Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Plant Sci ; 346: 112149, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38851591

RESUMEN

TOPLESS/TOPLESS-RELATED (TPL/TPR) proteins belong to the Groucho (Gro)/Tup1 family co-repressors and act as broad co-repressors that modulate multiple phytohormone signalling pathways and various developmental processes in plant. However, TPL/TPR co-repressors so far are poorly understood in the rapeseed, one of the world-wide important oilseed crops. In this study, we comprehensively characterized eighteen TPL/TPR genes into five groups in the rapeseed genome. Members of TPL/TPR1/TPR4 and TPR2/TPR3 had close evolutionary relationship, respectively. All TPL/TPRs had similar expression patterns and encode conserved protein domain. In addition, we demonstrated that BnaA9.TPL interacted with all known plant repression domain (RD) sequences, which were distributed in non-redundant 24,238 (22.6 %) genes and significantly enriched in transcription factors in the rapeseed genome. These transcription factors were largely co-expressed with the TPL/TPR genes and involved in diverse pathway, including phytohormone signal transduction, protein kinases and circadian rhythm. Furthermore, BnaA9.TPL was revealed to regulate apical embryonic fate by interaction with Bna.IAA12 and suppression of PLETHORA1/2. BnaA9.TPL was also identified to regulate leaf morphology by interaction with Bna.AS1 (Asymmetric leaves 1) and suppression of KNOTTED-like homeobox genes and YABBY5. These data not only suggest the rapeseed TPL/TPRs play broad roles in different processes, but also provide useful information to uncover more TPL/TPR-mediated control of plant development in rapeseed.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Estudio de Asociación del Genoma Completo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Filogenia , Genoma de Planta
2.
Microb Genom ; 10(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38529898

RESUMEN

The transcriptome from a Saccharomyces cerevisiae tup1 deletion mutant was one of the first comprehensive yeast transcriptomes published. Subsequent transcriptomes from tup1 and cyc8 mutants firmly established the Tup1-Cyc8 complex as predominantly acting as a repressor of gene transcription. However, transcriptomes from tup1/cyc8 gene deletion or conditional mutants would all have been influenced by the striking flocculation phenotypes that these mutants display. In this study, we have separated the impact of flocculation from the transcriptome in a cyc8 conditional mutant to reveal those genes (i) subject solely to Cyc8p-dependent regulation, (ii) regulated by flocculation only and (iii) regulated by Cyc8p and further influenced by flocculation. We reveal a more accurate list of Cyc8p-regulated genes that includes newly identified Cyc8p-regulated genes that were masked by the flocculation phenotype and excludes genes which were indirectly influenced by flocculation and not regulated by Cyc8p. Furthermore, we show evidence that flocculation exerts a complex and potentially dynamic influence upon global gene transcription. These data should be of interest to future studies into the mechanism of action of the Tup1-Cyc8 complex and to studies involved in understanding the development of flocculation and its impact upon cell function.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Floculación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transcripción Genética
3.
J Oral Biosci ; 66(1): 225-231, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244688

RESUMEN

OBJECTIVES: Oculo-facio-cardio-dental (OFCD) syndrome is a rare X-linked genetic disorder caused by mutations in the BCL6 co-repressor (BCOR) and is mainly characterized by radiculomegaly (elongated dental roots). All BCOR mutations reported to date have been associated with premature termination codons, indicating that nonsense-mediated mRNA decay (NMD) might play a vital role in the pathogenesis of OFCD syndrome. However, the molecular mechanisms underlying NMD remain unclear. In this study, we investigated the involvement of up-frameshift protein 1 (UPF1), which plays a central role in NMD, in the hyperactive root formation caused by BCOR mutations. METHODS: Periodontal ligament cells, isolated from a Japanese woman with a c.3668delC frameshift mutation in BCOR, and primary human periodontal ligament fibroblasts (HPdLFs) were used for an RNA immunoprecipitation assay to confirm the binding of UPF1 to mutated BCOR. Additionally, the effects of UPF1 on the BCOR transcription levels and corresponding gene expression were determined by performing relative quantitative real-time polymerase chain reactions. RESULTS: RNA immunoprecipitation revealed that UPF1 binds to exon 9 of mutated BCOR. Additionally, UPF1 knockdown via siRNA upregulated the transcription of BCOR, whereas overexpression of wild-type and mutated BCOR with the same frameshift mutation in HPdLFs altered bone morphogenetic protein 2 (BMP2) expression. CONCLUSIONS: Our findings indicate that BCOR mutations regulate the transcription of BCOR via UPF1, which may in turn regulate the expression of BMP2. NMD, caused by a c.3668delC mutation, potentially leads to an OFCD syndrome phenotype, including elongated dental roots.


Asunto(s)
Catarata/congénito , Mutación del Sistema de Lectura , Defectos de los Tabiques Cardíacos , Microftalmía , Degradación de ARNm Mediada por Codón sin Sentido , Femenino , Humanos , Mutación del Sistema de Lectura/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Codón sin Sentido/genética , Transactivadores/genética , Transactivadores/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo
4.
Eur Thyroid J ; 12(5)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37458724

RESUMEN

Transducin ß-like 1 X-linked receptor 1 (TBL1XR1) is a WD40 repeat-containing protein and part of the corepressor complex SMRT/NCoR that binds to the thyroid hormone receptor (TR). We recently described a mutation in TBL1XR1 in patients with Pierpont syndrome. A mouse model bearing this Tbl1xr1 mutation (Tbl1xr1Y446C/Y446C ) displays several aspects of the Pierpont phenotype. Although serum thyroid hormone (TH) concentrations were unremarkable in these mice, tissue TH action might be affected due to the role of TBL1XR1 in the SMRT/NCoR corepressor complex. The aim of the present study was to evaluate tissue TH metabolism and action in a variety of tissues of Tbl1xr1Y446C/Y446C mice. We studied the expression of genes involved in TH metabolism and action in tissues of naïve Tbl1xr1Y446C/Y446C mice and wild type (WT) mice. In addition, we measured deiodinase activity in liver (Dio1 and Dio3), kidney (Dio1 and Dio3) and BAT (Dio2). No striking differences were observed in the liver, hypothalamus, muscle and BAT between Tbl1xr1Y446C/Y446C and WT mice. Pituitary TRα1 mRNA expression was lower in Tbl1xr1Y446C/Y446C mice compared to WT, while the mRNA expression of Tshß and the positively T3-regulated gene Nmb were significantly increased in mutant mice. Interestingly, Mct8 expression was markedly higher in WAT and kidney of mutants, resulting in (subtle) changes in T3-regulated gene expression in both WAT and kidney. In conclusion, mice harboring a mutation in TBL1XR1 display minor changes in cellular TH metabolism and action. TH transport via MCT8 might be affected as the expression is increased in WAT and kidney. The mechanisms involved need to be clarified.


Asunto(s)
Hormonas Tiroideas , Transducina , Animales , Ratones , Proteínas Co-Represoras/metabolismo , Receptores de Hormona Tiroidea/genética , ARN Mensajero , Hormonas Tiroideas/metabolismo , Transducina/genética
5.
J Cancer Res Clin Oncol ; 149(11): 8719-8728, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37131060

RESUMEN

PURPOSE: The significance of the non-classical G-protein-coupled estrogen receptor (GPER) as positive or negative prognostic factor for ovarian cancer patients remains still controversial. Recent results indicate that an imbalance of both co-factors and co-repressors of nuclear receptors regulates ovarian carcinogenesis by altering the transcriptional activity through chromatin remodeling. The present study aims to investigate whether the expression of the nuclear co-repressor NCOR2 plays a role in GPER signaling which thereby could positively impact overall survival rates of ovarian cancer patients. METHODS: NCOR2 expression was evaluated by immunohistochemistry in a cohort of 156 epithelial ovarian cancer (EOC) tumor samples and correlated with GPER expression. The correlation and differences in clinical and histopathological variables as well as their effect on prognosis were analyzed by Spearman's correlation, Kruskal-Wallis test and Kaplan-Meier estimates. RESULTS: Histologic subtypes were associated with different NCOR2 expression patterns. More specifically, serous and mucinous EOC demonstrated a higher NCOR2 expression (P = 0.008). In addition, high nuclear NCOR2 expression correlated significantly with high GPER expression (cc = 0.245, P = 0.008). A combined evaluation of both high NCOR2 (IRS > 6) and high GPER (IRS > 8) expression revealed an association of a significantly improved overall survival (median OS 50.9 versus 105.1 months, P = 0.048). CONCLUSION: Our results support the hypothesis that nuclear co-repressors such as NCOR2 may influence the transcription of target genes in EOC such as GPER. Understanding the role of nuclear co-repressors on signaling pathways will allow a better understanding of the factors involved in prognosis and clinical outcome of EOC patients.


Asunto(s)
Neoplasias Ováricas , Receptores de Estrógenos , Humanos , Femenino , Pronóstico , Proteínas Co-Represoras , Receptores Acoplados a Proteínas G , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Co-Represor 2 de Receptor Nuclear/genética
6.
Genes (Basel) ; 14(1)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36672946

RESUMEN

Cellular differentiation relies on the highly conserved Notch signaling pathway. Notch activity induces gene expression changes that are highly sensitive to chromatin landscape. We address Notch gene regulation using Drosophila as a model, focusing on the genetic and molecular interactions between the Notch antagonist Hairless and the histone chaperone Asf1. Earlier work implied that Asf1 promotes the silencing of Notch target genes via Hairless (H). Here, we generate a novel HΔCT allele by genome engineering. Phenotypically, HΔCT behaves as a Hairless gain of function allele in several developmental contexts, indicating that the conserved CT domain of H has an attenuator role under native biological contexts. Using several independent methods to assay protein-protein interactions, we define the sequences of the CT domain that are involved in Hairless-Asf1 binding. Based on previous models, where Asf1 promotes Notch repression via Hairless, a loss of Asf1 binding should reduce Hairless repressive activity. However, tissue-specific Asf1 overexpression phenotypes are increased, not rescued, in the HΔCT background. Counterintuitively, Hairless protein binding mitigates the repressive activity of Asf1 in the context of eye development. These findings highlight the complex connections of Notch repressors and chromatin modulators during Notch target-gene regulation and open the avenue for further investigations.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Proteínas Represoras/genética , Proteínas de Drosophila/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Alelos , Receptores Notch/genética , Receptores Notch/metabolismo , Drosophila/genética , Cromatina/metabolismo
7.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36232439

RESUMEN

Kae1 is a subunit of the highly evolutionarily conserved KEOPS/EKC complex, which is involved in universal (t6A37) tRNA modification. Several reports have discussed the participation of this complex in transcription regulation in yeast and human cells, including our previous observations of KaeA, an Aspergillus nidulans homologue of Kae1p. The aim of this project was to confirm the role of KaeA in transcription, employing high-throughput transcriptomic (RNA-Seq and ChIP-Seq) and proteomic (LC-MS) analysis. We confirmed that KaeA is a subunit of the KEOPS complex in A. nidulans. An analysis of kaeA19 and kaeA25 mutants showed that, although the (t6A37) tRNA modification is unaffected in both mutants, they reveal significantly altered transcriptomes compared to the wild type. The finding that KaeA is localized in chromatin and identifying its protein partners allows us to postulate an additional nuclear function for the protein. Our data shed light on the universal bi-functional role of this factor and proves that the activity of this protein is not limited to tRNA modification in cytoplasm, but also affects the transcriptional activity of a number of nuclear genes. Data are available via the NCBI's GEO database under identifiers GSE206830 (RNA-Seq) and GSE206874 (ChIP-Seq), and via ProteomeXchange with identifier PXD034554 (proteomic).


Asunto(s)
Aspergillus nidulans , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Cromatina/metabolismo , Humanos , Proteómica , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(41): e2206986119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191192

RESUMEN

The corepressor TOPLESS (TPL) and its paralogs coordinately regulate a large number of genes critical to plant development and immunity. As in many members of the larger pan-eukaryotic Tup1/TLE/Groucho corepressor family, TPL contains a Lis1 Homology domain (LisH), whose function is not well understood. We have previously found that the LisH in TPL-and specifically the N-terminal 18 amino acid alpha-helical region (TPL-H1)-can act as an autonomous repression domain. We hypothesized that homologous domains across diverse LisH-containing proteins could share the same function. To test that hypothesis, we built a library of H1s that broadly sampled the sequence and evolutionary space of LisH domains, and tested their activity in a synthetic transcriptional repression assay in Saccharomyces cerevisiae. Using this approach, we found that repression activity was highly conserved and likely the ancestral function of this motif. We also identified key residues that contribute to repressive function. We leveraged this new knowledge for two applications. First, we tested the role of mutations found in somatic cancers on repression function in two human LisH-containing proteins. Second, we validated function of many of our repression domains in plants, confirming that these sequences should be of use to synthetic biology applications across many eukaryotes.


Asunto(s)
Saccharomyces cerevisiae , Factores de Transcripción , Aminoácidos , Proteínas Co-Represoras/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
9.
New Phytol ; 234(5): 1753-1769, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35288933

RESUMEN

As excess iron (Fe) is toxic, uptake of this essential micronutrient must be tightly controlled. Previous studies have shown that Oryza sativa (rice) POSITIVE REGULATOR OF IRON HOMEOSTASIS1 (OsPRI1) acts upstream of the iron-related transcription factor 2 (OsIRO2) and OsIRO3 to positively regulate root-to-shoot Fe translocation. However, as expression of OsPRI1 is constitutive it is unclear how the Fe-deficiency response is turned off to prevent toxicity when Fe is sufficient. The bHLH transcription factor OsbHLH061 interacts with OsPRI1, and this study used molecular, genetics, biochemical and physiological approaches to functionally characterise OsbHLH061 and how it affects Fe homeostasis. OsbHLH061 knockout or overexpression lines increase or decrease Fe accumulation in shoots respectively. Mechanistically, OsbHLH061 expression is upregulated by high Fe, and physically interacts with OsPRI1, the OsbHLH061-OsPRI1 complex recruits TOPLESS/TOPLESS-RELATED (OsTPL/TPR) co-repressors to repress OsIRO2 and OsIRO3 expression. The OsbHLH061 ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motif is required for this transcriptional repression activity. These results define a functional OsTPL/TPR-OsbHLH061-OsPRI1-OsIRO2/3 module that negatively controls long-distance transport of Fe in plants for adaptation to changing Fe environments and maintain Fe homeostasis in rice.


Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas , Homeostasis , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
10.
Acta Pharm Sin B ; 12(1): 33-49, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127371

RESUMEN

Metabolic homeostasis requires dynamic catabolic and anabolic processes. Autophagy, an intracellular lysosomal degradative pathway, can rewire cellular metabolism linking catabolic to anabolic processes and thus sustain homeostasis. This is especially relevant in the liver, a key metabolic organ that governs body energy metabolism. Autophagy's role in hepatic energy regulation has just begun to emerge and autophagy seems to have a much broader impact than what has been appreciated in the field. Though classically known for selective or bulk degradation of cellular components or energy-dense macromolecules, emerging evidence indicates autophagy selectively regulates various signaling proteins to directly impact the expression levels of metabolic enzymes or their upstream regulators. Hence, we review three specific mechanisms by which autophagy can regulate metabolism: A) nutrient regeneration, B) quality control of organelles, and C) signaling protein regulation. The plasticity of the autophagic function is unraveling a new therapeutic approach. Thus, we will also discuss the potential translation of promising preclinical data on autophagy modulation into therapeutic strategies that can be used in the clinic to treat common metabolic disorders.

11.
J Int Med Res ; 49(5): 3000605211018426, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34057843

RESUMEN

Myelodysplastic/myeloproliferative neoplasms (MDS/MPNs) are a heterogeneous group of hematologic malignancies characterized by dysplastic and myeloproliferative overlapping features in the bone marrow and blood. The occurrence of the disease is related to age, prior history of MPN or MDS, and recent cytotoxic or growth factor therapy, but it rarely develops after acute myeloid leukemia (AML). We report a rare case of a patient diagnosed with AML with t(8; 21)(q22; q22) who received systematic chemotherapy. After 4 years of follow-up, MDS/MPN-unclassifiable occurred without signs of primary AML recurrence.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Enfermedades Mielodisplásicas-Mieloproliferativas , Médula Ósea , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Síndromes Mielodisplásicos/tratamiento farmacológico
12.
Genes (Basel) ; 12(3)2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810051

RESUMEN

Shukla-Vernon syndrome (SHUVER) is an extremely rare neurodevelopmental disorder characterized by global developmental delay, intellectual disability, behavioral anomalies, and dysmorphic features. Pathogenic variants in the BCORL1 gene have been identified as the molecular cause for this disorder. The BCORL1 gene encodes for BCL-6 corepressor-like protein 1, a transcriptional corepressor that is an integral component of protein complexes involved in transcription repression. In this study, we report an Indian family with two male siblings with features of Shukla-Vernon syndrome. The patients exhibited global developmental delay, intellectual disability, kyphosis, seizures, and dysmorphic features including bushy prominent eyebrows with synophrys, sharp beaked prominent nose, protuberant lower jaw, squint, and hypoplastic ears with fused ear lobes. No behavioral abnormalities were observed. Whole exome sequencing revealed a novel potentially pathogenic arginine to cysteine substitution (p.Arg1265Cys) in the BCORL1 protein. This is the second report of Shukla-Vernon syndrome with a novel missense variant in the BCORL1 gene. Our study confirms and expands the phenotypes and genotypes described previously for this syndrome and should aid in diagnosis and genetic counselling of patients and their families.


Asunto(s)
Anomalías Múltiples/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Mutación Missense , Proteínas Represoras/genética , Adulto , Genes Ligados a X , Humanos , Masculino , Linaje , Secuenciación del Exoma , Adulto Joven
13.
Development ; 148(6)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33658226

RESUMEN

Groucho-related genes (GRGs) are transcriptional co-repressors that are crucial for many developmental processes. Several essential pancreatic transcription factors are capable of interacting with GRGs; however, the in vivo role of GRG-mediated transcriptional repression in pancreas development is still not well understood. In this study, we used complex mouse genetics and transcriptomic analyses to determine that GRG3 is essential for ß cell development, and in the absence of Grg3 there is compensatory upregulation of Grg4Grg3/4 double mutant mice have severe dysregulation of the pancreas gene program with ectopic expression of canonical liver genes and Foxa1, a master regulator of the liver program. Neurod1, an essential ß cell transcription factor and predicted target of Foxa1, becomes downregulated in Grg3/4 mutants, resulting in reduced ß cell proliferation, hyperglycemia, and early lethality. These findings uncover novel functions of GRG-mediated repression during pancreas development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Co-Represoras/genética , Factor Nuclear 3-alfa del Hepatocito/genética , Páncreas/crecimiento & desarrollo , Proteínas Represoras/genética , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células Secretoras de Insulina/metabolismo , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Ratones , Mutación/genética , Organogénesis/genética , Páncreas/metabolismo
14.
Cell Commun Signal ; 19(1): 40, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33761934

RESUMEN

BACKGROUND: Lysosome-associated membrane protein type 2A (LAMP-2A) is the key component of chaperone-mediated autophagy (CMA), a cargo-selective lysosomal degradation pathway. Aberrant LAMP-2A expression and CMA activation have been demonstrated in various human malignancies. The study focusing on the intrinsic role of LAMP-2A and CMA in glioblastoma (GBM), and downstream mechanism could provide valuable insight into the pathogenesis and novel therapeutic modality of GBM. METHODS: The levels of LAMP-2A, nuclear receptor co-repressor (N-CoR), unfolded protein response (UPR) and apoptosis were examined in clinical samples. LAMP-2A siRNA and shRNA were constructed to manipulate CMA activation. The role of CMA and downstream mechanism through degradation of N-CoR and arresting UPR mediated apoptosis were explored in GBM cells and nude mouse xenograft model. RESULTS: Elevated LAMP-2A and associated decreased N-CoR expression were observed in GBM as compared with peritumoral region and low-grade glioma. Inhibited UPR and apoptosis were observed in GBM with high LAMP-2A expression. In vitro study demonstrated co-localization and interaction between LAMP-2A and N-CoR. LAMP-2A silencing up-regulated N-CoR and aroused UPR pathway, leading to apoptosis, while N-CoR silencing led to an opposite result. In vivo study further confirmed that LAMP-2A inhibition arrested tumor growth by promoting apoptosis. CONCLUSIONS: Our results demonstrated the central role of CMA in mediating N-CoR degradation and protecting GBM cells against UPR and apoptosis, and provided evidence of LAMP-2A as potential biomarker. Further research focusing on CMA with other tumorigenic process is needed and selective modulators of LAMP-2A remain to be investigated to provide a novel therapeutic strategy for GBM. Video Abstract.


Asunto(s)
Apoptosis , Biomarcadores de Tumor/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Co-Represor 1 de Receptor Nuclear/metabolismo , Proteolisis , Animales , Apoptosis/genética , Caspasas/metabolismo , Línea Celular Tumoral , Autofagia Mediada por Chaperones/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Clasificación del Tumor , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Transcripción Genética , Respuesta de Proteína Desplegada/genética , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Plant Mol Biol ; 105(4-5): 463-482, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33474657

RESUMEN

KEY MESSAGE: SCL3 inhibits transcriptional activity of IDD-DELLA complex by acting as a co-repressor and repression activity is enhanced in the presence of GAF1 in a TOPLESS-independent manner. GRAS [GIBBERELLIN-INSENSITIVE (GAI), REPRESSOR OF ga1-3 (RGA) and SCARECROW (SCR)] proteins are a family of plant-specific transcriptional regulators that play diverse roles in development and signaling. GRAS family DELLA proteins act as growth repressors by inhibiting gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also act as co-activators of transcription factor GAI-ASSOCIATED FACTOR1 (GAF1)/INDETERMINATE DOMAIN2 (IDD2), the GAF1-DELLA complex activating transcription of GAF1 target genes. GAF1 also interacts with TOPLESS (TPL), a transcriptional co-repressor, in the absence of DELLA, the GAF1-TPL complex repressing transcription of the target genes. SCARECROW-LIKE3 (SCL3), another member of the GRAS family, is thought to inhibit transcriptional activity of the IDD-DELLA complex through competitive interaction with IDD. Here, we also revealed that SCL3 inhibits transcriptional activation by the GAF1-DELLA complex via repression activity rather than via competitive inhibition of the GAF1-DELLA interaction. Moreover, the repression activity of SCL3 was enhanced by GAF1 in a TPL-independent manner. While the GRAS domain of DELLA has transcriptional activation activity, that of SCL3 has repression activity. SCL3 also inhibited transcriptional activity of GAF1-RGA fusion proteins. Results from the co-immunoprecipitation assays and the yeast three-hybrid assay suggested the possibility that SCL3 forms a ternary complex with GAF1 and DELLA. These findings provide important information on DELLA-regulated GA signaling and new insight into the transcriptional repression mechanism.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Co-Represoras/genética , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Ribonucleasa P/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Co-Represoras/metabolismo , Immunoblotting , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasa P/metabolismo , Transducción de Señal/genética , Técnicas del Sistema de Dos Híbridos
16.
Genes (Basel) ; 11(10)2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998295

RESUMEN

Cell fate is determined by the coordinated activity of different pathways, including the conserved Notch pathway. Activation of Notch results in the transcription of Notch targets that are otherwise silenced by repressor complexes. In Drosophila, the repressor complex comprises the transcription factor Suppressor of Hairless (Su(H)) bound to the Notch antagonist Hairless (H) and the general co-repressors Groucho (Gro) and C-terminal binding protein (CtBP). The latter two are shared by different repressors from numerous pathways, raising the possibility that they are rate-limiting. We noted that the overexpression during wing development of H mutants HdNT and HLD compromised in Su(H)-binding induced ectopic veins. On the basis of the role of H as Notch antagonist, overexpression of Su(H)-binding defective H isoforms should be without consequence, implying different mechanisms but repression of Notch signaling activity. Perhaps excess H protein curbs general co-repressor availability. Supporting this model, nearly normal wings developed upon overexpression of H mutant isoforms that bound neither Su(H) nor co-repressor Gro and CtBP. Excessive H protein appeared to sequester general co-repressors, resulting in specific vein defects, indicating their limited availability during wing vein development. In conclusion, interpretation of overexpression phenotypes requires careful consideration of possible dominant negative effects from interception of limiting factors.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Alas de Animales/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Proteínas Co-Represoras/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Fenotipo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Alas de Animales/anatomía & histología , Alas de Animales/metabolismo
17.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937992

RESUMEN

The embryogenic transition of somatic cells requires an extensive reprogramming of the cell transcriptome. Relevantly, the extensive modulation of the genes that have a regulatory function, in particular the genes encoding the transcription factors (TFs) and miRNAs, have been indicated as controlling somatic embryogenesis (SE) that is induced in vitro in the somatic cells of plants. Identifying the regulatory relationships between the TFs and miRNAs during SE induction is of central importance for understanding the complex regulatory interplay that fine-tunes a cell transcriptome during the embryogenic transition. Hence, here, we analysed the regulatory relationships between AGL15 (AGAMOUS-LIKE 15) TF and miR156 in an embryogenic culture of Arabidopsis. Both AGL15 and miR156 control SE induction and AGL15 has been reported to target the MIR156 genes in planta. The results showed that AGL15 contributes to the regulation of miR156 in an embryogenic culture at two levels that involve the activation of the MIR156 transcription and the containment of the abundance of mature miR156 by repressing the miRNA biogenesis genes DCL1 (DICER-LIKE1), SERRATE and HEN1 (HUA-ENHANCER1). To repress the miRNA biogenesis genes AGL15 seems to co-operate with the TOPLESS co-repressors (TPL and TPR1-4), which are components of the SIN3/HDAC silencing complex. The impact of TSA (trichostatin A), an inhibitor of the HDAC histone deacetylases, on the expression of the miRNA biogenesis genes together with the ChIP results implies that histone deacetylation is involved in the AGL15-mediated repression of miRNA processing. The results indicate that HDAC6 and HDAC19 histone deacetylases might co-operate with AGL15 in silencing the complex that controls the abundance of miR156 during embryogenic induction. This study provides new evidence about the histone acetylation-mediated control of the miRNA pathways during the embryogenic reprogramming of plant somatic cells and the essential role of AGL15 in this regulatory mechanism.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/embriología , Arabidopsis/genética , Reprogramación Celular/genética , Histonas/genética , Proteínas de Dominio MADS/genética , MicroARNs/genética , Acetilación , Regulación de la Expresión Génica de las Plantas/genética , Histona Desacetilasas/genética , Transcriptoma/genética
18.
Acta Pharm Sin B ; 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32837872

RESUMEN

Natural products generally fall into the biologically relevant chemical space and always possess novel biological activities, thus making them a rich source of lead compounds for new drug discovery. With the recent technological advances, natural product-based drug discovery is now reaching a new era. Natural products have also shown promise in epigenetic drug discovery, some of them have advanced into clinical trials or are presently being used in clinic. The histone lysine specific demethylase 1 (LSD1), an important class of histone demethylases, has fundamental roles in the development of various pathological conditions. Targeting LSD1 has been recognized as a promising therapeutic option for cancer treatment. Notably, some natural products with different chemotypes including protoberberine alkaloids, flavones, polyphenols, and cyclic peptides have shown effectiveness against LSD1. These natural products provide novel scaffolds for developing new LSD1 inhibitors. In this review, we mainly discuss the identification of natural LSD1 inhibitors, analysis of the co-crystal structures of LSD1/natural product complex, antitumor activity and their modes of action. We also briefly discuss the challenges faced in this field. We believe this review will provide a landscape of natural LSD1 inhibitors.

19.
Methods Enzymol ; 637: 151-173, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32359644

RESUMEN

Retinoic acid receptors were discovered during early studies of the actions and mechanisms of essential vitamins. Vitamin A is metabolized in the body to retinoic acid (RA) which is a key compound in the control of many developmental processes in chordates. These functions are mediated by a subfamily of nuclear receptors, divided into two classes, the retinoic acid receptors (RAR) and the retinoid X receptors (RXR). Each class is encoded by three closely related genes that are located on different chromosomes. The three proteins in each class are designated α, ß and γ, respectively. A wealth of structural studies have shown that they all share the same architecture including a DNA-binding domain connected by a flexible linker to the ligand and co-activator binding domain. Retinoic acid incorporation into the ligand-binding domain leads to a conformational change enabling the formation of RAR homodimers or RAR/RXR heterodimers that in turn bind specifically to target DNA sequences. The consensus sequences located on the promotors of regulated genes are known as retinoic acid response elements (RARE). The activated RAR/RXR homodimers recruit co-activators with histone acetylase activity leading to an opening of the chromatin structure and enabling downstream transcription of regulated genes. These canonical pathways describe the control mechanism for the majority of developmental processes mediated by retinoic acid and its derivatives.


Asunto(s)
Receptores de Ácido Retinoico , Retinoides , Regulación de la Expresión Génica , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Receptores X Retinoide/genética , Tretinoina
20.
J Biol Chem ; 295(27): 8887-8900, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32434928

RESUMEN

CBFA2/RUNX1 partner transcriptional co-repressor 3 (CBFA2T3, also known as MTG16 or ETO2) is a myeloid translocation gene family protein that functions as a master transcriptional corepressor in hematopoiesis. Recently, it has been shown that CBFA2T3 maintains leukemia stem cell gene expression and promotes relapse in acute myeloid leukemia (AML). However, a role for CBFA2T3 in myeloid differentiation of AML has not been reported. Here, we show that CBFA2T3 represses retinoic acid receptor (RAR) target gene expression and inhibits all-trans-retinoic acid (ATRA)-induced myeloid differentiation of AML cells. ChIP-Seq revealed that CBFA2T3 targets the RARα/RXRα cistrome in U937 AML cells, predominantly at myeloid-specific enhancers associated with terminal differentiation. CRISPR/Cas9-mediated abrogation of CBFA2T3 resulted in spontaneous and ATRA-induced activation of myeloid-specific genes in a manner correlated with myeloid differentiation. Importantly, these effects were reversed by CBFA2T3 re-expression. Mechanistic studies showed that CBFA2T3 inhibits RAR target gene transcription by acting at an early step to regulate histone acetyltransferase recruitment, histone acetylation, and chromatin accessibility at RARα target sites, independently of the downstream, RAR-mediated steps of transcription. Finally, we validated the inhibitory effect of CBFA2T3 on RAR in multiple AML subtypes and patient samples. To our knowledge, this is the first study to show that CBFA2T3 down-regulation is both necessary and sufficient for enhancing ATRA-induced myeloid gene expression and differentiation of AML cells. Our findings suggest that CBFA2T3 can serve as a potential target for enhancing AML responsiveness to ATRA differentiation therapies.


Asunto(s)
Receptores de Ácido Retinoico/metabolismo , Proteínas Represoras/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proteínas Co-Represoras/genética , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/genética , Humanos , Leucemia Mieloide Aguda/genética , Células Mieloides/metabolismo , Células Mieloides/fisiología , Receptores de Ácido Retinoico/genética , Proteínas Represoras/metabolismo , Receptor alfa de Ácido Retinoico/genética , Tretinoina/metabolismo , Tretinoina/farmacología , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA