Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Total Environ ; 938: 173192, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761951

RESUMEN

Anthropogenic pressure in areas of biodiversity importance erodes the integrity of the ecosystems they harbour, making features of biodiversity less buffered against extreme climatic events. We define the combination of these disturbances as compound events. We assessed compound event risk in protected areas (PAs) applying a spatial framework guided by criteria and quantitative thresholds associated with exposure to cyclones, drought, and intense human pressure. This assessment was used in a relational matrix to classify PAs with different risk of compound event occurrence. We identified PAs of higher conservation concern by quantifying the extent of human pressure in their surrounding landscape while harbouring large numbers of threatened vertebrate species. Of the 39,694 PAs assessed, very high risk of compound events was determined for 6965 PAs (17.5 %) related to cyclones and human pressure (mainly island hotspots), 6367 PAs (16 %) related to droughts and human pressure (island and continental hotspots), and 2031 PAs (5 %) to cyclones, drought and human pressure (mainly in island hotspots). From the subset of 2031 PAs assessed at very high risk, we identified 239 PAs of higher conservation concern distributed predominantly in the Caribbean Islands, Japan, North America Coastal Plain, Philippines, and Southwest Australia. Our work highlights PAs in the biodiversity hotspots where high risk of compound event occurrence poses a greater threat to species. We encourage researchers to adapt and apply this framework across other globally significant sites for conserving biodiversity to identify high risk-prone areas, and prevent further biodiversity decline.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Conservación de los Recursos Naturales/métodos , Humanos , Sequías , Cambio Climático , Ecosistema , Animales , Clima
2.
PeerJ ; 12: e16797, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529306

RESUMEN

The topographical, geological, climatic and biodiversity complexity of Mesoamerica has made it a primary research focus. The Mesoamerican highlands is a region with particularly high species richness and within-species variation. The Cinnamon-bellied Flowerpiercer, Diglossa baritula (Wagler, 1832), is a species endemic to the Mesoamerican highlands, with three allopatric subspecies currently recognized. To characterize divergence within this species, we integrated genomics, morphology, coloration and ecological niche modeling approaches, obtained from sampling individuals across the entire geographic distribution of the species. Our results revealed a clear genomic divergence between the populations to the east versus the west of the Isthmus of Tehuantepec. In contrast to the genomic results, morphology and coloration analyses showed intermediate levels of differentiation, indicating that population groups within D. baritula have probably been under similar selective pressures. Our morphology results indicated that the only sexually dimorphic morphological variable is the wing chord, with males having a longer wing chord than females. Finally, ecological data indicated that there are differences in ecological niche within D. baritula. Our data suggest that D. baritula could contain two or more incipient species at the intermediate phase of the speciation continuum. These results highlight the importance of the geographical barrier of the Isthmus of Tehuantepec and Pleistocene climatic events in driving isolation and population divergence in D. baritula. The present investigation illustrates the speciation potential of the D. baritula complex and the capacity of Mesoamerican highlands to create cryptic biodiversity and endemism.


Asunto(s)
Aves , Ecosistema , Animales , Femenino , Masculino , Biodiversidad , Geografía , Filogenia
3.
J Environ Manage ; 355: 120470, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422852

RESUMEN

The global change in surface water quality calls for increased preparedness of drinking water utilities. The increasing frequency of extreme climatic events combined with global warming can impact source and treated water characteristics such as temperature and natural organic matter. On the other hand, water saving policies in response to water and energy crisis in some countries can aggravate the situation by increasing the water residence time in the drinking water distribution system (DWDS). This study investigates the individual and combined effect of increased dissolved organic carbon (DOC), increased temperature, and reduced water demand on fate and transport of chlorine and trihalomethanes (THMs) within a full-scale DWDS in Canada. Chlorine and THM prediction models were calibrated with laboratory experiments and implemented in EPANET-MATLAB toolkit for prediction in the DWDS under different combinations of DOC, temperature, and demand. The duration of low chlorine residuals (<0.2 mg/L) and high THM (>80 µg/L) periods within a day in each scenario was reported using a reliability index. Low-reliability zones prone to microbial regrowth or high THM exposure were then delineated geographically on the city DWDS. Results revealed that water demand reduction primarily affects chlorine availability, with less concern for THM formation. The reduction in nodal chlorine reliability was gradual with rising temperature and DOC of the treated water and reducing water demand. Nodal THM reliability remained unchanged until certain thresholds were reached, i.e., temperature >25 °C for waters with DOC <1.52 mg/L, and DOC >2.2 mg/L for waters with temperature = 17 °C. At these critical thresholds, an abrupt network-wide THM exceedance of 80 µg/L occurred. Under higher DOC and temperature levels in future, employing the proposed approach revealed that increasing the applied chlorine dosage (which is a conventional method used to ensure sufficient chlorine coverage) results in elevated exposure toTHMs and is not recommended. This approach aids water utilities in assessing the effectiveness of different intervention measures to solve water quality problems, identify site-specific thresholds leading to major decreases in system reliability, and integrate climate adaptation into water safety management.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Purificación del Agua/métodos , Trihalometanos/análisis , Cambio Climático , Reproducibilidad de los Resultados , Cloruros , Contaminantes Químicos del Agua/análisis , Desinfección
4.
Glob Chang Biol ; 30(1): e17136, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273501

RESUMEN

As global average surface temperature increases, extreme climatic events such as heatwaves are becoming more frequent and intense, which can drive biodiversity responses such as rapid population declines and/or shifts in species distributions and even local extirpations. However, the impacts of extreme climatic events are largely ignored in conservation plans. Birds are known to be susceptible to heatwaves, especially in dryland ecosystems. Understanding which birds are most vulnerable to heatwaves, and where these birds occur, can offer a scientific basis for adaptive management and conservation. We assessed the relative vulnerability of 1196 dryland bird species to heatwaves using a trait-based approach. Among them, 888 bird species are estimated to be vulnerable to heatwaves (170 highly vulnerable, eight extremely vulnerable), of which ~91% are currently considered non-threatened by the IUCN, which suggests that many species will likely become newly threatened with intensifying climate change. We identified the top three hotspot areas of heatwave-vulnerable species in Australia (208 species), Southern Africa (125 species) and Eastern Africa (99 species). Populations of vulnerable species recorded in the Living Planet Database were found to be declining significantly faster than those of non-vulnerable species (p = .048) after heatwaves occurred. In contrast, no significant difference in population trends between vulnerable and non-vulnerable species was detected when no heatwave occurred (p = .34). This suggests that our vulnerability framework correctly identified vulnerable species and that heatwaves are already impacting the population trends of these species. Our findings will help prioritize heatwave-vulnerable birds in dryland ecosystems in risk mitigation and adaptation management as the frequency of heatwaves accelerates in the coming decades.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Australia , Aves/fisiología , Cambio Climático
5.
Glob Chang Biol ; 29(17): 4706-4710, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37312638

RESUMEN

Billions of dollars are spent annually on ecological restoration efforts around the world and yet successful attainment of restoration targets still falls short in many regions. Globally, ecosystem restoration is becoming increasingly challenged with changes in climate. Years with extreme climatic events that limit plant establishment, such as severe drought, heatwaves, and floods are projected to increase in frequency. A critical evaluation of current ecological restoration practices and changes to those practices are needed to attain global restoration targets. For plant restoration, many efforts globally focus on planting in a single year following disturbance. The odds of restoration efforts being conducted in a year that is inconducive to plant establishment may be calculated using climatic risk data. We propose a risk-mitigation approach to restoration wherein plantings are conducted across multiple years for projects in a bet-hedging strategy and evaluated through an adaptive management approach.


Asunto(s)
Ecosistema , Plantas , Inundaciones , Sequías
6.
J Exp Biol ; 226(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37326213

RESUMEN

Climate change will increase the frequency and intensity of low-salinity (hyposalinity) events in coastal marine habitats. Sea urchins are dominant herbivores in these habitats and are generally intolerant of salinity fluctuations. Their adhesive tube feet are essential for survival, effecting secure attachment and locomotion in high wave energy habitats, yet little is known about how hyposalinity impacts their function. We exposed green sea urchins (Strongylocentrotus droebachiensis) to salinities ranging from ambient (32‰) to severe (14‰) and assessed tube feet coordination (righting response, locomotion) and adhesion [disc tenacity (force per unit area)]. Righting response, locomotion and disc tenacity decreased in response to hyposalinity. Severe reductions in coordinated tube foot activities occurred at higher salinities than those that affected adhesion. The results of this study suggest moderate hyposalinities (24-28‰) have little effect on S. droebachiensis dislodgement risk and survival post-dislodgment, while severe hyposalinity (below 24‰) likely reduces movement and prevents recovery from dislodgment.


Asunto(s)
Adhesivos , Erizos de Mar , Animales , Herbivoria , Locomoción
7.
J Anim Ecol ; 92(7): 1404-1415, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37190852

RESUMEN

Extreme climatic events may influence individual-level variability in phenotypes, survival and reproduction, and thereby drive the pace of evolution. Climate models predict increases in the frequency of intense hurricanes, but no study has measured their impact on individual life courses within animal populations. We used 45 years of demographic data of rhesus macaques to quantify the influence of major hurricanes on reproductive life courses using multiple metrics of dynamic heterogeneity accounting for life course variability and life-history trait variances. To reduce intraspecific competition, individuals may explore new reproductive stages during years of major hurricanes, resulting in higher temporal variation in reproductive trajectories. Alternatively, individuals may opt for a single optimal life-history strategy due to trade-offs between survival and reproduction. Our results show that heterogeneity in reproductive life courses increased by 4% during years of major hurricanes, despite a 2% reduction in the asymptotic growth rate due to an average decrease in mean fertility and survival by that is, shortened life courses and reduced reproductive output. In agreement with this, the population is expected to achieve stable population dynamics faster after being perturbed by a hurricane ( ρ = 1.512 ; 95% CI: 1.488, 1.538), relative to ordinary years ρ = 1.482 ; 1.475 , 1.490 . Our work suggests that natural disasters force individuals into new demographic roles to potentially reduce competition during unfavourable environments where mean reproduction and survival are compromised. Variance in lifetime reproductive success and longevity are differently affected by hurricanes, and such variability is mostly driven by survival.


Asunto(s)
Tormentas Ciclónicas , Rasgos de la Historia de Vida , Animales , Macaca mulatta , Dinámica Poblacional , Reproducción
8.
Environ Res ; 229: 116004, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116673

RESUMEN

Anthropogenic-mediated climate change severely affects the oceans. The most common definition of a Marine heatwave (MHW) considers that water temperatures rise above the 90th percentile threshold values, based on the last 30 years' average of temperature records for a particular location, and remains this high for five or more days. The current review addresses the evolution of definitions used, as well as the current understanding of the driving mechanisms of MHWs. The collected information shows that the study of MHW is recent and there is a growing interest among the scientific community on this topic, motivated largely by the impacts that pose to marine ecosystems. Further, a more in-depth analysis was carried out, addressing the impacts of MHW events on marine decapod crustacean species. The investigation of such impacts has been carried out using three main methodological approaches: the analysis of in situ records, observed in 33 studies; simulating MHW events through mesocosm experiments, found in 6 studies; and using computational predictive models, detected in 1 study. From the literature available it has been demonstrated that consequences are serious for these species, from altered expansion ranges to alterations of assemblages' abundances. Still, studies addressing the impacts of these extreme events on the decapod communities are scarce, often only limited to adult life forms of commercially relevant species, neglecting non-commercial ones and meroplanktonic life stages. Despite the severe impacts on the health of ecosystems, repercussions on socioeconomic human activities, like fisheries and aquaculture, are also a reality. Overall, this review aims to raise scientific and public awareness of these marine events, which are projected to increase in intensity and frequency in the coming decades. Therefore, there is a growing need to better understand and predict the mechanisms responsible for these extreme events and the impacts on key species, like decapod crustaceans.


Asunto(s)
Decápodos , Ecosistema , Humanos , Animales , Océanos y Mares , Temperatura , Cambio Climático
9.
Ecol Evol ; 13(1): e9661, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36713483

RESUMEN

Climate change is increasing the intensity, duration, and frequency of extreme climate events (ECEs). These ECEs can have major ecological consequences, e.g., changing nutrient flows, causing extirpation, and altering organismal development. Many ECEs are discrete events that occur at distinctive times during the biological processes they impact. Because of this, ECEs are likely to have differing ecological impacts depending on when they happen, yet we lack on studies that explore how the ecological consequences of ECEs vary with when they occur. Drawing upon evidence from physiological, population, and community ecology, and previous work on ecological disturbances, we suggest that the consequences of ECEs will be sensitive to when they occur. We illustrate the importance of timing by showing how the effects of an ECE could vary depending on when it occurs through the course of (1) organismal ontogeny, (2) population dynamics, and (3) community assembly. An enhanced focus on the timing of extreme weather in climate change research will reveal how and when ECEs are altering ecosystems, possible mechanisms behind these impacts, and what ecosystems or species are most vulnerable to ECEs, helping us to make more informed predictions about the ecological consequences of climate change.

10.
Biol Lett ; 18(8): 20220152, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35920030

RESUMEN

Extreme climatic events (ECEs) such as hurricanes have been hypothesized to be a major driving force of natural selection. Recent studies argue that, following strong hurricane disturbance, Anolis lizards in the Caribbean undergo selection for traits such as longer forelimbs or smaller body sizes that improve their clinging ability to their substrates increasing their chances of surviving hurricane wind gusts. Some authors challenge the generalization of this hypothesis arguing that other mechanisms may explain these phenotypic changes or that they may not necessarily be generalizable across systems. To address this issue, we compared body size and relative forelimb length of Anolis gundlachi, a trunk-ground anole living in closed-canopy forests in Puerto Rico, before, four months after, and 15 months after Hurricanes Irma and Maria in 2017. Overall, our results show no clear evidence of a temporal decrease in body size or increase forelimb length (relative to body size) challenging the generalizability of the clinging ability hypothesis. Understanding how animals adapt to ECE is an emerging field. Still, we are quickly learning that this process is complex and nuanced.


Asunto(s)
Tormentas Ciclónicas , Lagartos , Animales , Tamaño Corporal , Puerto Rico , Selección Genética
11.
Environ Monit Assess ; 194(9): 668, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35962808

RESUMEN

The earth is experiencing the impact of climate change due to global warming. Lake ecosystems are no exception and are expected to cope with the consequences of extreme climatic events (hereafter ECE), such as storms, floods, and droughts. These events have significant potential to alter the hydrological characteristics (HC) influencing the physical, chemical, and biological behavior of lake ecosystems. Considering such ecosystem's high-value services and benefits, it is the need of the hour to monitor and evaluate the impact of ECE on lake ecosystems. The second-largest brackish water system in the world, Chilika Lake, situated at the shore of the Bay of Bengal (BoB), has encountered a total of 1306 tropical cyclonic storms in the last 131 years. Since most tropical cyclones lead to heavy floods, this could be devastating for the ecosystem and its services. Hence, in order to bridge the knowledge gap, the present study was carried out to understand its impact, based on the available field data of more than two decades (1999 to 2020) and historical records of ECE and HC since 1840 and 1915 respectively from the literature. The study revealed that the ECE attributed to short-term changes in HC which were reflected through an immediate change in trophic state index (TSI, indicator of lake health) and trophic switchover (net autotrophic to heterotrophic) between net sink and source of carbon dioxide (CO2) in specific regions. This study showed that both the ECE as well as a human intervention (opening of the new mouth) had an integrated role in the maintenance of HC within the lake as indicated by the variability of salinity level which is the lifeblood of the Chilika. Major ECE factors which controlled the salinity in Chilika were freshwater input through cyclone-induced flash flooding and seawater exchange through varying mouth conditions, i.e., opening of the new mouth, shifting, and widening of existing mouths due to cyclone impacts. The impact of the cyclone-induced flash flood was sustained for a couple of months to years depending on the magnitudes. As evidenced from the historical data available for ECEs, respective mouth variability, and salinity regime, ECE was found to maintain the salinity regime of the lake in the long run. Since the hydrological characteristics are found to be maintained through ECE as well as human intervention, the Chilika Lake recorded a substantial increase in fishery, seagrasses, Irrawaddy dolphins, migratory birds, and reduction in weed infestation. This study highlights the importance of historical data collection through a continuous systematic lake monitoring program which would enable understanding the ecosystem functioning and behavior with ECE-induced changing environmental conditions which is also a key component for formulating a sustainable management action plan for lake ecosystems around the globe.


Asunto(s)
Ecosistema , Lagos , Asia , Monitoreo del Ambiente , Humanos , Agua de Mar
12.
Sci Total Environ ; 851(Pt 1): 158130, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995168

RESUMEN

The imbalance of terrestrial carbon (C) inputs versus losses to extreme precipitation can have consequences for ecosystem carbon balances. However, the current understanding of how ecosystem processes will respond to predicted extreme dry and wet years is limited. The current study was conducted for three years field experiment to examine the effects of environmental variables and soil microbes on soil respiration (Rs), autotrophic respiration (Ra) and heterotrophic respiration (Rh) under extreme wet and dry conditions in mowed and unmowed grassland of Inner Mongolia. Across treatments (i.e. control, dry spring, wet spring, dry summer and wet summer), the mean of Rs was increased by 24.9 % and 24.1 % in the wet spring and wet summer precipitation treatments, respectively in mowed grassland. In other hand, the mean of Rs was decreased by -22.1 % and -3.5 % in dry spring and dry summer precipitation treatments, respectively in mowed grassland. The relative contribution of Rh and Ra to Rs showed a significant (p < 0.05) change among simulated precipitation treatments with the highest value (76.18 %) in wet summer and 26.41 % in dry summer, respectively under mowed grassland. Rs was significantly (p < 0.05) affected by the interactive effect of extreme precipitation and mowing treatments in 2020 and 2021. The effects of precipitation change via these biotic and abiotic factors explained by 52 % and 81 % in Ra and Rh, respectively in mowed grassland. The changes in microbial biomass carbon (MBC) and nitrogen (MBN) had significant (p < 0.05) direct effects on Rh in both mowed and unmowed grasslands. The influence of biotic and abiotic factors on Rs was stronger in mowed grasslands with higher standardized regression weights than in unmowed grassland (0.78 vs. 0.69). These findings highlight the importance of incorporating extreme precipitation events and mowing in regulating the responses of C cycling to global change in the semiarid Eurasian meadow steppe.


Asunto(s)
Pradera , Suelo , Carbono , Ecosistema , Nitrógeno/análisis , Respiración
13.
J Environ Manage ; 320: 115809, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35940010

RESUMEN

Extreme climatic events trigger changes in ecosystems with potential negative impacts for people. These events may provide an opportunity for environmental managers and decision-makers to improve the governance of social-ecological systems, however there is conflicting evidence regarding whether these actors are indeed able to change governance after extreme climatic events. In addition, the majority of research to date has focused on changes in specific policies or organizations after crises. A broader investigation of governance actors' activities is needed to more fully understand whether or not crises trigger change. Here we demonstrate the use of a social network analysis of management and decision-making forums (e.g. meetings, partnerships) to reveal the effects of an extreme climatic event on governance of the Great Barrier Reef over an eight-year period. To assess potential shifts in action, we examine the topics of forums and the relative participation and influence of diverse governance actors before, during, and after two back-to-back mass coral bleaching events in 2016 and 2017. Our analysis reveals that there is little change in the topics that receive attention, and in the relative participation and influence of different actor groups in the region. Our research demonstrates that network analysis of forums is useful for analyzing whether or not actors' activities and priorities evolve over time. Our results provide empirical evidence that governance actors struggle to leverage extreme climate events as windows of opportunity and further research is needed to identify alternative opportunities to improve governance.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Cambio Climático , Conservación de los Recursos Naturales/métodos , Humanos
14.
Sci Total Environ ; 841: 156744, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35716751

RESUMEN

Heatwaves have become more frequent and intense in the last two decades, resulting in detrimental effects on marine bivalves and ecosystems they sustain. Intertidal clams inhabit the most physiologically challenging habitats in coastal areas and live already near their thermal tolerance limits. However, whether and to what extent atmospheric heatwaves affect intertidal bivalves remain poorly understood. Here, we investigated physiological responses of the Manila clam, Ruditapes philippinarum, to heatwaves at air temperature regimes of 40 °C and 50 °C occurring frequently and occasionally at the present day in the Beibu Gulf, South China Sea. With the increasing intensity of heatwaves and following only two days of aerial exposure, Manila clams suffered 100 % mortality at 50 °C, indicating that they succumb to near future heatwaves, although they survived under various scenarios of moderate heatwaves. The latter is couched in energetic terms across levels of biological organization. Specifically, Manila clams acutely exposed to heatwaves enhanced their standard metabolic rate to fuel essential physiological maintenance, such as increasing activities of SOD, CAT, MDA, and AKP, and expression of HSP70. These strategies occur likely at the expense of fitness-related functions, as best exemplified by significant depressions in activities of enzymes (NKA, CMA, and T-ATP) and expression levels of genes (PT, KHK, CA, CAS, TYR, TNF-BP, and OSER). When heatwaves occurred again, Manila clams can respond and acclimate to thermal stress by implementing a suite of more ATP-efficient and less energy-costly compensatory mechanisms at various levels of biological organization. It is consequently becoming imperative to uncover underlying mechanisms responsible for such positive response and rapid acclimation to recurrent heatwaves.


Asunto(s)
Bivalvos , Ecosistema , Aclimatación , Adenosina Trifosfato , Animales , Bivalvos/fisiología , Alimentos Marinos
15.
Sci Total Environ ; 828: 154421, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35278546

RESUMEN

Harmful algal blooms are symptomatic of eutrophication and lead to deterioration of water quality and ecosystem services. Extreme climatic events could enhance eutrophication resulting in more severe nuisance algal blooms, while they also may hamper current restoration efforts aimed to reduce nutrient loads. Evaluation of restoration measures on their efficacy under climate change is essential for effective water management. We conducted a two-month mesocosm experiment in a hypertrophic urban canal focussing on the reduction of sediment phosphorus (P)-release. We tested the efficacy of four interventions, measuring phytoplankton biomass, nutrients in water and sediment. The measures included sediment dredging, water column aeration and application of P-sorbents (lanthanum-modified bentonite - Phoslock® and iron-lime sludge, a by-product from drinking water production). An extreme heatwave (with the highest daily maximum air temperature up to 40.7 °C) was recorded in the middle of our experiment. This extreme heatwave was used for the evaluation of heatwave-induced impacts. Dredging and lanthanum modified bentonite exhibited the largest efficacy in reducing phytoplankton and cyanobacteria biomass and improving water clarity, followed by iron-lime sludge, whereas aeration did not show an effect. The heatwave negatively impacted all four measures, with increased nutrient releases and consequently increased phytoplankton biomass and decreased water clarity compared to the pre-heatwave phase. We propose a conceptual model suggesting that the heatwave locks nutrients within the biological P loop, which is the exchange between labile P and organic P, while the P fraction in the chemical P loop will be decreased. As a consequence, the efficacy of chemical agents targeting P-reduction by chemical binding will be hampered by heatwaves. Our study indicates that current restoration measures might be challenged in a future with more frequent and intense heatwaves.


Asunto(s)
Bentonita , Calidad del Agua , Ecosistema , Eutrofización , Hierro , Lagos , Lantano , Fósforo , Fitoplancton , Aguas del Alcantarillado
16.
J Exp Biol ; 225(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35156125

RESUMEN

Forage fish tend to respond strongly to environmental variability and therefore may be particularly sensitive to marine climate stressors. We used controlled laboratory experiments to assess the vulnerability of Pacific herring (Clupea pallasii) embryos to the combined effects of high partial pressure of carbon dioxide (PCO2) and a simulated marine heatwave. The two PCO2 treatments reflected current conditions (∼550 µatm) and a future extreme level (∼2300 µatm). The dynamics of the heatwave (i.e. rate of onset: ∼0.85°C day-1; maximum intensity: +4.4°C) were modeled from the most extreme events detected by a long-term regional temperature dataset. Simultaneous exposure to these potential stressors did not affect embryo survival. However, the heatwave did elicit significant metabolic effects that included higher rates of routine metabolism (Q10=1.15-1.72), growth (Q10=1.87), rate of development to hatch (Q10=3.01) and yolk consumption (Q10=3.21), as well as a significant reduction in production efficiency (-10.8%) and a three-fold increase in the rate of developmental anomalies. By contrast, high PCO2 conditions produced comparatively small effects on vital rates, including a significant increase in time to hatch (+0.88 days) and a reduction in routine metabolic rate (-6.3%) under the ambient temperature regime only. We found no evidence that high PCO2 increased routine metabolic rate at either temperature. These results indicate that Pacific herring embryos possess sufficient physiological plasticity to cope with extreme seawater acidification under optimal and heatwave temperature conditions, although lingering metabolic inefficiencies induced by the heatwave may lead to important carryover effects in later life stages.


Asunto(s)
Peces , Agua de Mar , Animales , Dióxido de Carbono , Concentración de Iones de Hidrógeno , Temperatura
17.
Photochem Photobiol Sci ; 21(6): 997-1009, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35226331

RESUMEN

Evergreen plants growing at high latitudes or high elevations may experience freezing events in their photosynthetic tissues. Freezing events can have physical and physiological effects on the leaves which alter leaf optical properties affecting remote and proximal sensing parameters. We froze leaves of six alpine plant species (Soldanella alpina, Ranunculus kuepferi, Luzula nutans, Gentiana acaulis, Geum montanum, and Centaurea uniflora) and three evergreen forest understorey species (Hepatica nobilis, Fragaria vesca and Oxalis acetosella), and assessed their spectral transmittance and optically measured pigments, as well as photochemical efficiency of photosystem II (PSII) as an indicator of freezing damage. Upon freezing, leaves of all the species transmitted more photosynthetically active radiation (PAR) and some species had increased ultraviolet-A (UV-A) transmittance. These differences were less pronounced in alpine than in understorey species, which may be related to higher chlorophyll degradation, visible as reduced leaf chlorophyll content upon freezing in the latter species. Among these understorey forbs, the thin leaves of O. acetosella displayed the largest reduction in chlorophyll (-79%). This study provides insights into how freezing changes the leaf optical properties of wild plants which could be used to set a baseline for upscaling optical reflectance data from remote sensing. Changes in leaf transmittance may also serve to indicate photosynthetic sufficiency and physiological tolerance of freezing events, but experimental research is required to establish this functional association.


Asunto(s)
Clorofila , Hojas de la Planta , Clorofila/metabolismo , Bosques , Congelación , Fotosíntesis , Hojas de la Planta/metabolismo
18.
Plants (Basel) ; 10(9)2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34579374

RESUMEN

Climate extremes are becoming more frequent with global climate change and have the potential to cause major ecological regime shifts. Along the northern Gulf of Mexico, a coastal wetland in Texas suffered sudden vegetation dieback following an extreme precipitation and flooding event associated with Hurricane Harvey in 2017. Historical salt marsh dieback events have been linked to climate extremes, such as extreme drought. However, to our knowledge, this is the first example of extreme precipitation and flooding leading to mass mortality of the salt marsh foundation species, Spartina alterniflora. Here, we investigated the relationships between baseline climate conditions, extreme climate conditions, and large-scale plant mortality to provide an indicator of ecosystem vulnerability to extreme precipitation events. We identified plant zonal boundaries along an elevation gradient with plant species tolerant of hypersaline conditions, including succulents and graminoids, at higher elevations, and flood-tolerant species, including S. alterniflora, at lower elevations. We quantified a flooding threshold for wetland collapse under baseline conditions characterized by incremental increases in flooding (i.e., sea level rise). We proposed that the sudden widespread dieback of S. alterniflora following Hurricane Harvey was the result of extreme precipitation and flooding that exceeded this threshold for S. alterniflora survival. Indeed, S. alterniflora dieback occurred at elevations above the wetland collapse threshold, illustrating a heightened vulnerability to flooding that could not be predicted from baseline climate conditions. Moreover, the spatial pattern of vegetation dieback indicated that underlying stressors may have also increased susceptibility to dieback in some S. alterniflora marshes.Collectively, our results highlight a new mechanism of sudden vegetation dieback in S. alterniflora marshes that is triggered by extreme precipitation and flooding. Furthermore, this work emphasizes the importance of considering interactions between multiple abiotic and biotic stressors that can lead to shifts in tolerance thresholds and incorporating climate extremes into climate vulnerability assessments to accurately characterize future climate threats.

19.
Mar Pollut Bull ; 168: 112410, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33971451

RESUMEN

Populations of the clam Anomalocardia flexuosa, subjected to different pollution conditions, were experimentally exposed to marine heatwaves of actual and future intensities and varying durations. We measured physiological and biochemical biomarkers and survival rates of the species under simulated heatwave events of 7 and 11 days. We observed that both the response of A. flexuosa to heatwaves and its baseline values of biomarkers were distinct between populations, demonstrating that the previous exposure to contaminants negatively interferes with the thermal tolerance of this bivalve. The duration and intensities of heatwaves here tested represent a considerable challenge for the survival of coastal bivalves. Our results suggest that the predicted increase in the ocean's average temperature and the frequency and intensity of marine heatwaves, as well as urbanization and increasing occupation of coastal regions, are factors that synergistically make A. flexuosa increasingly vulnerable over the decades.


Asunto(s)
Bivalvos , Calor , Animales , Temperatura
20.
Am J Bot ; 108(3): 411-422, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33792046

RESUMEN

PREMISE: Climate change is having major impacts on alpine and arctic regions, and inter-annual variations in temperature are likely to increase. How increased climate variability will impact plant reproduction is unclear. METHODS: In a 4-year study on fruit production by an alpine plant community in northern Sweden, we applied three warming regimes: (1) a static level of warming with open-top chambers (OTC), (2) press warming, a yearly stepwise increase in warming, and (3) pulse warming, a single-year pulse event of higher warming. We analyzed the relationship between fruit production and monthly temperatures during the budding period, fruiting period, and whole fruit production period and the effect of winter and summer precipitation on fruit production. RESULTS: Year and treatment had a significant effect on total fruit production by evergreen shrubs, Cassiope tetragona, and Dryas octopetala, with large variations between treatments and years. Year, but not treatment, had a significant effect on deciduous shrubs and graminoids, both of which increased fruit production over the 4 years, while forbs were negatively affected by the press warming, but not by year. Fruit production was influenced by ambient temperature during the previous-year budding period, current-year fruiting period, and whole fruit production period. Minimum and average temperatures were more important than maximum temperature. In general, fruit production was negatively correlated with increased precipitation. CONCLUSIONS: These results indicate that predicted increased climate variability and increased precipitation due to climate change may affect plant reproductive output and long-term community dynamics in alpine meadow communities.


Asunto(s)
Frutas , Pradera , Regiones Árticas , Cambio Climático , Suecia , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...