system of homotopic reciprocal connections between vDVR layers were present as early as E8. A highly organized thalamo-vDVR projection was also present at this stage. Our immunohistochemical assays suggest that both systems of projections emerge simultaneously even earlier. Combined with previous findings, these results reveal that, in striking contrast with mammals, the peripheral and central stages of the avian tectofugal pathway develop along different timelines, with a tecto-thalamo-intrapallial organization arising before and possibly independently of the retino-isthmo-tectal circuit.


Asunto(s)
Pollos , Colículos Superiores , Tálamo , Vías Visuales , Animales , Vías Visuales/crecimiento & desarrollo , Embrión de Pollo , Tálamo/crecimiento & desarrollo , Colículos Superiores/crecimiento & desarrollo
3.
Neurosci Biobehav Rev ; 156: 105476, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029609

RESUMEN

Understanding perturbations in synaptic function between health and disease states is crucial to the treatment of neuropsychiatric illness. While genome-wide association studies have identified several genetic loci implicated in synaptic dysfunction in disorders such as autism and schizophrenia, many have not been rigorously characterized. Here, we highlight immunoglobulin superfamily member 9b (IgSF9b), a cell adhesion molecule thought to localize exclusively to inhibitory synapses in the brain. While both pre-clinical and clinical studies suggest its association with psychiatric diseases, our understanding of IgSF9b in synaptic maintenance, neural circuits, and behavioral phenotypes remains rudimentary. Moreover, these functions wield undiscovered influences on neurodevelopment. This review evaluates current literature and publicly available gene expression databases to explore the implications of IgSF9b dysfunction in rodents and humans. Through a focused analysis of one high-risk gene locus, we identify areas requiring further investigation and unearth clues related to broader mechanisms contributing to the synaptic etiology of psychiatric disorders.


Asunto(s)
Moléculas de Adhesión Celular , Trastornos Mentales , Humanos , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Estudio de Asociación del Genoma Completo , Trastornos Mentales/genética , Sinapsis/metabolismo
4.
Front Neurosci ; 17: 1210199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37592948

RESUMEN

Calcium imaging is commonly used to visualize neural activity in vivo. In particular, mesoscale calcium imaging provides large fields of view, allowing for the simultaneous interrogation of neuron ensembles across the neuraxis. In the field of Developmental Neuroscience, mesoscopic imaging has recently yielded intriguing results that have shed new light on the ontogenesis of neural circuits from the first stages of life. We summarize here the technical approaches, basic notions for data analysis and the main findings provided by this technique in the last few years, with a focus on brain development in mouse models. As new tools develop to optimize calcium imaging in vivo, basic principles of neural development should be revised from a mesoscale perspective, that is, taking into account widespread activation of neuronal ensembles across the brain. In the future, combining mesoscale imaging of the dorsal surface of the brain with imaging of deep structures would ensure a more complete understanding of the construction of circuits. Moreover, the combination of mesoscale calcium imaging with other tools, like electrophysiology or high-resolution microscopy, will make up for the spatial and temporal limitations of this technique.

5.
Cell Rep ; 42(8): 112985, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590135

RESUMEN

The balance of contralateral and ipsilateral retinogeniculate projections is critical for binocular vision, but the transcriptional programs regulating this process remain ill defined. Here we show that the Pou class homeobox protein POU3F1 is expressed in nascent mouse contralateral retinal ganglion cells (cRGCs) but not ipsilateral RGCs (iRGCs). Upon Pou3f1 inactivation, the proportion of cRGCs is reduced in favor of iRGCs, leading to abnormal projection ratios at the optic chiasm. Conversely, misexpression of Pou3f1 in progenitors increases the production of cRGCs. Using CUT&RUN and RNA sequencing in gain- and loss-of-function assays, we demonstrate that POU3F1 regulates expression of several key members of the cRGC gene regulatory network. Finally, we report that POU3F1 is sufficient to induce RGC-like cell production, even in late-stage retinal progenitors of Atoh7 knockout mice. This work uncovers POU3F1 as a regulator of the cRGC transcriptional program, opening possibilities for optic nerve regenerative therapies.

6.
Autophagy ; 19(7): 1899-1900, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37243688

RESUMEN

Macroautophagy/autophagy is involved in many aspects of human development including the formation of neuronal circuits. A recent study from Dutta et al. found that the recruitment of Egfr (Epidermal growth factor receptor) to synapses suppresses autophagic degradation of presynaptic proteins, a requirement for proper neuronal circuit development. The findings suggest that Egfr inactivation during a distinct critical interval in late development results in increased levels of autophagy in the brain and decreased neuronal circuit development. Furthermore, the presence of brp (bruchpilot) in the synapse is critical for proper neuronal functioning over this same period. Dutta and colleagues found that increased autophagy due to Egfr inactivation results in decreased brp levels and, therefore, reduced neuronal connectivity. Through live cell imaging, it was determined that only the synaptic branches that accumulate both Egfr and brp are stabilized, allowing for the persistence of active zones, further supporting the importance of both Egfr and brp in the brain. While Dutta and colleagues collected these data based on studies conducted on Drosophila brains, the findings provide great insight as to how these different proteins may be implicated in human neurology.


Asunto(s)
Autofagia , Proteínas de Drosophila , Animales , Humanos , Sinapsis/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo
7.
Front Cell Dev Biol ; 11: 1100887, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36711039

RESUMEN

Motor neurons (MNs) are one of the most important components of Central Pattern Generators (CPG) in vertebrates (Brown, Proceedings of The Royal Society B: Biological Sciences (The Royal Society), 1911, 84(572), 308-319). However, it is unclear how the neural activities of these components develop during their embryogenesis. Our previous study revealed that in Ciona robusta (Ciona intestinalis type A), a model organism with a simple neural circuit, a single pair of MNs (MN2L/MN2R) was determining the rhythm of its spontaneous early motor behavior (developmental stage St.22-24). MN2s are known to be one of the main components of Ciona CPG, though the neural activities of MN2s in the later larval period (St.25-) were not yet investigated. In this study, we investigated the neural activities of MN2s during their later stages and how they are related to Ciona's swimming CPG. Long-term simultaneous Ca2+ imaging of both MN2s with GCaMP6s/f (St.22-34) revealed that MN2s continued to determine the rhythm of motor behavior even in their later larval stages. Their activities were classified into seven phases (I-VII) depending on the interval and the synchronicity of MN2L and MN2R Ca2+ transients. Initially, each MN2 oscillates sporadically (I). As they develop into swimming larvae, they gradually oscillate at a constant interval (II-III), then start to synchronize (IV) and fully synchronize (V). Intervals become longer (VI) and sporadic again during the tail aggression period (VII). Interestingly, 76% of the embryos started to oscillate from MN2R. In addition, independent photostimulations on left and right MN2s were conducted. This is the first report of the live imaging of neural activities in Ciona's developing swimming CPG. These findings will help to understand the development of motor neuron circuits in chordate animals.

8.
Curr Biol ; 32(21): 4631-4644.e5, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36182701

RESUMEN

In many animals, there is a direct correspondence between the motor patterns that drive locomotion and the motor neuron innervation. For example, the adult C. elegans moves with symmetric and alternating dorsal-ventral bending waves arising from symmetric motor neuron input onto the dorsal and ventral muscles. In contrast to the adult, the C. elegans motor circuit at the juvenile larval stage has asymmetric wiring between motor neurons and muscles but still generates adult-like bending waves with dorsal-ventral symmetry. We show that in the juvenile circuit, wiring between excitatory and inhibitory motor neurons coordinates the contraction of dorsal muscles with relaxation of ventral muscles, producing dorsal bends. However, ventral bending is not driven by analogous wiring. Instead, ventral muscles are excited uniformly by premotor interneurons through extrasynaptic signaling. Ventral bends occur in anti-phasic entrainment to activity of the same motor neurons that drive dorsal bends. During maturation, the juvenile motor circuit is replaced by two motor subcircuits that separately drive dorsal and ventral bending. Modeling reveals that the juvenile's immature motor circuit is an adequate solution to generate adult-like dorsal-ventral bending before the animal matures. Developmental rewiring between functionally degenerate circuit solutions, which both generate symmetric bending patterns, minimizes behavioral disruption across maturation.


Asunto(s)
Caenorhabditis elegans , Neuronas Motoras , Animales , Caenorhabditis elegans/fisiología , Neuronas Motoras/fisiología , Interneuronas/fisiología , Locomoción/fisiología , Larva/fisiología
9.
Front Neurosci ; 16: 894962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35794952

RESUMEN

The importance of cell adhesion molecules for the development of the nervous system has been recognized many decades ago. Functional in vitro and in vivo studies demonstrated a role of cell adhesion molecules in cell migration, axon growth and guidance, as well as synaptogenesis. Clearly, cell adhesion molecules have to be more than static glue making cells stick together. During axon guidance, cell adhesion molecules have been shown to act as pathway selectors but also as a means to prevent axons going astray by bundling or fasciculating axons. We identified Endoglycan as a negative regulator of cell-cell adhesion during commissural axon guidance across the midline. The presence of Endoglycan allowed commissural growth cones to smoothly navigate the floor-plate area. In the absence of Endoglycan, axons failed to exit the floor plate and turn rostrally. These observations are in line with the idea of Endoglycan acting as a lubricant, as its presence was important, but it did not matter whether Endoglycan was provided by the growth cone or the floor-plate cells. Here, we expand on these observations by demonstrating a role of Endoglycan during cell migration. In the developing cerebellum, Endoglycan was expressed by Purkinje cells during their migration from the ventricular zone to the periphery. In the absence of Endoglycan, Purkinje cells failed to migrate and, as a consequence, cerebellar morphology was strongly affected. Cerebellar folds failed to form and grow, consistent with earlier observations on a role of Purkinje cells as Shh deliverers to trigger granule cell proliferation.

10.
Dev Neurobiol ; 82(3): 235-244, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35225404

RESUMEN

Developmental neural activity is a common feature of neural circuit assembly. Although glia have established roles in synapse development, the contribution of neuron-glia interactions to developmental activity remains largely unexplored. Here we show that astrocytes are necessary for developmental activity during synaptogenesis in Drosophila. Using wide-field epifluorescence and two-photon imaging, we show that the glia of the central nervous system participate in developmental activity with type-specific patterns of intracellular calcium dynamics. Genetic ablation of astrocytes, but not of cortex or ensheathing glia, leads to severe attenuation of neuronal activity. Similarly, inhibition of neuronal activity results in the loss of astrocyte calcium dynamics. By altering these dynamics, we show that astrocytic calcium cycles can influence neuronal activity but are not necessary per se. Taken together, our results indicate that, in addition to their recognized role in the structural maturation of synapses, astrocytes are also necessary for the function of synapses during development.


Asunto(s)
Astrocitos , Calcio , Astrocitos/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Sinapsis/fisiología
11.
J Neurosci ; 42(13): 2678-2689, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35169021

RESUMEN

Dendrite and axon arbor sizes are critical to neuronal function and vary widely between different neuron types. The relative dendrite and axon sizes of synaptic partners control signal convergence and divergence in neural circuits. The developmental mechanisms that determine cell-type-specific dendrite and axon size and match synaptic partners' arbor territories remain obscure. Here, we discover that retinal horizontal cells express the leucine-rich repeat domain cell adhesion molecule AMIGO1. Horizontal cells provide pathway-specific feedback to photoreceptors-horizontal cell axons to rods and horizontal cell dendrites to cones. AMIGO1 selectively expands the size of horizontal cell axons. When Amigo1 is deleted in all or individual horizontal cells of either sex, their axon arbors shrink. By contrast, horizontal cell dendrites and synapse formation of horizontal cell axons and dendrites are unaffected by AMIGO1 removal. The dendrites of rod bipolar cells, which do not express AMIGO1, shrink in parallel with horizontal cell axons in Amigo1 knockout (Amigo1 KO) mice. This territory matching maintains the function of the rod bipolar pathway, preserving bipolar cell responses and retinal output signals in Amigo1 KO mice. We previously identified AMIGO2 as a scaling factor that constrains retinal neurite arbors. Our current results identify AMIGO1 as a scaling factor that expands retinal neurite arbors and reveal territory matching as a novel homeostatic mechanism. Territory matching interacts with other homeostatic mechanisms to stabilize the development of the rod bipolar pathway, which mediates vision near the threshold.SIGNIFICANCE STATEMENT Neurons send and receive signals through branched axonal and dendritic arbors. The size of these arbors is critical to the function of a neuron. Axons and dendrites grow during development and are stable at maturity. The mechanisms that determine axon and dendrite size are not well understood. Here, we identify a cell surface protein, AMIGO1, that selectively promotes axon growth of horizontal cells, a retinal interneuron. Removal of AMIGO1 reduces the size of horizontal cell axons without affecting the size of their dendrites or the ability of both arbors to form connections. The changes in horizontal cell axons are matched by changes in synaptic partner dendrites to stabilize retinal function. This identifies territory matching as a novel homeostatic plasticity mechanism.


Asunto(s)
Dendritas , Retina , Animales , Axones/fisiología , Dendritas/fisiología , Ratones , Células Bipolares de la Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología
12.
Elife ; 102021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34617509

RESUMEN

Reduced structural and functional interhemispheric connectivity correlates with the severity of Autism Spectrum Disorder (ASD) behaviors in humans. Little is known of how ASD-risk genes regulate callosal connectivity. Here, we show that Fmr1, whose loss-of-function leads to Fragile X Syndrome (FXS), cell autonomously promotes maturation of callosal excitatory synapses between somatosensory barrel cortices in mice. Postnatal, cell-autonomous deletion of Fmr1 in postsynaptic Layer (L) 2/3 or L5 neurons results in a selective weakening of AMPA receptor- (R), but not NMDA receptor-, mediated callosal synaptic function, indicative of immature synapses. Sensory deprivation by contralateral whisker trimming normalizes callosal input strength, suggesting that experience-driven activity of postsynaptic Fmr1 KO L2/3 neurons weakens callosal synapses. In contrast to callosal inputs, synapses originating from local L4 and L2/3 circuits are normal, revealing an input-specific role for postsynaptic Fmr1 in regulation of synaptic connectivity within local and callosal neocortical circuits. These results suggest direct cell autonomous and postnatal roles for FMRP in development of specific cortical circuits and suggest a synaptic basis for long-range functional underconnectivity observed in FXS patients.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Corteza Somatosensorial/fisiología , Sinapsis/fisiología , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Ratones
13.
Front Neurosci ; 15: 745376, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646119

RESUMEN

Behavior encompasses the physical and chemical response to external and internal stimuli. Neurons, each with their own specific molecular identities, act in concert to perceive and relay these stimuli to drive behavior. Generating behavioral responses requires neurons that have the correct morphological, synaptic, and molecular identities. Transcription factors drive the specific gene expression patterns that define these identities, controlling almost every phenomenon in a cell from development to homeostasis. Therefore, transcription factors play an important role in generating and regulating behavior. Here, we describe the transcription factors, the pathways they regulate, and the neurons that drive chemosensation, mechanosensation, thermosensation, osmolarity sensing, complex, and sex-specific behaviors in the animal model Caenorhabditis elegans. We also discuss the current limitations in our knowledge, particularly our minimal understanding of how transcription factors contribute to the adaptive behavioral responses that are necessary for organismal survival.

14.
Front Bioeng Biotechnol ; 9: 624522, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796508

RESUMEN

This perspective paper presents converging recent knowledge in neurosciences (motor neurophysiology, neuroimaging and neuro cognition) and biomechanics to outline the relationships between maturing neuronal network, behavior, and gait in human development. Autism Spectrum Disorder (ASD) represents a particularly relevant neurodevelopmental disorder (NDD) to study these convergences, as an early life condition presenting with sensorimotor and social behavioral alterations. ASD diagnosis relies solely on behavioral criteria. The absence of biological marker in ASD is a main challenge, and hampers correlations between behavioral development and standardized data such as brain structure alterations, brain connectivity, or genetic profile. Gait, as a way to study motor system development, represents a well-studied, early life ability that can be characterized through standardized biomechanical analysis. Therefore, developmental gait biomechanics might appear as a possible motor phenotype and biomarker, solid enough to be correlated to neuronal network maturation, in normal and atypical developmental trajectories-like in ASD.

15.
Neuropharmacology ; 195: 108585, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33910033

RESUMEN

Kainate receptors (KARs) are highly expressed in the immature brain and have unique developmentally regulated functions that may be important in linking neuronal activity to morphogenesis during activity-dependent fine-tuning of the synaptic connectivity. Altered expression of KARs in the developing neural network leads to changes in glutamatergic connectivity and network excitability, which may lead to long-lasting changes in behaviorally relevant circuitries in the brain. Here, we summarize the current knowledge on physiological and morphogenic functions described for different types of KARs at immature neural circuitries, focusing on their roles in modulating synaptic transmission and plasticity as well as circuit maturation in the rodent hippocampus and amygdala. Finally, we discuss the emerging evidence suggesting that malfunction of KARs in the immature brain may contribute to the pathophysiology underlying developmentally originating neurological disorders.


Asunto(s)
Hipocampo/metabolismo , Red Nerviosa/metabolismo , Neuronas/metabolismo , Receptores de Ácido Kaínico/metabolismo , Animales , Humanos , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo
16.
Mol Cell Endocrinol ; 527: 111218, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33636254

RESUMEN

Maternal obesity malprograms offspring obesity and associated metabolic disorder. As a common phenomenon in obesity, endoplasmic reticulum (ER) stress also presents early prior to the development. Here, we investigate metabolic effect of early activated hypothalamic ER stress in offspring exposed to maternal obesogenic environment and the underlying mechanism in ICR mice model. We found higher body weight, hyperphagia and defective hypothalamic feeding-circuit in the offspring born to obese dams, with hypothalamic ER stress, and even more comprehensive cell proteotoxic stress were induced during the early postnatal period. However, neonatal inhibition of hypothalamic ER stress worsened the metabolic end. We believe that the uncoordinated interaction between the unfolded protein response and the heat shock response, regulated by heat shock protein 70, might be responsible for the malformed hypothalamic feeding circuit of the offspring exposure to maternal obesogenic conditions and were linked with deleterious metabolism in adulthood, especially when exposure to high-energy conditions.


Asunto(s)
Estrés del Retículo Endoplásmico , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Obesidad Materna/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Respuesta de Proteína Desplegada , Animales , Femenino , Hiperfagia/etiología , Masculino , Ratones , Ratones Endogámicos ICR , Obesidad Materna/inducido químicamente , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología
17.
Cell Rep ; 34(3): 108654, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33472083

RESUMEN

In humans, execution of unimanual movements requires lateralized activation of the primary motor cortex, which then transmits the motor command to the contralateral hand through the crossed corticospinal tract (CST). Mutations in NTN1 alter motor control lateralization, leading to congenital mirror movements. To address the role of midline Netrin-1 on CST development and subsequent motor control, we analyze the morphological and functional consequences of floor plate Netrin-1 depletion in conditional knockout mice. We show that depletion of floor plate Netrin-1 in the brainstem critically disrupts CST midline crossing, whereas the other commissural systems are preserved. The only associated defect is an abnormal entry of CST axons within the inferior olive. Alteration of CST midline crossing results in functional ipsilateral projections and is associated with abnormal symmetric movements. Our study reveals the role of Netrin-1 in CST development and describes a mouse model recapitulating the characteristics of human congenital mirror movements.


Asunto(s)
Axones/metabolismo , Trastornos del Movimiento/metabolismo , Netrina-1/metabolismo , Tractos Piramidales/metabolismo , Animales , Axones/patología , Ratones , Trastornos del Movimiento/patología , Tractos Piramidales/patología
18.
Adv Genet (Hoboken) ; 2(1): e10035, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36618441

RESUMEN

Male juvenile zebra finches learn to sing by imitating songs of adult males early in life. The development of the song control circuit and song learning and maturation are highly intertwined processes, involving gene expression, neurogenesis, circuit formation, synaptic modification, and sensory-motor learning. To better understand the genetic and genomic mechanisms underlying these events, we used RNA-Seq to examine genome-wide transcriptomes in the song control nucleus HVC of male juvenile (45 d) and adult (100 d) zebra finches. We report that gene groups related to axon guidance, RNA processing, lipid metabolism, and mitochondrial functions show enriched expression in juvenile HVC compared to the rest of the brain. As juveniles mature into adulthood, massive gene expression changes occur. Expression of genes related to amino acid metabolism, cell cycle, and mitochondrial function is reduced, accompanied by increased and enriched expression of genes with synaptic functions, including genes related to G-protein signaling, neurotransmitter receptors, transport of small molecules, and potassium channels. Unexpectedly, a group of genes with immune system functions is also developmentally regulated, suggesting potential roles in the development and functions of HVC. These data will serve as a rich resource for investigations into the development and function of a neural circuit that controls vocal behavior.

19.
Cell Mol Life Sci ; 78(5): 2247-2262, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32939562

RESUMEN

The neurotransmitter serotonin has been implicated in a range of complex neurological disorders linked to alterations of neuronal circuitry. Serotonin is synthesized in the developing brain before most neuronal circuits become fully functional, suggesting that serotonin might play a distinct regulatory role in shaping circuits prior to its function as a classical neurotransmitter. In this study, we asked if serotonin acts as a guidance cue by examining how serotonin alters growth cone motility of rodent sensory neurons in vitro. Using a growth cone motility assay, we found that serotonin acted as both an attractive and repulsive guidance cue through a narrow concentration range. Extracellular gradients of 50 µM serotonin elicited attraction, mediated by the serotonin 5-HT2a receptor while 100 µM serotonin elicited repulsion mediated by the 5-HT1b receptor. Importantly, high resolution imaging of growth cones indicated that these receptors signalled through their canonical pathways of endoplasmic reticulum-mediated calcium release and cAMP depletion, respectively. This novel characterisation of growth cone motility in response to serotonin gradients provides compelling evidence that secreted serotonin acts at the molecular level as an axon guidance cue to shape neuronal circuit formation during development.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Serotonina/farmacología , Animales , Orientación del Axón/efectos de los fármacos , Axones/efectos de los fármacos , Axones/metabolismo , Calcio/metabolismo , Células Cultivadas , Femenino , Conos de Crecimiento/fisiología , Humanos , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT1B , Receptores de Serotonina 5-HT2 , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo
20.
Prog Neurobiol ; 198: 101916, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32991957

RESUMEN

During the development of the nervous system, axons extend through complex environments. Growth cones at the axon tip allow axons to find and innervate their appropriate targets and form functional synapses. Axon pathfinding requires axons to respond to guidance signals and these cues need to be detected by specialized receptors followed by intracellular signal integration and translation. Several downstream signaling pathways have been identified for axon guidance receptors and it has become evident that these pathways are often initiated from intracellular vesicles called endosomes. Endosomes allow receptors to traffic intracellularly, re-locating receptors from one cellular region to another. The localization of axon guidance receptors to endosomal compartments is crucial for their function, signaling output and expression levels. For example, active receptors within endosomes can recruit downstream proteins to the endosomal membrane and facilitate signaling. Also, endosomal trafficking can re-locate receptors back to the plasma membrane to allow re-activation or mediate downregulation of receptor signaling via degradation. Accumulating evidence suggests that axon guidance receptors do not follow a pre-set default trafficking route but may change their localization within endosomes. This re-routing appears to be spatially and temporally regulated, either by expression of adaptor proteins or co-receptors. These findings shed light on how signaling in axon guidance is regulated and diversified - a mechanism which explains how a limited set of guidance cues can help to establish billions of neuronal connections. In this review, we summarize and discuss our current knowledge of axon guidance receptor trafficking and provide directions for future research.


Asunto(s)
Orientación del Axón , Axones , Endocitosis , Endosomas , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA