Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 678(Pt B): 134-142, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39241444

RESUMEN

The photocatalytic hydrogen production performance of semiconductor materials can be improved by co-catalyst modification. In most of the studies, the size of the co-catalyst is relatively small compared to the primary catalyst. However, in this study, we employed a novel strategy by synthesizing a relatively large-sized Cu2MoS4 as the co-catalyst and in situ loading smaller-sized Zn0.5Cd0.5S onto Cu2MoS4, verifying that Cu2MoS4 enhances the photocatalytic hydrogen production efficiency of Zn0.5Cd0.5S. It can be observed by scanning electron microscopy (SEM) that the lateral size of 2D Cu2MoS4 is at least 50 times larger than the Zn0.5Cd0.5S nanoparticle particle size. In addition, Density Functional Theory (DFT) calculations have demonstrated that the active site for hydrogen production in the composite is located in Cu2MoS4. The large-sized of Cu2MoS4 not only provides more active sites but also broadens the electron transport channel, which is conducive to promoting the transfer of photogenerated electrons from Zn0.5Cd0.5S. This work enriches the study of large-sized materials as co-catalyst and provides a strategy for the construction of composite catalysts.

2.
Sci Bull (Beijing) ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39060215

RESUMEN

Combining terrestrial biomass as the reductant with submarine-type hydrothermal environments for CO2 reduction represents a possible approach for novel energy production systems that sustainably circulate carbon. However, increasing the reductive power of biomass is the main limitation of this potential method. Herein, we demonstrate that Co-doped with small amounts of Pd enhances the reduction of CO2 by selectively producing an active intermediate from carbohydrates. This catalytic reaction utilized glucose as a reductant to achieve high formate production efficiency (458.6 g kg-1) with nearly 100% selectivity with 7.5 wt% Pd1Co20/γ-Al2O3 at a moderate temperature of 225 °C. The regulation of the electronic structure of the catalytic Co surface by the dopant Pd plays a key role in promoting the C-C bond cleavage of glucose and hydrogen transfer for CO2 reduction. The findings presented here indicate that biomass can serve as the hydrogen source for CO2 reduction and provide insight into the potential utilization of CO2 in sustainable industrial applications.

3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000196

RESUMEN

The green and sustainable electrocatalytic conversion of nitrogen-containing compounds to ammonia is currently in high demand in order to replace the eco-unfriendly Haber-Bosch process. Model catalysts for the nitrate reduction reaction were obtained by electrodeposition of metal Co, Fe, and bimetallic Fe/Co nanoparticles from aqueous solutions onto a graphite substrate. The samples were characterized by the following methods: SEM, XRD, XPS, UV-vis spectroscopy, cyclic (and linear) voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. In addition, the determination of the electrochemically active surface was also performed for all electrocatalysts. The best electrocatalyst was a sample containing Fe-nanoparticles on the layer of Co-nanoparticles, which showed a Faradaic efficiency of 58.2% (E = -0.785 V vs. RHE) at an ammonia yield rate of 14.6 µmol h-1 cm-2 (at ambient condition). An opinion was expressed to elucidate the mechanism of coordinated electrocatalytic action of a bimetallic electrocatalyst. This work can serve primarily as a starting point for future investigations on electrocatalytic conversion reactions to ammonia using model catalysts of the proposed type.


Asunto(s)
Amoníaco , Cobalto , Hierro , Nanopartículas del Metal , Nitratos , Oxidación-Reducción , Amoníaco/química , Catálisis , Hierro/química , Nanopartículas del Metal/química , Nitratos/química , Cobalto/química , Técnicas Electroquímicas/métodos
4.
Angew Chem Int Ed Engl ; : e202409945, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031539

RESUMEN

Metal halide perovskites (MHPs) have emerged as attractive candidates for producing green hydrogen via photocatalytic pathway. However, the presence of abundant defects and absence of efficient hydrogen evolution reaction (HER) active sites on MHPs seriously limit the solar-to-chemical (STC) conversion efficiency. Herein, to address this issue, we present a bi-functionalization strategy through decorating MHPs with a molecular molybdenum-sulfur-containing co-catalyst precursor. By virtue of the strong chemical interaction between lead and sulfur and the good dispersion of the molecular co-catalyst precursor in the deposition solution, a uniform and intimate decoration of the MHPs surface with lead sulfide (PbS) and amorphous molybdenum sulfide (MoSx) co-catalysts is obtained simultaneously. We show that the PbS co-catalyst can effectively passivate the Pb-related defects on the MHPs surface, thus retarding the charge recombination and promoting the charge transfer efficiency significantly. The amorphous MoSx co-catalyst further promotes the extraction of photogenerated electrons from MHPs and facilitates the HER catalysis. Consequently, drastically enhanced photocatalytic HER activities are obtained on representative MHPs through the synergistic functionalization of PbS and MoSx co-catalysts. A solar-to-chemical (STC) conversion efficiency of ca. 4.63% is achieved on the bi-functionalized FAPbBr3-xIx, which is among the highest values reported for MHPs.

5.
J Colloid Interface Sci ; 672: 631-641, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38865877

RESUMEN

The sustainable generation of ammonia by photocatalytic nitrogen fixation under mild conditions is fascinating compared to conventional industrial processes. Nevertheless, owing to the low charge transfer efficiency, the insufficient light absorption capacity and limited active sites of the photocatalyst cause the difficult adsorption and activation of N2 molecules, thereby resulting in a low photocatalytic conversion efficiency. Herein, a novel bimetallic CoMoB nanosheets (CoMoB) co-catalyst modified carbon nitride with dual moiety defects (CN-TH3/3) Schottky junction photocatalyst is designed for photocatalytic nitrogen reduction reaction (NRR). The photocatalytic nitrogen reduction rate of the optimized CoMoB/CN-TH3/3 photocatalyst is 4.81 mM·g-1·h-1, which is 6.2 and 2.2 times higher than carbon nitride (CN) (0.78 mM·g-1·h-1) and CN-TH3/3 (2.21 mM·g-1·h-1), respectively. The excellent photocatalytic NRR performance is ascribed not only to the introduction of dual moiety defects (cyano and cyanamide groups) that extends the visible light absorption range and promotes exciton polarization dissociation, but also to the formation of interfacial electric field between CoMoB and CN-TH3/3, which effectively facilitates the interfacial charge transfer. Thus, the synergistic interaction between CN-TH3/3 and CoMoB further increases the electron numble of CoMoB active sites, which effectively strengthens the adsorption and activation of N2 and weakens the NN triple bond, thereby enhancing the photocatalytic NRR activity. This work highlights the introduced dual moiety defects and bimetallic CoMoB co-catalyst to synergistically enhance the photocatalytic nitrogen reduction performance.

6.
J Colloid Interface Sci ; 669: 569-577, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38729005

RESUMEN

The capacitance of a co-catalyst can be likened to a "double-edged sword". Α co-catalysts with high capacitance can store photoexcited electrons, thereby facilitating charge separation within the host catalyst. However, this property simultaneously restricts electron release. Both effects are enhanced with an increasing capacitance value, implying that excessively high capacitance can significantly hinder the photocatalytic hydrogen (H2) production reaction. Herein, we have designed a metal-organic framework (MOF) -derived carbon-coated nickel phosphide (C-Ni5P4) as the co-catalyst of cadmium sulfide (CdS). When C-Ni5P4 and CdS are closely interconnected, electrons spontaneously migrate from CdS to C-Ni5P4 under irradiation due to the higher work function (WF) of C-Ni5P4 compared to CdS. Most importantly, although the WF of C-Ni5P4 is 0.1 eV lower than that of Ni5P4, its specific capacitance (1.2 mF/cm2) is also lower than that of Ni5P4 (1.3 mF/cm2). This difference dramatically promotes electron release. Thereby exerting a strong positive effect on capacitance catalysis. Therefore, 7% C-Ni5P4/CdS exhibits exceptional cyclic stability and has a remarkably high activity level of 12283 µmol/h/g and 3.8 times as many as 3.0 %Ni5P4/CdS. This study provides a theoretical basis for the advancement of photocatalysts with high efficiency in H2 production and is expected to be applied in other fields of photocatalysis.

7.
J Hazard Mater ; 470: 134214, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38603908

RESUMEN

Fe(II) regeneration is decisive for highly efficient H2O2-based Fenton-like processes, but the role of cobalt-containing reactive sites in promoting Fe(II) regeneration was overlooked. Herein, a single atom Co-N-C catalyst was employed in Fe(II)/H2O2 system to promote the degradation of diverse organic contaminants. The EPR and quenching experiments indicated Co-N-C significantly enhanced the generation of superoxide species, and accelerated hydroxyl radical generation for pollutant degradation. The electrochemical and surface composition analyses demonstrated the enhanced H2O2 activation and Fe(III)/Fe(II) recycling on the catalyst. Furthermore, in-situ Raman characterization with shell-isolated gold nanoparticles was employed to visualize the interfacial reactive intermediates and their time-resolved interaction. The accumulation of interfacial CoOOH* was confirmed when Co-N-C activated H2O2 alone, but it rapidly transformed into FeOOH* upon Fe(II) addition. Besides, the temporal variation of OOH* intermediates and the relative intensity of Co(III)-O and Co(IV)=O peaks depicted the dynamic interaction of reactive intermediates along the H2O2 consumption. With this basis, we proposed a mechanism of interfacial OOH* mediated Fe(II) regeneration, which overcame the kinetical limitation of Fe(II)/H2O2 system. Therefore, this study provided a primary effort to elucidate the overlooked role of interfacial CoOOH* in the Fenton-like processes, which may inspire the design of more efficient catalysts.

8.
ACS Nano ; 18(19): 12524-12536, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38687979

RESUMEN

Highly active and low-cost co-catalysts have a positive effect on the enhancement of solar H2 production. Here, we employ two-dimensional (2D) MBene as a noble-metal-free co-catalyst to boost semiconductor for photocatalytic H2 production. MoB MBene is a 2D nanoboride, which is directly made from MoAlB by a facile hydrothermal etching and manual scraping off process. The as-synthesized MoB MBene with purity >95 wt % is treated by ultrasonic cell pulverization to obtain ultrathin 2D MoB MBene nanosheets (∼0.61 nm) and integrated with CdS via an electrostatic interaction strategy. The CdS/MoB composites exhibit an ultrahigh photocatalytic H2 production activity of 16,892 µmol g-1 h-1 under visible light, surpassing that of pure CdS by an exciting factor of ≈1135%. Theoretical calculations and various measurements account for the high performance in terms of Gibbs free energy, work functions, and photoelectrochemical properties. This work discovers the huge potential of these promising 2D MBene family materials as high-efficiency and low-cost co-catalysts for photocatalytic H2 production.

9.
ChemSusChem ; : e202300871, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546156

RESUMEN

Atomically dispersed catalysts have gained considerable attention due to their unique properties and high efficiency in various catalytic reactions. Herein, a series of Co/N-doped carbon (N-C) catalysts was prepared using a metal-lignin coordination strategy and employed in formic acid dehydrogenation (FAD) and hydrodeoxygenation (HDO) of vanillin. The atomically dispersed Co/N-C catalysts showed outstanding activity, acid resistance, and long-term stability in FAD. The improved activity and stability may be attributed to the high dispersion of Co species, increased surface area, and strong Co-N interactions. XPS and XAS characterization revealed the formation of Co-N3 centers, which are assumed to be the active sites. In addition, DFT calculations demonstrated that the adsorption of formic acid on single-atom Co was stronger than that on Co13 clusters, which may explain the high catalytic activity. The Co/N-C catalyst also showed promising performance in the transfer HDO of vanillin with formic acid, without any external additional molecular H2.

10.
Adv Mater ; 36(25): e2400626, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520245

RESUMEN

The employment of single atoms (SAs), especially Pt SAs, as co-catalysts in photocatalytic H2 generation has gained significant attention due to their exceptional efficiency. However, a major challenge in their application is the light-induced agglomeration of these SAs into less active nanosized particles under photocatalytic conditions. This study addresses the stability and reactivity of Pt SAs on TiO2 surfaces by investigating various post-deposition annealing treatments in air, Ar, and Ar-H2 environments at different temperatures. It is described that annealing in an Ar-H2 atmosphere optimally stabilizes SA configurations, forming stable 2D rafts of assembled SAs ≈0.5-1 nm in diameter. These rafts not only resist light-induced agglomeration but also exhibit significantly enhanced H2 production efficiency. The findings reveal a promising approach to maintaining the high reactivity of Pt SAs while overcoming the critical challenge of their stability under photocatalytic conditions.

11.
J Colloid Interface Sci ; 662: 928-940, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382376

RESUMEN

The development of low-cost and efficient metal sulfide photocatalysts through morphological and structural design is vital to the advancement of the hydrogen economy. However, metal sulfide semiconductor photocatalysts still suffer from low carrier separation and poor solar-to-hydrogen conversion efficiencies. Herein, two-dimensional ZnIn2S4 nanosheets were grown on Zn0.5Cd0.5S hollow nanocages to construct Zn0.5Cd0.5S@ZnIn2S4 hollow nanocages for the first time. Novel hollow core-shell Zn0.5Cd0.5S@ZnIn2S4/MoS2 nanocages with Z-scheme heterojunction structures were obtained by incorporating MoS2 nanosheet co-catalyst via the solvothermal method. The resulting Zn0.5Cd0.5S@ZnIn2S4/MoS2 exhibited unique structural and compositional advantages, leading to remarkable photocatalytic hydrogen evolution rates of up to 8.5 mmol·h-1·g-1 without the use of any precious metal co-catalysts. This rate was 10.6-fold and 7.1-fold higher compared to pure ZnIn2S4 and Zn0.5Cd0.5S, respectively. Moreover, the optimized Zn0.5Cd0.5S@ZnIn2S4/MoS2 photocatalyst outperformed numerous reported ZnIn2S4-based photocatalysts and some ZnIn2S4-based photocatalysts based on precious metal co-catalysts. The exceptional photocatalytic performance of Zn0.5Cd0.5S@ZnIn2S4/MoS2 can be attributed to the Z-scheme heterojunction of core-shell structure that enhanced charge carrier separation and transport, as well as the co-catalytic action of MoS2. Overall, the proposed Zn0.5Cd0.5S@ZnIn2S4/MoS2 with heterojunction structure is a promising candidate for the preparation of efficient photocatalysts for solar-to-hydrogen energy conversion.

12.
Environ Res ; 242: 117761, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036214

RESUMEN

This paper describes a simple phyto-remediation of feather-like silver/copper bi-matrix (BMs) was constructed by employing pommagrant waste peel (PWP) extract as crucial role of reducing agent and chelating agents. Numerous strategies, including UV-Visible, XRD, SEM-EDX, and TEM and BET isotherm were used to analysis the optical, structural, surface area and functional properties. Ag/Cu BPNMs of TEM characterization shows feather-like architectural features with constrained size and shape. The Ag/Cu co-catalytic nanoparticles have a particle size of 34-64 nm. The photocatalytic efficiency of Ag/Cu BMs was investigated using a garment dye, Congo red (CR), at successive time intervals under halogen lamp exposure. For Ag/Cu bimetallic nanoparticles, the photocatalytic degradation rate was recorded to be 100% after 40 min which is caused by adsorption of Congo red dye molecules on Ag/Cu and their degradation by reactive oxygen species (ROS). ROS are free hydroxyl radicals such as •OH and O2• ions that have high oxidizing capacity. The developed Ag/Cu BMs shown effective bacteriostatic action against many infections.


Asunto(s)
Rojo Congo , Nanopartículas del Metal , Animales , Cobre/química , Plumas , Especies Reactivas de Oxígeno , Vestuario , Nanopartículas del Metal/química
13.
Adv Mater ; 36(11): e2309470, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38113301

RESUMEN

Electrocatalytic reduction of nitric oxide (NO) to ammonia (NH3 ) is a clean and sustainable strategy to simultaneously remove NO and synthesize NH3 . However, the conversion of low concentration NO to NH3 is still a huge challenge. In this work, the dilatation strain between Cu and Co interface over Cu@Co catalyst is built up and investigated for electroreduction of low concentration NO (volume ratio of 1%) to NH3 . The catalyst shows a high NH3 yield of 627.20 µg h-1 cm-2 and a Faradaic efficiency of 76.54%. Through the combination of spherical aberration-corrected transmission electron microscopy and geometric phase analyses, it shows that Co atoms occupy Cu lattice sites to form dilatation strain in the xy direction within Co region. Further density functional theory calculations and NO temperature-programmed desorption (NO-TPD) results show that the surface dilatation strain on Cu@Co is helpful to enhance the NO adsorption and reduce energy barrier of the rate-determining step (*NO to *NOH), thereby accelerating the catalytic reaction. To simultaneously realize NO exhaust gas removal, NH3 green synthesis, and electricity output, a Zn-NO battery with Cu@Co cathode is assembled with a power density of 3.08 mW cm-2 and an NH3 yield of 273.37 µg h-1 cm-2 .

14.
Nanotechnology ; 34(44)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37527631

RESUMEN

We report the formation of Mo1-xWxO3-CdS (0 ≤ x ≤1) nanophotocatalysts by a combination of solid-state and solution-impregnation processes. The formation of 2D+1D heterostructured composite was revealed by electron microscopy and the structure of ternary co-catalyst and photocatalysts were confirmed by spectroscopic analyses. The H2evolution activity of the nanocomposites was assessed via photocatalytic splitting of water under the irradiation of visible light. All the nanocomposites studied here exhibit notable catalytic activity and good photostability using lactic acid as the sacrificial electron donor compared to a pristine compound. Among these nanocomposites, WO3-CdS shows superior activity with H2evolution rates of 15.19 mmolg-1h-1, 28 times higher than the pure CdS. The WO3-CdS photoactivity is not only superior among all the composites studied here but also highest among the reported WO3composite catalysts to date. The novel construction of the oxide-based nanocomposite photocatalyst shown here efficiently enhances the catalytic activity by effective separation of charge carriers and inhibits photocorrosion of CdS nanorods. The apparent quantum yield of the hydrogen evolution for WO3-CdS was found to be 8% in the visible spectral range. The disparity of the catalytic ability between MoO3and WO3and the variance among the compositions was unraveled through optical band-offset alignment with respect to CdS. Though the 2D+1D novel fabrication is common to all the composites, the difference in the type of band alignment MoO3(type-I) and WO3(type-II) with CdS plays a highly significant role in the co-catalytic activity.

15.
Chem Asian J ; 18(15): e202300361, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37314398

RESUMEN

In order to construct noble metal-free co-catalysts to facilitate the transport and separation of photocatalyst carriers, herein, a MOF-based derived bimetallic NiCu0.2 co-catalyst was loaded on NH2 -MIL-125(Ti). The obtained NiCu0.2 /NH2 -MIL-125 exhibited a photocatalytic activity of 161.4 µmol g-1 h-1 for hydrogen evolution, 12.6 times higher than that of the Ni/NH2 -MIL-125 and even slightly better than Pt/NH2 -MIL-125. The work expands the development pathway of cost-effective and highly active bimetallic co-catalysts for photocatalytic H2 evolution.

16.
J Environ Sci (China) ; 132: 12-21, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37336602

RESUMEN

In the present work, functional diamine groups into indium frameworks to synthesize cyclic carbonates from CO2 and epoxides with efficient catalytic activity in the absence of co-catalyst and solvent are reported for the first time. Crystalline porous materials (CPM)-5 modified with 1,2-phenylene diamine and ethylene diamine (CPM-5-PhDA and CPM-5-EDA), were prepared using a post-synthetic modification (PSM) method. The properties of the modified CPM-5 were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), N2-adsorption, scanning electron microscopy (SEM), CO2 adsorption, and temperature programmed desorption TPD methods. The presence of diamine groups as basic sites and indium Lewis acid sites in the framework structure were desirable for high catalytic activity. For a given catalyst weight, CPM-5-PhDA was the best candidate to appear with great catalytic activity and selectivity for the cycloaddition reaction at 100°C and 1 MPa CO2 under co-catalyst and solvent free conditions. CPM-5-PhDA also was found to afford large and bulky epoxides. The catalyst can be easily separated and reused five times without any decline in activity.


Asunto(s)
Dióxido de Carbono , Indio , Solventes , Dióxido de Carbono/química , Diaminas , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos Epoxi/química
17.
Nanomaterials (Basel) ; 13(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37110911

RESUMEN

Inspired by the unique properties of the three-dimensional hollow nanostructures in the field of photocatalysis, as well as the combination of co-catalyst, porous hollow spherical Pd/CdS/NiS photocatalysts are prepared by stepwise synthesis. The results show that the Schottky junction between Pd and CdS accelerates the transport of photogenerated electrons, while a p-n junction between NiS and CdS traps the photogenerated holes. As co-catalysts, the Pd nanoparticles and the NiS are loaded inside and outside the hollow CdS shell layer, respectively, which combines with the particular characteristic of the hollow structure, resulting in a spatial carrier separation effect. Under the synergy of the dual co-catalyst loading and hollow structure, the Pd/CdS/NiS has favorable stability. Its H2 production under visible light is significantly increased to 3804.6 µmol/g/h, representing 33.4 times more than that of pure CdS. The apparent quantum efficiency is 0.24% at 420 nm. A feasible bridge for the development of efficient photocatalysts is offered by this work.

18.
J Colloid Interface Sci ; 644: 124-133, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37105036

RESUMEN

It is necessary for photoelectrochemical (PEC) water splitting to reduce the electron-hole recombination rate and enhance the water oxidation reaction kinetics. Here, we prepared Ni2P2O7-Nd-BiVO4 composite photoanodes by coupling Ni2P2O7 co-catalysts to neodymium (Nd)-doped BiVO4 surfaces through photo-assisted electrodeposition. The Ni2P2O7-Nd-BiVO4 photoanode exhibits a high photocurrent density of 3.6 mA cm-2 at 1.23 V vs reversible hydrogen electrode (RHE), which is three times higher than that of the bare BiVO4 (1.2 mA cm-2). Detailed characterizations demonstrate that Nd doping reduces the band gap, significantly increases the carrier density and effectively reduces the charge transfer resistance. More importantly, the Ni2P2O7 co-catalyst has multiple roles. Specifically, it can act as a hole extraction layer to accelerate hole migration and inhibit hole-electron recombination. At the same time, it significantly improves the water oxidation reaction kinetics. In addition, it also provides more water oxidation active sites. This work provides ideas for the design and study of efficient BiVO4-based photoanodes.

19.
ACS Appl Mater Interfaces ; 15(12): 15478-15485, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36926802

RESUMEN

Graphitic carbon nitride (gCN) is a promising organic platform for driving light-activated charge-transfer reactions in a number of valuable photocatalytic cycles. A primary limitation of gCN as a photocatalyst is its short excited-state lifetime, which is mediated by a high density of trap and defect sites that result in rapid excited-state decay and low photocatalytic efficiency. To enhance the catalytic activity, gCN is often functionalized with a metal co-catalyst; however, the mechanism by which metal co-catalysts enhance the reactivity has not been clearly established. In this work, the excited-state dynamics of gCN and silver-modified gCN are compared using ultrafast transient absorption and time-resolved photoluminescence spectroscopies. In silver-modified gCN, an ultrafast spectral shift in the silver plasmon resonance provides direct spectral evidence of electron transfer from gCN to the silver nanoparticles. The electron-transfer rate is competitive with other non-radiative relaxation pathways, with electron-transfer yields approaching 50%, thus providing an effective strategy for mitigating losses associated with defects and trap sites.

20.
Artículo en Inglés | MEDLINE | ID: mdl-36857514

RESUMEN

Structural and morphological modulations play a crucial role in increasing the surface active sites of semiconductor photocatalysts for visible-light-driven water splitting. To fabricate a novel CdS/Ni3S4/Ni2P@C heterostructure, we first prepared carbon-encapsulated Ni3S4/Ni2P (Ni3S4/Ni2P@C) with a high surface area by sequential carbonization and phosphorization of a Ni-metal-organic framework (MOF) precursor. Combined characterization and photoelectrochemical measurement results reveal that the assembly of CdS nanowires and highly porous Ni3S4/Ni2P@C can enhance the visible-light response capability of the CdS/Ni3S4/Ni2P@C heterostructure catalyst by reducing the forbidden band gap of CdS. The hydrogen production rate of 21.56 mmol h-1 g-1 for CdS/Ni3S4/Ni2P@C with a Ni3S4/Ni2P@C mass fraction of 10 wt % was 26 times higher than that of CdS in a photolytic aquatic hydrogen system. A possible mechanism for the photocatalytic enhancement of the Ni3S4/Ni2P@C co-catalyst was systematically investigated and discussed. This research opens a new strategy for constructing ternary heterojunction photocatalysts via MOF precursors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA