Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Toxins (Basel) ; 16(8)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39195770

RESUMEN

Anthropic eutrophication leads to water quality degradation because it may cause the development of harmful cyanobacterial blooms, affecting aquatic biota and threatening human health. Because in the natural environment zooplankters are exposed continuously or intermittently to cyanotoxins in the water or through cyanobacterial consumption, this study aimed to assess the effects of the toxigenic Microcystis aeruginosa VU-5 by different ways of exposure in Daphnia curvirostris. The acute toxicity produced by the cells, the aqueous crude extract of cells (ACE), and the cell-free culture medium (CFM) were determined. The effect on the survival and reproduction of D. curvirostris under continuous and intermittent exposure was determined during 26 d. The LC50 was 407,000 cells mL-1; exposure to the ACE and CFM produced mortality lower than 20%. Daphnia survivorship and reproduction were significantly reduced. Continuous exposure to Microcystis cells caused 100% mortality on the fourth day. Exposure during 4 and 24 h in 48 h cycles produced adult mortality, and reproduction decreased as the exposure time and the Microcystis concentrations increased. The higher toxicity of cells than the ACE could mean that the toxin's absorption is higher in the digestive tract. The temporary exposure to Microcystis cells produced irreversible damage despite the recovery periods with microalgae as food. The form and the continuity in exposure to Microcystis produced adverse effects, warning about threats to the zooplankton during HCBs.


Asunto(s)
Daphnia , Microcystis , Reproducción , Animales , Daphnia/efectos de los fármacos , Reproducción/efectos de los fármacos , Microcistinas/toxicidad
2.
Sci Total Environ ; 950: 174915, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134262

RESUMEN

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used pharmaceuticals. Their presence in natural waters is due to the low removal efficiency in conventional wastewater treatment plants (WWTPs). Interestingly, certain zooplankton species can survive the mixture of pollution and abnormal water conditions in WWTPs. In our study, for the first time, we tested the in-situ bioaccumulation of NSAIDs and their metabolites in Daphnia pulex, which were obtained in high numbers in one WWTP during the summer. It was found that diclofenac (DCF) and 4-hydroxy DCF were present in the studied clarifiers and ponds. Among these chemicals, only DCF was detected in daphnia. The bioaccumulation factor of DCF in daphnia was below 36 L kg-1ww and was lower than those obtained under experimental conditions for Daphnia magna. The tested daphnia adapted to chronic exposure to mixtures of drugs in µg L-1 level and could be implemented in biobased WWTPs. According to our data, there is a need to supplement the risk assessment of anthropogenic pollutants with in-situ cases to demonstrate the adaptation possibilities of wild-living organisms.


Asunto(s)
Bioacumulación , Daphnia , Monitoreo del Ambiente , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Animales , Daphnia/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/análisis
3.
Environ Sci Pollut Res Int ; 31(35): 47690-47700, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39002080

RESUMEN

We evaluated the physiological characteristics of chemical-tolerant cladocerans. Over the course of 26 generations (F25), Daphnia magna was continuously exposed to pirimicarb (carbamate) solutions (0, 3.8, 7.5, and 15 µg/L) in sub-lethal or lethal levels. The 48 h EC50 values (29.2-29.9 µg/L) for 7.5 and 15 µg/L exposure groups were found to be nearly two times higher than that in the control (17.2 µg/L). Subsequently, we investigated whether the extinction probability changed when the chemical-tolerant daphnids were fed two different types of food, Chlorella vulgaris and Synechococcus leopoliensis. Furthermore, we ascertained how chemical tolerance influences respiration and depuration rates. The 48 h EC50 value was positively related to the extinction probability when the daphnids were fed S. leopoliensis. Because the measured lipid content of S. leopoliensis was three times lower than that of C. vulgaris, the tolerant daphnids struggled under nutrient-poor conditions. Respiration rates across all pirimicarb treatment groups were higher than those in the control group, suggesting that they may produce large amounts of energy through respiration to maintain the chemical tolerance. Since the pirimicarb depuration rate for 7.5 µg/L exposure groups was higher than that in the control, the altered metabolic/excretion rate may be one factor for acquiring chemical tolerance. These altered physiological characteristics are crucial parameters for evaluating the mechanisms of chemical tolerance and associated fitness costs.


Asunto(s)
Carbamatos , Daphnia magna , Animales , Daphnia magna/efectos de los fármacos , Daphnia magna/fisiología , Pirimidinas , Contaminantes Químicos del Agua/toxicidad
4.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062785

RESUMEN

Zeolite type 5A combined with the magnetic properties of maghemite nanoparticles facilitate the rapid absorption of heavy metals, which makes them an interesting proposal for the remediation of water contaminated with lead and arsenic. However, the physicochemical analysis related to concentration and size for the use of this magnetic zeolite composite (MZ0) in water bodies and the possible toxicological effects on aquatic fauna has not yet been carried out. The main objective of the research work is to determine lethal concentrations that cause damage to Daphnia magna based on LC50 tests, morphology, reproductive rate, and quantification of the expression of three genes closely involved in the morphological development of vital structures (Glass, NinaE, Pph13). To achieve this objective, populations of neonates and young individuals were used, and results showed that the LC50 for neonates was 11,314 mg L-1, while for young individuals, it was 0.0310 mg L-1. Damage to morphological development was evidenced by a decrease in eye size in neonates, an increase in eye size in young individuals, variations in the size of the caudal spine for both age groups, and slight increases in the heart size, body, and antenna for both age groups. The reproductive rate of neonates was not affected by the lower concentrations of MZ0, while in young individuals, the reproductive rate decreased by more than 50% from the minimum exposure concentration of MZ0. And for both ages, Glass gene expression levels decreased as the MZ0 concentration increased. Also, the MZ0 evidenced its affinity for the exoskeleton of D. magna, which was observed using both light microscopy and electron microscopy. It is concluded that MZ0 did not generate significant damage in the mortality, morphology, reproductive rate, or gene expression in D. magna at lower concentrations, demonstrating the importance of evaluating the possible impacts on different life stages of the cladoceran.


Asunto(s)
Daphnia , Zeolitas , Animales , Daphnia/efectos de los fármacos , Daphnia/genética , Zeolitas/toxicidad , Zeolitas/química , Contaminantes Químicos del Agua/toxicidad , Reproducción/efectos de los fármacos , Dosificación Letal Mediana , Daphnia magna
5.
Ecol Evol ; 14(6): e11560, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932944

RESUMEN

Understanding which factors shape and maintain biodiversity is essential to understand how ecosystems respond to crises. Biodiversity observed in ecological communities is a result of the interaction of various factors which can be classified as either neutral- or niche-based. The importance of these processes has been debated, but many scientists believe that both processes are important. Here, we use unique ecosystems in groundwater-filled lava caves near Lake Mývatn, to examine the importance of neutral- versus niche-based factors for shaping invertebrate communities. We studied diversity in benthic and epibenthic invertebrate communities and related them to ecological variables. We hypothesized that if neutral processes are the main drivers of community structure we would not see any clear relationship between the structure of community within caves and ecological factors. If niche-based processes are important we should see clear relationships between community structure and variation in ecological variables across caves. Both communities were species poor, with low densities of invertebrates, showing the resource limited and oligotrophic nature of these systems. Unusually for Icelandic freshwater ecosystems, the benthic communities were not dominated by Chironomidae (Diptera) larvae, but rather by crustaceans, mainly Cladocera. The epibenthic communities were not shaped by environmental variables, suggesting that they may have been structured primarily by neutral processes. The benthic communities were shaped by the availability of energy, and to some extent pH, suggesting that niche-based processes were important drivers of community structure, although neutral processes may still be relevant. The results suggest that both processes are important for invertebrate communities in freshwater, and research should focus on understanding both of these processes. The ponds we studied are representative of a number of freshwater ecosystems that are extremely vulnerable for human disturbance, making it even more important to understand how their biodiversity is shaped and maintained.

6.
Ecotoxicology ; 33(7): 683-696, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38861073

RESUMEN

Silver nanoparticles (AgNPs) are among the most produced nanomaterials in the world and are incorporated into several products due to their biocide and physicochemical properties. Since freshwater bodies are AgNPs main final sink, several consequences for biota are expected to occur. With the hypothesis that AgNPs can interact with environmental factors, we analyzed their ecotoxicity in combination with humic acids and algae. In addition to the specific AgNPs behavior in the media, we analyzed the mortality, growth, and phototactic behavior of Chydorus eurynotus (Cladocera) as response variables. While algae promoted Ag+ release, humic acids reduced it by adsorption, and their combination resulted in an intermediated Ag+ release. AgNPs affected C. eurynotus survival and growth, but algae and humic acids reduced AgNPs lethality, especially when combined. The humic acids mitigated AgNP effects in C. eurynotus growth, and both factors improved its phototactic behavior. It is essential to deepen the study of the isolated and combined influences of environmental factors on the ecotoxicity of nanoparticles to achieve accurate predictions under realistic exposure scenarios.


Asunto(s)
Cladóceros , Sustancias Húmicas , Nanopartículas del Metal , Plata , Contaminantes Químicos del Agua , Plata/toxicidad , Nanopartículas del Metal/toxicidad , Animales , Contaminantes Químicos del Agua/toxicidad , Cladóceros/efectos de los fármacos , Cladóceros/fisiología
7.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38935572

RESUMEN

Two important characteristics of metapopulations are extinction-(re)colonization dynamics and gene flow between subpopulations. These processes can cause strong shifts in genome-wide allele frequencies that are generally not observed in "classical" (large, stable, and panmictic) populations. Subpopulations founded by one or a few individuals, the so-called propagule model, are initially expected to show intermediate allele frequencies at polymorphic sites until natural selection and genetic drift drive allele frequencies toward a mutation-selection-drift equilibrium characterized by a negative exponential-like distribution of the site frequency spectrum. We followed changes in site frequency spectrum distribution in a natural metapopulation of the cyclically parthenogenetic pond-dwelling microcrustacean Daphnia magna using biannual pool-seq samples collected over a 5-yr period from 118 ponds occupied by subpopulations of known age. As expected under the propagule model, site frequency spectra in newly founded subpopulations trended toward intermediate allele frequencies and shifted toward right-skewed distributions as the populations aged. Immigration and subsequent hybrid vigor altered this dynamic. We show that the analysis of site frequency spectrum dynamics is a powerful approach to understand evolution in metapopulations. It allowed us to disentangle evolutionary processes occurring in a natural metapopulation, where many subpopulations evolve in parallel. Thereby, stochastic processes like founder and immigration events lead to a pattern of subpopulation divergence, while genetic drift leads to converging site frequency spectrum distributions in the persisting subpopulations. The observed processes are well explained by the propagule model and highlight that metapopulations evolve differently from classical populations.


Asunto(s)
Daphnia , Frecuencia de los Genes , Flujo Genético , Selección Genética , Animales , Daphnia/genética , Flujo Génico , Modelos Genéticos , Genética de Población/métodos , Dinámica Poblacional , Genoma , Evolución Biológica , Evolución Molecular
8.
Ecosystems ; 27(4): 577-591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38899133

RESUMEN

Discerning ecosystem change and food web dynamics underlying anthropogenic eutrophication and the introduction of non-native species is necessary for ensuring the long-term sustainability of fisheries and lake biodiversity. Previous studies of eutrophication in Lake Victoria, eastern Africa, have focused on the loss of endemic fish biodiversity over the past several decades, but changes in the plankton communities over this same time remain unclear. To fill this gap, we examined sediment cores from a eutrophic embayment, Mwanza Gulf, to determine the timing and magnitude of changes in the phytoplankton and zooplankton assemblages over the past century. Biogeochemical proxies indicate nutrient enrichment began around ~ 1920 CE and led to rapid increases in primary production, and our analysis of photosynthetic pigments revealed three zones: pre-eutrophication (prior to 1920 CE), onset of eutrophication with increases in all pigments (1920-1990 CE), and sustained eutrophication with cyanobacterial dominance (1990 CE-present). Cladoceran remains indicate an abrupt decline in biomass in ~ 1960 CE, in response to the cumulative effects of eutrophication and lake-level rise, preceding the collapse of haplochromine cichlids in the 1980s. Alona and Chydorus, typically benthic littoral taxa, have remained at relatively low abundances since the 1960s, whereas the abundance of Bosmina, typically a planktonic taxon, increased in the 1990s concurrently with the biomass recovery of haplochromine cichlid fishes. Overall, our results demonstrate substantial changes over the past century in the biomass structure and taxonomic composition of Mwanza Gulf phytoplankton and zooplankton communities, providing a historical food web perspective that can help understand the recent changes and inform future resource management decisions in the Lake Victoria ecosystem. Supplementary Information: The online version contains supplementary material available at 10.1007/s10021-024-00908-x.

9.
Water Environ Res ; 96(6): e11065, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38895814

RESUMEN

Wastewater containing tetrabromobisphenol A (TBBPA), a commonly used flame retardant found in wastewater, can present significant toxic effects on biota, yet its impact on tropical freshwater environments is not well understood. This study explores the effectiveness of two independent anaerobic treatment systems, the acidogenic reactor (AR) and the methanogenic reactor (MR), for the ecotoxicity reduction of TBBPA-rich wastewater in four tropical freshwater species. Despite presenting good physicochemical performance and reduced toxicity of the influent for most species, AR and MR treatments remain acute and chronic toxicity. Overall, MR exhibited greater efficacy in reducing influent toxicity compared with AR. TBBPA bioaccumulation was observed in Chironomus sancticaroli after short-term exposure to 100% MR effluent. Multigenerational exposures highlighted changes in the wing length of C. sancticaroli, showing decreases after influent and AR exposures and increases after MR exposures. These findings underscore the need for ecotoxicological tools in studies of new treatment technologies, combining the removal of emerging contaminants with safeguarding aquatic biota. PRACTITIONER POINTS: Acidogenic and methanogenic reactors reduced the acute and chronic toxicity of wastewater containing tetrabromobisphenol A. Both treatments still exhibit toxicity, inducing short- and long-term toxic effects on four native tropical species. The aquatic species Pristina longiseta was most sensitive to effluents from acidogenic and methanogenic reactors. TBBPA concentrations recovered from Chironomus sancticaroli bioaccumulation analysis ranged from 1.07 to 1.35 µg g-1. Evaluating new treatment technologies with multiple species bioassays is essential for a comprehensive effluent toxicity assessment and ensuring aquatic safety.


Asunto(s)
Bifenilos Polibrominados , Contaminantes Químicos del Agua , Animales , Bifenilos Polibrominados/toxicidad , Bifenilos Polibrominados/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Anaerobiosis , Aguas Residuales/química , Biota , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo , Eliminación de Residuos Líquidos/métodos , Chironomidae/efectos de los fármacos , Chironomidae/metabolismo , Organismos Acuáticos/efectos de los fármacos , Organismos Acuáticos/metabolismo
10.
Sci Total Environ ; 927: 172378, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604362

RESUMEN

The neonicotinoid pesticide imidacloprid has been used worldwide since 1992. As one of the most important chemicals used in pest control, there have been concerns that its run-off into rivers and lakes could adversely affect aquatic ecosystems, where zooplankton play a central role in the energy flow from primary to higher trophic levels. However, studies assessing the effects of pesticides at the species level have relied on a Daphnia-centric approach, and no studies have been conducted using species-level assessments on a broad range of zooplankton taxa. In the present study, we therefore investigated the acute toxicity of imidacloprid on 27 freshwater crustacean zooplankton (18 cladocerans, 3 calanoid copepods and 6 cyclopoid copepods). The experiment showed that a majority of calanoid copepods and cladocerans were not affected at all by imidacloprid, with the exception of one species each of Ceriodaphnia and Diaphasoma, while all six cyclopoid copepods showed high mortality rates, even at concentrations of imidacloprid typically found in nature. In addition, we found a remarkable intra-taxonomic variation in susceptibility to this chemical. As many cyclopoid copepods are omnivorous, they act as predators as well as competitors with other zooplankton. Accordingly, their susceptibility to imidacloprid is likely to cause different responses at the community level through changes in predation pressure as well as changes in competitive interactions. The present results demonstrate the need for species-level assessments of various zooplankton taxa to understand the complex responses of aquatic communities to pesticide disturbance.


Asunto(s)
Insecticidas , Neonicotinoides , Nitrocompuestos , Contaminantes Químicos del Agua , Zooplancton , Animales , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Zooplancton/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Insecticidas/toxicidad , Copépodos/efectos de los fármacos , Agua Dulce , Cladóceros/efectos de los fármacos
11.
Sci Total Environ ; 922: 171284, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38432389

RESUMEN

Humic thermokarst lakes of permafrost peatlands in Western Siberia Lowland (WSL) are major environmental controllers of carbon and nutrient storage in inland waters and greenhouse gases emissions to the atmosphere in the subarctic. In contrast to sizable former research devoted to hydrochemical and hydrobiological (phytoplankton) composition, zooplankton communities of these thermokarst lakes and thaw ponds remain poorly understood, especially along the latitudinal gradient, which is a perfect predictor of permafrost zones. To fill this gap, 69 thermokarst lakes of the WSL were sampled using unprecedented spatial coverage, from continuous to sporadic permafrost zone, in order to assess zooplankton (Cladocera, Copepoda, Rotifera) diversity and abundance across three main open water physiological seasons (spring, summer and autumn). We aimed at assessing the relationship of environmental factors (water column hydrochemistry, nutrients, and phytoplankton parameters) with the abundance and diversity of zooplankton. A total of 74 zooplankton species and taxa were detected, with an average eight taxa per lake/pond. Species richness increased towards the north and reached the maximum in the continuous permafrost zone with 13 species found in this zone only. In contrast, the number of species per waterbody decreased towards the north, which was mainly associated with a decrease in the number of cladocerans. Abundance and diversity of specific zooplankton groups strongly varied across the seasons and permafrost zones. Among the main environmental controllers, Redundancy Analysis revealed that water temperature, lake area, depth, pH, Dissolved Inorganic and Organic Carbon and CO2 concentrations were closely related to zooplankton abundance. Cladocerans were positively related to water temperature during all seasons. Copepods were positively related to depth and lake water pH in all seasons. Rotifers were related to different factors in each season, but were most strongly associated with DOC, depth, CH4, phytoplankton and cladoceran abundance. Under climate warming scenario, considering water temperature increase and permafrost boundary shift northward, one can expect an increase in the diversity and abundance of cladocerans towards the north which can lead to partial disappearance of copepods, especially rare calanoid species.


Asunto(s)
Cladóceros , Copépodos , Hielos Perennes , Rotíferos , Animales , Estaciones del Año , Siberia , Zooplancton/fisiología , Lagos/química , Rotíferos/fisiología , Fitoplancton/fisiología , Copépodos/fisiología , Carbono , Agua
12.
Environ Pollut ; 345: 123444, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38278403

RESUMEN

Moina mongolica and Daphniopsis tibetana are typical saline Cladocera in China that are characterized by a wide salinity range, rapid reproduction, and high-density culture. In this paper, the characteristics and life history of M. mongolica and D. tibetana are reviewed. The application of these two species of Cladocera to ecotoxicology in recent years is also summarized from the aspects of environmental factors and environmental pollutants, including ultraviolet B radiation, temperature, salinity, alkalinity, pH, heavy metals, harmful red tide, pesticides, and persistent organic pollutants. Additionally, the toxicity sensitivity of saline Cladocera in different reproductive statuses and inter-generational embryos is discussed. Finally, the need to enhance knowledge of the molecular genomics, population dynamics, and strategies for protection of saline Cladocera, along with the need for establishment of estuarine and marine environmental monitoring standards are discussed. Overall, this review highlights the potential for using these Cladocera species as indicator organisms for estuarine and marine ecotoxicology studies.


Asunto(s)
Cladóceros , Contaminantes Químicos del Agua , Animales , Ecotoxicología , Daphnia , Dinámica Poblacional , China , Contaminantes Químicos del Agua/toxicidad
13.
Sci Total Environ ; 914: 169825, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199353

RESUMEN

Recent climate warming and atmospheric reactive nitrogen (Nr) deposition are affecting a broad spectrum of physical, ecological and human systems that may be irreversible on a century time scale and have the potential to cause regime shifts in ecological systems. These changes may alter the limnological conditions with important but still unclear effects on lake ecosystems. We present changes in cladoceran with comparisons to diatom assemblages over the past ~200 years from high-resolution, well-dated sediment cores retrieved from six high mountain lakes in the southeastern (SE) margin of the Tibetan Plateau. Our findings suggest that warming and the exponential increase of atmospheric Nr deposition are the major drivers of ecological regime changes. Shifts in cladoceran and diatom communities in high alpine lakes began over a century ago and intensified since 1950 CE, indicating a regional-scale response to anthropogenic climate warming. Zooplankton in the forest lakes showed asynchronous trajectories, with increased Nr deposition as a significant explanatory factor. Forest lakes with higher dissolved organic carbon (DOC) concentrations partially buffered the impacts of Nr deposition with little structural change, while lakes with low DOC display symptoms of resilience loss related to Nr deposition. Biological community compositional turnover in subalpine lakes has shown marked shifts, equivalent to those of low-elevation lakes strongly affected by direct human impacts. This suggests that local effects override climatic forcing and that lake basin features modified by anthropogenic activity act as basin-specific filters of common forcing. Our results indicate that snow and glacial meltwaters along with nutrient enrichment related to climate warming and atmospheric Nr deposition, represent major threats for lake ecosystems, even in remote areas. We reveal that climate and atmospheric contaminants will further impact ecological conditions and alter aquatic food webs in higher altitude biomes if climate and anthropogenic forcing continue.


Asunto(s)
Cladóceros , Diatomeas , Animales , Humanos , Lagos/química , Ecosistema , Tibet , Cambio Climático , Cladóceros/fisiología , Nitrógeno/análisis
14.
Environ Toxicol ; 39(4): 1978-1988, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38073494

RESUMEN

We performed multigenerational tests to clarify the chemical tolerance mechanisms of a nontarget aquatic organism, Daphnia magna. We continuously exposed D. magna to a carbamate insecticide (pirimicarb) at lethal or sublethal concentrations (0, 3.8, 7.5, and 15 µg/L) for 15 generations (F0-F14). We then determined the 48 h-EC50 values and mRNA expression levels of acetylcholinesterase, glutathione S-transferase, and ATP (Adenosine triphosphate)-binding cassette transporter (ABCt) in neonates (<24 h old) from F0, F4, F9, and F14. To ascertain the effects of DNA methylation on pirimicarb sensitivity, we measured 5-methylcytosine levels (DNA methylation levels) in neonates of parents in the last generation (F14). In addition, we cultured groups exposed to 0 and 7.5 µg/L (the latter of which acquired chemical tolerance to pirimicarb) with or without 5-azacytidine (de-methylating agent) and determined methylation levels and 48 h-EC50 values in neonates (<24 h old) from the treated parents. The EC50 values (30.3-31.6 µg/L) in F14 of the 7.5 and 15 µg/L groups were approximately two times higher than that in the control (16.0 µg/L). A linear mixed model analysis showed that EC50 and ABCt mRNA levels were significantly increased with generational alterations; further analysis showed that the ABCt mRNA level was positively related to the EC50 . Therefore, ABCt may be associated with altered pirimicarb sensitivity. In addition, the EC50 value and DNA methylation levels in pirimicarb-tolerant clones decreased after exposure to 5-azacytidine, suggesting that DNA methylation contributes to chemical tolerance. These findings improved our knowledge regarding the acquisition of chemical tolerance in aquatic organisms.


Asunto(s)
Carbamatos , Cladóceros , Pirimidinas , Contaminantes Químicos del Agua , Animales , Cladóceros/metabolismo , Daphnia magna , Daphnia/genética , Daphnia/metabolismo , Acetilcolinesterasa/metabolismo , Metilación de ADN , Transportadoras de Casetes de Unión a ATP/metabolismo , Contaminantes Químicos del Agua/metabolismo , Organismos Acuáticos , Azacitidina/toxicidad , Azacitidina/metabolismo , ARN Mensajero/metabolismo
15.
Aquat Toxicol ; 263: 106690, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37708703

RESUMEN

With the widespread utilization of plastic products, microplastics (MPs) have merged as a newfound environmental contaminant in the United States, and the bulk of these MPs in the environment manifest as fibrous structures. Concerns have also been voiced regarding the potential hazards posed by microplastic fibers (MFs). However, research examining the toxicity of MFs, particularly in relation to planktonic organisms, remains severely limited. Meanwhile, polyester fiber materials find extensive applications across diverse industries. As a result, this investigation delved into the toxicology of polyester microplastic fibers (PET-MFs) with a focus on their impact on Daphnia carinata (D. carinata), a freshwater crustacean. Newly hatched D. carinata were subjected to varying concentrations of PET-MFs (0, 50, and 500 MFs/mL) to scrutinize the accumulation of PET-MFs within these organisms and their resultant toxicity. The outcomes revealed that D. carinata was capable of ingesting PET-MFs, leading to diminished rates of survival and reproduction. These effects were accompanied by mitochondrial impairment, heightened mitochondrial count, apoptosis, escalated generation of reactive oxygen species, augmented activity of antioxidant enzymes, and distinct patterns of gene expression. Interestingly, when comparing the group exposed to 50 MFs/mL with the one exposed to 500 MFs/mL, it was observed that the former triggered a more pronounced degree of mitochondrial damage, apoptosis, and oxidative stress. This phenomenon could be attributed to the fact that brief exposure to 500 MFs/mL resulted in greater mortality, eliminating individuals with lower adaptability. Those that survived managed to regulate elevated in vivo reactive oxygen species levels through an increase in glutathione S-transferase content, thereby establishing an adaptive mechanism. Low concentrations did not induce direct mortality, yet PET-MFs continued to inflict harm within the organism. RNA-seq analysis unveiled significant alterations in 279 and 55 genes in the 50 MFs/mL and 500 MFs/mL exposure groups, respectively. Functional enrichment analysis of the 50 MFs/mL group indicated involvement of the apoptosis pathway and ferroptosis pathway in the toxic effects exerted by PET-MFs on D. carinata. This study imparts valuable insights into the toxicological ramifications of PET-MFs on D. carinata, underscoring their potential risks within aquatic ecosystems.


Asunto(s)
Ferroptosis , Contaminantes Químicos del Agua , Humanos , Animales , Microplásticos/metabolismo , Plásticos , Daphnia/metabolismo , Poliésteres/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo , Apoptosis
16.
Environ Sci Technol ; 57(33): 12376-12387, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37561908

RESUMEN

Transformation, dissolution, and sorption of copper oxide nanoparticles (CuO-NP) play an important role in freshwater ecosystems. We present the first mesocosm experiment on the fate of CuO-NP and the dynamics of the zooplankton community over a period of 12 months. Increasingly low (0.08-0.28 mg Cu L-1) and high (0.99-2.99 mg Cu L-1) concentrations of CuO-NP and CuSO4 (0.10-0.34 mg Cu L-1) were tested in a multiple dosing scenario. At the high applied concentration (CuO-NP_H) CuO-NP aggregated and sank onto the sediment layer, where we recovered 63% of Cu applied. For the low concentration (CuO-NP_L) only 41% of applied copper could be recovered in the sediment. In the water column, the percentage of initially applied Cu recovered was on average 3-fold higher for CuO-NP_L than for CuO-NP_H. Zooplankton abundance was substantially compromised in the treatments CuSO4 (p < 0.001) and CuO-NP_L (p < 0.001). Community analysis indicated that Cladocera were most affected (bk = -0.49), followed by Nematocera (bk = -0.32). The abundance of Cladocera over time and of Dixidae in summer was significantly reduced in the treatment CuO-NP_L (p < 0.001; p < 0.05) compared to the Control. Our results indicate a higher potential for negative impacts on the freshwater community when lower concentrations of CuO-NP (<0.1 mg Cu L-1) enter the ecosystem.


Asunto(s)
Cladóceros , Nanopartículas del Metal , Nanopartículas , Contaminantes Químicos del Agua , Animales , Cobre/toxicidad , Cobre/análisis , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Agua Dulce , Zooplancton , Nanopartículas del Metal/toxicidad
17.
Rev. peru. biol. (Impr.) ; 30(3)jul. 2023.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1530324

RESUMEN

Thirty-five cladocerans species are recorded from La Española lagoon in the Orinoquia region of Colombia; all are new records for Meta Department and 10 for Colombia. With the addition of these new reports, the total number of cladocerans for Colombia and the Meta department is increased by 124 and 38 species, respectively. The cladoceran fauna from the surveyed area is represented mainly by widespread species, commonly found in the Neotropical regions, but local morphological data are scarce in the regional literature. Brief diagnostic description of 18 species of cladoceran fauna recorded of the Meta department-Colombia are provided together with illustrations of taxonomically significant appendages, morphological remarks, notes on the variability of some species, and their distribution.


Se registran treinta y cinco especies de cladóceros de la laguna La Española en la región de la Orinoquia de Colombia; todos ellos son nuevos registros para el Departamento del Meta y 10 para Colombia. Con la incorporación de estos nuevos reportes, el número total de cladóceros para Colombia y el departamento del Meta se incrementa en 124 y 38 especies respectivamente. La fauna de cladóceros del área estudiada está representada principalmente por especies de amplia distribución y que se encuentran comúnmente en las regiones Neotropicales, pero los datos morfológicos locales son escasos en la literatura regional. Se proporcionan breves descripciones diagnosticas de 18 especies registradas para la fauna de cladóceros del departamento del Meta-Colombia, junto con ilustraciones de apéndices taxonómicamente significativos, comentarios morfológicos, notas sobre la variabilidad de algunas especies y su distribución.

18.
Heliyon ; 9(6): e16725, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37303560

RESUMEN

Mediation of aquatic species has become an increasing problem for the last few decades. With the increasing commercial import, species' direct or indirect spread can gain more space. There are several ways for them to land in their new home and spread through the country. Most of the aquatic species are spread by waterways, boats, vehicles, or even with the help of humans. Cladocerans have a good dispersal ability, thanks to their small size, additionally they possess good adaptation, and mechanisms to develop resting eggs. Benthic or littoral species can be mediated much more easily due to their living space, and with the help of human activities (e.g., scientists, anglers and people working in water bodies) they have a higher chance to colonize new habitats. Our goal was to explore if Cladocera species might be mediated by a scientist chest wader, while sampling in similar-sized, close-to-each other lakes, with different utilization. Most of the species were found in abandoned fishing lakes, followed by oxbow lakes (protected), and ultimately in intensively fished lakes. NMDS showed that samples from lakes with the same utilization are similar to each other. Differently utilized lakes can have various Cladocera species, even though they are closely related to each other. Based on the results, scientists can mediate species on their chest wader from lake to lake and may deteriorate the results. We recommend a necessary chest wader cleaning after every sampling process, especially when samples are taken from differently utilized lakes.

19.
Ecol Appl ; 33(7): e2900, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37335538

RESUMEN

Exposure to pesticides can profoundly alter community dynamics. It is expected that dominance patterns will be enhanced or reduced depending on whether the dominant species is less or more sensitive to the pesticide than the subdominant species. Community dynamics are, however, also determined by processes linked to population growth as well as competition at carrying capacity. Here, we used a mesocosm experiment to quantify the effect of chlorpyrifos exposure on the population dynamics of four cladoceran species (Daphnia magna, Daphnia pulicaria, Daphnia galeata and Scapholeberis mucronata) in mixed cultures, testing for direct effects of chlorpyrifos and indirect effects mediated by interactions with other species on the timing of population growth and dominance at carrying capacity. We also quantified whether the pesticide-induced changes in community dynamics affected top-down control of phytoplankton. By adding a treatment in which we used different genotype combinations of each species, we also tested to what extent genetic composition affects community responses to pesticide exposure. Immobilization tests showed that D. magna is the least sensitive to chlorpyrifos of the tested species. Chlorpyrifos exposure first leads to a reduction in the abundance of D. galeata to the benefit of D. pulicaria, and subsequently to a reduction in densities of D. pulicaria to the benefit of D. magna. This resulted in D. magna being more dominant in the pesticide than in the control treatment by the end of the experiment. There was no effect of genotypic differences on community patterns, and top-down control of phytoplankton was high in all treatments. Our results suggest that in this community dominance patterns are enhanced in line with the observed among-species differences in sensitivity to the pesticide. Our results also show that the development of the community in pesticide treatment is a complex interaction between direct and indirect effects of the pesticide.


Asunto(s)
Cloropirifos , Plaguicidas , Contaminantes Químicos del Agua , Animales , Plaguicidas/toxicidad , Cloropirifos/toxicidad , Zooplancton , Daphnia , Fitoplancton , Contaminantes Químicos del Agua/toxicidad
20.
Anthropocene Rev ; 10(1): 116-145, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37213212

RESUMEN

Cores from Searsville Lake within Stanford University's Jasper Ridge Biological Preserve, California, USA, are examined to identify a potential GSSP for the Anthropocene: core JRBP2018-VC01B (944.5 cm-long) and tightly correlated JRBP2018-VC01A (852.5 cm-long). Spanning from 1900 CE ± 3 years to 2018 CE, a secure chronology resolved to the sub-annual level allows detailed exploration of the Holocene-Anthropocene transition. We identify the primary GSSP marker as first appearance of 239,240Pu (372-374 cm) in JRBP2018-VC01B and designate the GSSP depth as the distinct boundary between wet and dry season at 366 cm (6 cm above the first sample containing 239,240Pu) and corresponding to October-December 1948 CE. This is consistent with a lag of 1-2 years between ejection of 239,240Pu into the atmosphere and deposition. Auxiliary markers include: first appearance of 137Cs in 1958; late 20th-century decreases in δ15N; late 20th-century elevation in SCPs, Hg, Pb, and other heavy metals; and changes in abundance and presence of ostracod, algae, rotifer and protozoan microfossils. Fossil pollen document anthropogenic landscape changes related to logging and agriculture. As part of a major university, the Searsville site has long been used for research and education, serves users locally to internationally, and is protected yet accessible for future studies and communication about the Anthropocene. Plain Word Summary: The Global boundary Stratotype Section and Point (GSSP) for the proposed Anthropocene Series/Epoch is suggested to lie in sediments accumulated over the last ~120 years in Searsville Lake, Woodside, California, USA. The site fulfills all of the ideal criteria for defining and placing a GSSP. In addition, the Searsville site is particularly appropriate to mark the onset of the Anthropocene, because it was anthropogenic activities-the damming of a watershed-that created a geologic record that now preserves the very signals that can be used to recognize the Anthropocene worldwide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA