Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 948: 174822, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39029748

RESUMEN

Microorganisms play a pivotal role as catalysts in the biogeochemical cycles of aquatic ecosystems within coal mining subsidence areas. Despite their importance, the succession of microbial communities with increasing mine age, particularly across different habitats, and variations in phylogenetically-based community assembly mechanisms are not well understood. To address this knowledge gap, we collected 72 samples from lake sediments, water, and surrounding topsoil (0-20 cm) at various mining stages (early: 16 years, middle: 31 years, late: 40 years). We analyzed these samples using 16S rRNA gene sequencing and multivariate statistical methods to explore the dynamics and assembly mechanisms of bacterial communities. Our findings reveal that increases in phosphorus and organic matter in sediments, correlating with mining age, significantly enhance bacterial alpha diversity while reducing species richness (P < 0.001). Homogenizing selection (49.9 %) promotes species asynchrony-complementarity, augmenting the bacterial community's ability to metabolize sulfur, phosphorus, and organic matter, resulting in more complex-stable co-occurrence networks. In soil, elevated nitrogen and organic carbon levels markedly influence bacterial community composition (Adonis R2 = 0.761), yet do not significantly alter richness or diversity (P > 0.05). The lake's high connectivity with surrounding soil leads to substantial species drift and organic matter accumulation, thereby increasing bacterial richness in later stages (P < 0.05) and enhancing the ability to metabolize dissolved organic matter, including humic-like substances, fulvic acids, and protein-like materials. The assembly of soil bacterial communities is largely governed by stochastic processes (79.0 %) with species drift (35.8 %) significantly shaping these communities over a broad spatial scale, also affecting water bacterial communities. However, water bacterial community assembly is primarily driven by stochastic processes (51.2 %), with a substantial influence from habitat quality (47.6 %). This study offers comprehensive insights into the evolution of microbial community diversity within coal mining subsidence water areas, with significant implications for enhancing environmental management and protection strategies for these ecosystems.


Asunto(s)
Bacterias , Minas de Carbón , Microbiota , Bacterias/clasificación , ARN Ribosómico 16S , Lagos/microbiología , Ecosistema , Microbiología del Agua , Biodiversidad , Microbiología del Suelo , Monitoreo del Ambiente , Fósforo/análisis , Sedimentos Geológicos/microbiología
2.
Microorganisms ; 12(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38257914

RESUMEN

Soil microorganisms significantly influence the energy flow and material cycle of soil ecosystems, making them highly susceptible to environmental changes, such as those induced by mining activities. Studying the succession of soil microbial communities after mining subsidence is crucial for comprehending the significance of soil microbes in the natural recovery process following subsidence. Therefore, the soil properties, vegetation communities, and soil microbial communities of the subsidence area, as well as unexploited areas, were analyzed during the natural restoration process (1, 2, 5, 10, and 15 years). The results demonstrate that mining subsidence has a significant impact on the aboveground vegetation community, soil properties, and microbiological community. Following an extended period of natural recovery, a new stable state has emerged, which differs from that observed in non-subsidence areas. The total nitrogen, nitrate nitrogen, and ammonium nitrogen amounts may be key factors driving the natural recovery of bacterial communities, and total potassium and available potassium may be key factors driving the natural recovery of fungal communities. The natural recovery mechanism of soil microorganisms was analyzed along with the changes related to vegetation and soil physicochemical properties. The mechanism was explained from three perspectives, namely, plant-led, soil-led, and soil-microbial-led, which could provide a theoretical basis for the natural restoration of grassland ecosystems and provide guidance for the treatment of coal mining subsidence areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA