Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt A): 55-67, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39083892

RESUMEN

Methanol is a promising hydrogen carrier for fuel cell vehicles (FCVs) via methanol steam reforming (MSR) reaction. Ceria supported copper catalyst has attracted extensive attentions due to the extraordinary oxygen storage capacity and abundant oxygen vacancies. Herein, we developed a colloidal solution combustion (CSC) method to synthesize a porous Cu/CeO2(CSC) catalyst. Compared with Cu/CeO2 catalysts prepared by other methods, the Cu/CeO2(CSC) catalyst possesses highly dispersed copper species and abundant Cu+-Ov-Ce3+ sites at the copper-ceria interface, contributing to methanol conversion of 66.3 %, CO2 selectivity of 99.2 %, and outstanding hydrogen production rate of 490 mmol gcat-1 h-1 under 250 °C. The linear correlation between TOF values and Cu+-Ov-Ce3+ sites amount indicates the vital role of Cu+-Ov-Ce3+ sites in MSR reaction, presenting efficient ability in activation of water. Subsequently, a deep understanding of CSC method is further presented. In addition to serving as a hard template, the colloidal silica also acts as disperser between nanoparticles, enhancing the copper-ceria interactions and facilitating the generation of Cu+-Ov-Ce3+ sites. This study offers an alternative approach to synthesize highly dispersed supported copper catalysts.

2.
Chemosphere ; 360: 142392, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777195

RESUMEN

Significant challenges remain for the remediation of chlorinated-solvent plumes in groundwater, such as trichloroethene (TCE) and tetrachloroethene (PCE). A novel slow-release permanganate gel (SRP-G) technique may show promise for the in-situ treatment (remediation) of chlorinated contaminant plumes in groundwater. A series of laboratory experiments were conducted to characterize the primary physical factors that influence SRP-G gelation processes to optimize SRP-G performance for plume treatment. Specifically, experiments were conducted to quantify gel zeta potential, particle size distribution, and viscosity to determine SRP-G gelation characteristics and processes. These experiments tested various concentrations of two SRP-G amendment solutions (NaMnO4 and KMnO4) prepared with 30-wt.% and 50-wt.% colloidal silica to determine such influences on zeta potential, particle size distribution, and viscosity. The results of this study show that SRP-G solutions with low zeta potential and relatively high pH favor more rapid SRP-G gelation. The concomitant interaction of the predominantly negatively charged colloidal silica particles and the positively charged dissociated cations (Na+ and K+) in the SRP-G solution had the effect of stabilizing charge imbalance via attraction of particles and thereby inducing a greater influence on the gelation process. Gel particle size distribution and changes in viscosity had a significant influence on SRP-G solution gelation. The addition of permanganate (NaMnO4 or KMnO4) increased the average particle size distribution and the viscosity of the SRP-G solution and decreased the overall gelation time. SRP-G amendments (NaMnO4 or KMnO4) prepared with 50-wt.% colloidal silica showed more effective gelation (and reduced gelation time) compared to SRP-G amendments prepared with 30-wt.% colloidal silica. Under the conditions of these experiments, it was determined that both the 7-wt.% NaMnO4 solution and 90 mg/L KMnO4 solution using 50-wt.% colloidal silica would be the optimal injection SRP-G solution concentrations for this in-situ treatment technique.


Asunto(s)
Geles , Agua Subterránea , Compuestos de Manganeso , Óxidos , Solventes , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Geles/química , Solventes/química , Compuestos de Manganeso/química , Óxidos/química , Restauración y Remediación Ambiental/métodos , Tricloroetileno/química , Halogenación , Viscosidad , Tamaño de la Partícula , Tetracloroetileno/química , Tetracloroetileno/análisis
3.
Ultrason Sonochem ; 107: 106913, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805886

RESUMEN

The waterglass or St o¨ ber method is commonly used to synthesize spherical colloidal silica; however, these methods have some disadvantages, such as complicated processes for the removal of sodium ions and expensive and energy-consuming raw materials such as tetraethoxysilane (TEOS). In this study, size-controlled spherical colloidal silica was synthesized from silicon metal at room temperature using an ultrasound process with hydrazine monohydrate as the solvent. Silicon metal dissolves easily in hydrazine monohydrate under ultrasound irradiation, and spherical colloidal silica can be synthesized by adding alcohol to this precursor solution. By changing the concentration or type of alcohol, size-controlled colloidal silica 20-200 nm in size could be easily obtained. In addition, finer and more monodisperse particles were produced by low-frequency ultrasound irradiation, which had a higher stirring effect at the particle formation stage. The present method is effective because size-controlled colloidal silica can be synthesized at room temperature using only silicon metal, hydrazine, and alcohol as raw materials, without complicated processes or expensive and energy-consuming raw materials such as TEOS or tetramethoxysilane (TMOS).

4.
Water Res ; 249: 120866, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101050

RESUMEN

Reverse Osmosis (RO) membrane filtration is a very common process for treating a wide range of groundwater types including produced water from coal seam gas (coalbed methane) wells. Mineral scaling limits water recovery for RO membranes and costs money in terms of treatment and downtime. Silica scaling can be particularly troublesome as it is often irreversible. Mitigating silica scaling requires an understanding of its occurrence, speciation mechanism and its interdependency with other operation factors. This study uses a range of techniques to show that silica colloids form during later stages of an RO process with very high recovery. This happens at silica concentrations above the solubility that would normally indicate high risk of silica scale. However, instead of scale, colloids preferentially formed which means the process can operate at high recoveries with RO performance maintained by regular cleaning cycles. The concentration of the colloidal silica through the RO stages was measured through the difference in total and dissolved silica. Once the existence was established with this technique, the particles were trapped and their size, morphology and composition were investigated with Scanning Electron Microscopy (SEM) in conjunction with Energy Dispersive X-Ray Spectroscopy (EDS). This revealed the particles to be predominantly silica with limited other elements involved.


Asunto(s)
Purificación del Agua , Agua , Agua/química , Dióxido de Silicio/química , Purificación del Agua/métodos , Ósmosis , Filtración/métodos , Coloides , Carbón Mineral , Membranas Artificiales
5.
Pharmaceutics ; 15(11)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-38004532

RESUMEN

Designing a robust direct compression (DC) formulation for an active pharmaceutical ingredient (API) with poor flow and compaction properties at a high API load is challenging. This study tackled two challenges: the unfavorable flow characteristics and tableting problems associated with a high-drug-loading canagliflozin (CNG), facilitating high-speed DC tableting. This was accomplished through a single-step dry coating process using hydrophilic nano-sized colloidal silica. A 32 full-factorial experimental design was carried out to optimize the independent process variables, namely, the weight percent of silica nanoparticles (X1) and mixing time (X2). Flow, bulk density, and compaction properties of CNG-silica blends were investigated, and the optimized blend was subsequently compressed into tablets using the DC technique. A regression analysis exhibited a significant (p ≤ 0.05) influence of both X1 and X2 on the characteristics of CNG with a predominant effect of X1. Additionally, robust tablets were produced from the processed powders in comparison with those from the control batch. Furthermore, the produced tablets showed significantly lower tablet ejection forces than those from the control batch, highlighting the lubrication impact of the silica nanoparticles. Interestingly, these tablets displayed improved disintegration time and dissolution rates. In conclusion, a dry coating process using silica nanoparticles presents a chance to address the poor flow and tableting problems of CNG, while minimizing the need for excessive excipients, which is crucial for the effective development of a small-sized tablet and the achievement of a cost-effective manufacturing process.

6.
Mar Drugs ; 21(11)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37999392

RESUMEN

Fucosylated glycosaminoglycans (FGs) derived from sea cucumbers exhibit potent intrinsic Xase (iXase) inhibition, anticoagulation, and antithrombosis. Plasma activated partial thromboplastin time (APTT), a widely used screening test worldwide, is crucial for evaluating anticoagulant efficacy. However, the applicability of these commercially available APTT reagents for assessing anticoagulation of FGs remains unreported. In this study, we investigated the disparity between ellagic acid and colloidal silica APTT reagents in evaluating anticoagulation of dHG-5 and dHLFG-4, two depolymerized FGs, and elucidated the underlying rationale. The results demonstrated that dHG-5 and dHLFG-4 exhibited heightened sensitivity to the ellagic acid APTT reagent both in vitro and in vivo, and did not significantly affect the activation of APTT reagents for plasma. In addition, both ellagic acid and colloidal silica APTT reagents inhibited the anti-iXase of dHG-5 and dHLFG-4, and the inhibition of the ellagic acid APTT reagent was less pronounced compared to the colloidal silica APTT reagent. These findings suggest that the reduced impact of the ellagic acid APTT reagent on the anti-iXase activity of dHG-5 and dHLFG-4 is responsible for the increased sensitivity in plasma APTT analysis. This study offers valuable insights into the characteristics of two APTT reagents applied for assessing the anticoagulant activity of FG-related compounds.


Asunto(s)
Anticoagulantes , Pepinos de Mar , Animales , Anticoagulantes/farmacología , Tiempo de Tromboplastina Parcial , Glicosaminoglicanos/farmacología , Indicadores y Reactivos , Ácido Elágico , Dióxido de Silicio
7.
J Appl Crystallogr ; 56(Pt 5): 1371-1380, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37791358

RESUMEN

This study examines the time evolution of silica/water clusters where the formation of a gel network from unitary silica particles is interrupted by a simple Couette shear field. The aim is to enable the general understanding of this simple system by examining the microscopic basis for the changes in viscosity by providing structural inputs from small-angle scattering for a simple theoretical model. The experimental system is an 8.3 nm particle silica solution (Ludox) where the gelation has been initiated by lowering the pH in a Couette cell providing a constant shear rate of 250 s-1. A unified small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) procedure is described to measure the scattered intensity in a wavevector range of 3 × 10-4 ≤ q (nm-1) ≤ 3.1 × 10-1, probing structural changes over a broad range of length scales from the nanometre to the micrometre. Scattering data provide a new means of better understanding the behaviour of colloidal clusters when subjected to an external applied shear over a continuous time sequence after gel initiation; a fit of the time-dependent scattered intensity leads to an estimation of the cluster's effective volume fraction and size as a function of time. A reductionist theoretical basis is described to predict the time-dependent viscosity behaviour of the sheared colloidal suspension gel-initiated cluster growth from the volume fraction of the clusters.

8.
Polymers (Basel) ; 15(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37571091

RESUMEN

Chemical mechanical planarization (CMP) is a wafer-surface-polishing planarization technique based on a wet procedure that combines chemical and mechanical forces to fully flatten materials for semiconductors to be mounted on the wafer surface. The achievement of devices of a small nano-size with few defects and good wafer yields is essential in enabling IC chip manufacturers to enhance their profits and become more competitive. The CMP process is applied to produce many IC generations of nanometer node, or those of even narrower line widths, for a better performance and manufacturing feasibility. Slurry is a necessary supply for CMP. The most critical component in slurry is an abrasive particle which affects the removal rates, uniformity, defects, and removal selectivity for the materials on the wafer surface. The polishing abrasive is the source of mechanical force. Conventional CMP abrasives consist of colloidal silica, fume silica or other inorganic polishing particles in the slurries. We were the first to systematically study nanoparticles of the polymer type applied in CMP, and to compare traditional inorganic and polymer nanoparticles in terms of polishing performance. In particular, the polymer nanoparticle size, shape, solid content dosing ratio, and molecular types were examined. The polishing performance was measured for the polishing removal rates, total defect counts, and uniformity. We found that the polymer nanoparticles significantly improved the total defect counts and uniformity, although the removal rates were lower than the rates obtained using inorganic nanoparticles. However, the lower removal rates of the polymer nanoparticles are acceptable due to the thinner film materials used for smaller IC device nodes, which may be below 10 nm. We also found that the physical properties of polymer nanoparticles, in terms of their size, shape, and different types of copolymer molecules, cause differences in the polishing performance. Meanwhile, we used statistical analysis software to analyze the data on the polishing removal rates and defect counts. This method helps to determine the most suitable polymer nanoparticle for use as a slurry abrasive, and improves the reliability trends for defect counts.

9.
Membranes (Basel) ; 13(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37233537

RESUMEN

Humic, protein, and polysaccharide substances have been recognized as significant types of foulants in membrane systems. Despite the remarkable amount of research that has been performed on the interaction of these foulants, particularly humic and polysaccharide substances, with inorganic colloids in RO systems, little attention has been paid to the fouling and cleaning behavior of proteins with inorganic colloids in UF membranes. This research examined the fouling and cleaning behavior of bovine serum albumin (BSA) and sodium alginate (SA) with silicon dioxide (SiO2) and α-aluminum oxide (Al2O3) in individual and combined solutions during dead-end UF filtration. The results showed that the presence of SiO2 or Al2O3 in water alone did not cause significant fouling or a flux decline in the UF system. However, the combination of BSA and SA with inorganics was observed to have a synergistic effect on membrane fouling, in which the combined foulants caused higher irreversibility than individual foulants. Analysis of blocking laws demonstrated that the fouling mechanism shifted from cake filtration to complete pore blocking when the combined organics and inorganics were present in water, which resulted in higher BSA and SA fouling irreversibility. The results suggest that membrane backwash needs to be carefully designed and adjusted for better control of BSA and SA fouling with SiO2 and Al2O3.

10.
Anal Sci ; 39(7): 1115-1128, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36966479

RESUMEN

This paper proposes a laser scattering centrifugal liquid sedimentation (LS-CLS) method for the accurate quantitative analysis of the mass-based size distributions of colloidal silica. The optics comprised a laser diode light source and multi-pixel photon-counting detector for detecting scattered light intensity. The unique optics can only detect the light scattered by a sample through the interception of irradiated light. The developed centrifugal liquid sedimentation (CLS) method comprised a light-emitting diode and silicon photodiode detector for detecting transmittance light attenuation. The CLS apparatus could not accurately measure quantitative volume- or mass-based size distribution of poly-dispersed suspensions, such as colloidal silica, because the detecting signal includes both transmitted and scattered light. The LS-CLS method exhibited improved quantitative performance. Moreover, the LS-CLS system allowed the injection of samples with concentrations higher than that permitted by other particle size distribution measurement systems with particle size classification units using size-exclusion chromatography or centrifugal field-flow fractionation. The proposed LS-CLS method achieved an accurate quantitative analysis of the mass-based size distribution using both centrifugal classification and laser scattering optics. In particular, the system could measure the mass-based size distribution of approximately 20 mg mL-1 poly-dispersed colloidal silica samples, such as in a mixture of the four mono-dispersed colloidal silica, with high resolution and precision, thereby demonstrating high quantitative performance. The measured size distributions were compared with those observed through transmission electron microscopy. The proposed system can be used in practical setups to achieve a reasonable degree of consistency for determining particle size distribution in industrial applications.

11.
Membranes (Basel) ; 13(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36984721

RESUMEN

This paper presents an analysis of the fouling of a ceramic membrane by a mixture containing high concentrations of humic acid and colloidal silica during cross-flow ultrafiltration under various operating conditions. Two types of feed water were tested: feed water containing humic acid and feed water containing a mixture of humic acid and colloidal silica. The colloidal silica exacerbated the fouling, yielding lower fluxes (109-394 L m-2 h-1) compared to the humic acid feed water (205-850 L m-2 h-1), while the retentions were higher except for the highest cross-flow rate. For the humic acid feed water, the irreversible resistance prevails under the cross-flow rate of 5 L min-1. During the filtration of an organic-inorganic mixture, the reversible resistance due to the formation of a colloidal cake layer prevails under all operating conditions with an exception. The exception is the filtration of the organic-inorganic mixture of a 50 mg L-1 humic acid concentration which resulted in a lower flux than the one of a 150 mg L-1 humic acid concentration under 150 kPa and a cross-flow rate of 5 L min-1. Here, the irreversible fouling is unexpectedly overcome. This is unusual and occurs due to the low agglomeration at low concentrations of humic acid under a high cross-flow rate. Under lower transmembrane pressure and a moderate cross-flow rate, fouling can be mitigated, and relatively high fluxes are yielded with high retentions even in the presence of nanoparticles. In this way, colloidal silica influences the minimization of membrane fouling by organic humic acid contributing to the control of in-pore organic fouling.

12.
ACS Appl Mater Interfaces ; 15(5): 7496-7510, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36700938

RESUMEN

Fundamental understanding of the macroscopic properties of polymer nanocomposites (PNCs) remains difficult due to the complex interplay of microscopic dynamics and structure, namely interfacial layer relaxations and three-dimensional nanoparticle (NP) arrangements. The effect of surface modification by alkyl methoxysilanes at different grafting densities has been studied in PNCs made of poly(2-vinylpyridine) and spherical 20 nm silica NPs. The segmental dynamics has been probed by broadband dielectric spectroscopy and the filler structure by small-angle X-ray scattering and reverse Monte Carlo simulations. By combining the particle configurations with the interfacial layer properties, it is shown how surface modification tunes the attractive polymer-particle interactions: bare NPs slow down the polymer interfacial layer dynamics over a thickness of ca. 5 nm, while grafting screens these interactions. Our analysis of interparticle spacings and segmental dynamics provides unprecedented insights into the effect of surface modification on the main characteristics of PNCs: particle interactions and polymer interfacial layers.

13.
Nanomaterials (Basel) ; 12(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364668

RESUMEN

Recently, as an alternative solution for overcoming the scaling-down limitations of logic devices with design length of less than 3 nm and enhancing DRAM operation performance, 3D heterogeneous packaging technology has been intensively researched, essentially requiring Si wafer polishing at a very high Si polishing rate (500 nm/min) by accelerating the degree of the hydrolysis reaction (i.e., Si-O-H) on the polished Si wafer surface during CMP. Unlike conventional hydrolysis reaction accelerators (i.e., sodium hydroxide and potassium hydroxide), a novel hydrolysis reaction accelerator with amine functional groups (i.e., 552.8 nm/min for ethylenediamine) surprisingly presented an Si wafer polishing rate >3 times higher than that of conventional hydrolysis reaction accelerators (177.1 nm/min for sodium hydroxide). This remarkable enhancement of the Si wafer polishing rate for ethylenediamine was principally the result of (i) the increased hydrolysis reaction, (ii) the enhanced degree of adsorption of the CMP slurry on the polished Si wafer surface during CMP, and (iii) the decreased electrostatic repulsive force between colloidal silica abrasives and the Si wafer surface. A higher ethylenediamine concentration in the Si wafer CMP slurry led to a higher extent of hydrolysis reaction and degree of adsorption for the slurry and a lower electrostatic repulsive force; thus, a higher ethylenediamine concentration resulted in a higher Si wafer polishing rate. With the aim of achieving further improvements to the Si wafer polishing rates using Si wafer CMP slurry including ethylenediamine, the Si wafer polishing rate increased remarkably and root-squarely with the increasing ethylenediamine concentration.

14.
Int J Nanomedicine ; 17: 4599-4617, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36199478

RESUMEN

Purpose: The protein corona surrounding nanoparticles has attracted considerable attention as it induces subsequent inflammatory responses. Although mesoporous silica nanoparticles (MSN) are commonly used in medicines, cosmetics, and packaging, the inflammatory effects of the MSN protein corona on the cutaneous system have not been investigated till date. Methods: We examined the greater plasma protein adsorption on MSN leads to serious inflammatory reactions in Dermatophagoides farinae extract (DFE)-induced mouse atopic dermatitis (AD)-like skin inflammation because of increased uptake by keratinocytes. Results: We compare the AD lesions induced by MSN and colloidal (non-porous) silica nanoparticles (CSN), which exhibit different pore architectures but similar dimensions and surface chemistry. MSN-corona treatment of severe skin inflammation in a DFE-induced in vivo AD model greatly increases mouse ear epidermal thickness and infiltration of immune cells compared with the CSN-corona treatment. Moreover, MSN-corona significantly increase AD-specific immunoglobulins, serum histamine, and Th1/Th2/Th17 cytokines in the ear and lymph nodes. MSN-corona induce more severe cutaneous inflammation than CSN by significantly decreasing claudin-1 expression. Conclusion: This study demonstrates the novel impact of the MSN protein corona in inducing inflammatory responses through claudin-1 downregulation and suggests useful clinical guidelines for MSN application in cosmetics and drug delivery systems.


Asunto(s)
Dermatitis Atópica , Nanopartículas , Corona de Proteínas , Adsorción , Animales , Claudina-1/uso terapéutico , Citocinas/metabolismo , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Histamina , Inmunoglobulina E , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/farmacología , Dióxido de Silicio/uso terapéutico
15.
Molecules ; 27(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35458592

RESUMEN

We combined a nickel-aluminum-zirconium complex hydroxide (NAZ) with colloidal silica as a binder to prepare a granulated agent for adsorbing heavy metals from aqueous media. Three samples with different particle diameters were prepared to evaluate the effects on the properties: small (NAZ-S), medium (NAZ-M), and large (NAZ-L). We confirmed the granulation of the prepared samples at a binder content of 25%. NAZ-S had the largest specific surface area and number of hydroxyl groups, followed by NAZ-M and then NAZ-L. Regarding the adsorption capacity, NAZ-S adsorbed the most chromium(VI) ions followed by NAZ-M and then NAZ-L. The binding energy of Cr(2p) at 575-577 eV was detected after adsorption, and the effects of the temperature, contact time, and pH on the adsorption of chromium(VI) ions were evaluated. We identified the following adsorption mechanism: ion exchange with sulfate ions in the interlayer region of the NAZ samples. Finally, the chromium(VI) ions adsorbed by the NAZ samples were easily desorbed using a desorption solution. The results showed that NAZ offers great potential for the removal of chromium(VI) ions from aqueous solutions.


Asunto(s)
Níquel , Contaminantes Químicos del Agua , Adsorción , Aluminio/química , Cromo/química , Concentración de Iones de Hidrógeno , Hidróxidos , Cinética , Níquel/química , Dióxido de Silicio/química , Agua , Contaminantes Químicos del Agua/química , Circonio/química
16.
Materials (Basel) ; 15(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35057146

RESUMEN

There have been numerous studies on shotcrete based on strength and durability. However, few studies have been conducted on rheological characteristics, which are very important parameters for evaluating the pumpability and shootability of shotcrete. In those studies, silica fume has been generally used as a mineral admixture to simultaneously enhance the strength, durability, pumpability, and shootability of shotcrete. Silica fume is well-known to significantly increase the viscosity of a mixture and to prevent material sliding at the receiving surface when used in shotcrete mixtures. However, the use of silica fume in shotcrete increases the possibility of plastic shrinkage cracking owing to its very high fineness, and further, silica fume increases the cost of manufacturing the shotcrete mixture because of its cost and handling. Colloidal silica is a new material in which nano-silica is dispersed in water, and it could solve the above-mentioned problems. The purpose of this research is to develop high-performance shotcrete with appropriate levels of strength and workability as well as use colloidal silica for normal structures without a tunnel structure. Thereafter, the workability of shotcrete with colloidal silica (2, 3, and 4%) was evaluated with a particle size of 10 nm and silica fume replacement (4 and 7%) of cement. In this study, an air-entraining agent for producing high-performance shotcrete was also used. The rheological properties of fresh shotcrete mixtures were estimated using an ICAR rheometer and the measured rheological parameters such as flow resistance and torque viscosity were correlated with the workability and shootability. More appropriate results will be focusing on the Bingham model properties such that the main focus here is to compare all data using the Bingham model and its performance. The pumpability, shootability, and build-up thickness characteristics were also evaluated for the performance of the shotcrete. This research mainly focuses on the Bingham model for absolute value because it creates an exact linear line in a graphical analysis, which provides more appropriate results for measuring the shotcrete performance rather than ICAR rheometer relative data.

17.
Materials (Basel) ; 14(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34683707

RESUMEN

Colloidal silica can quickly seep through sand and then form silica gels to cement sand particles. To improve the strength of sand seeped by colloidal silica, carbon nanotubes were dispersed in the colloidal silica to form carbon-nanotube-reinforced sand-gel composites. Then triaxial tests were performed to explore how carbon nanotube content affects shear strength. The test results showed that: (1) with the increase of colloidal silica concentration, the shear strength significantly increased with the same carbon nanotube content (especially the low concentration of 10 wt. % colloidal silica, which showed almost no reinforcing effect with carbon nanotubes) while 40 wt. % colloidal silica plus 0.01 wt. % carbon nanotube caused the maximum increase of shear strength by up to 93.65%; (2) there was a concentration threshold of colloidal silica, above which the shear strength first increased to the peak value and then decreased with increasing carbon nanotube content (and we also established a formula to predict such phenomenon); and (3) SEM images showed that carbon nanotubes were connected as several ropes in the micro-cracks of the silica gel, resulting in greater macroscopic shear strength. Our new method of mixing carbon nanotubes and colloidal silica to seep through sand can contribute to sandy ground improvement.

18.
Micromachines (Basel) ; 12(8)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34442578

RESUMEN

Quartz glass is a typical optical material. In this research, colloidal silica (SiO2) and colloidal cerium oxide (CeO2) are used as abrasive grains to polish quartz glass in the shear thickening polishing (STP) process. The STP method employs the shear-thickening mechanism of non-Newtonian power-law fluid to achieve high-efficiency and high-quality polishing. The different performance in material removal and surface roughness between SiO2 and CeO2 slurries was analyzed. The influence of the main factors including polishing speed, abrasive concentration, and pH value on the MRR, workpiece surface roughness, and the surface topography was discussed. Two different slurries can both achieve fine quartz surface in shear thickening polishing with the polishing speed 100 rpm, and pH value 8. The quartz glass surface roughness Ra decreases from 120 ± 10 to 2.3 nm in 14 minutes' polishing with 8 wt% 80 nm SiO2 slurry, and the MRR reaches 121.6 nm/min. The quartz glass surface roughness Ra decreases from 120 ± 10 to 2.1 nm in 12 minutes polishing by 6 wt% 100 nm CeO2 slurry and the MRR reaches 126.2 nm/min.

19.
Eur J Pharm Sci ; 165: 105952, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34298140

RESUMEN

Albeit the preparation of liquisolid systems represents an innovative approach to enhance the dissolution of poorly soluble drugs, their broader utilization is still limited mainly due to the problematic conversion of the liquid into freely flowing and readily compressible powder. Accordingly, the presented study aims to determine the optimal carrier/coating material ratio (R value) for formulations based on magnesium aluminometasilicate (NUS2) loaded with polyethylene glycol 400. Four commercially available colloidal silica were used as coating materials in nine different R values (range of 5 - 100). The obtained results suggested that the higher R value leads to the superior properties of powder mixtures, such as better flowability, as well as compacts with higher tensile strength and lower friability. Moreover, it was observed that the type of coating material impacts the properties of liquisolid systems due to the different arrangement of particles in the liquisolid mixture. To confirm the noted dependency of R value and coating material type, the one- and two-way ANOVA, linear regression and principal component analysis (PCA) techniques were performed. In addition, a comparison of results with the properties of loaded NUS2 itself revealed that LSS with sufficient properties may be prepared even without the coating material.


Asunto(s)
Magnesio , Dióxido de Silicio , Composición de Medicamentos , Polvos , Solubilidad , Comprimidos
20.
J Colloid Interface Sci ; 581(Pt A): 102-111, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32771722

RESUMEN

HYPOTHESIS: Nonionic surfactants have been widely used for many consumer products and industrial processes, and their applications often involve temperature-cycling across cloud point temperature (Tcloud). To explore the behavior of nonionic surfactants across Tcloud and when mixed with colloidal silica at a very dilute concentration around 0.1 wt%, a series of 1,2-epoxybutane-capped alcohol ethoxylates (BAEs) with various cloud points is used as a model system. EXPERIMENTS: BAEs with cloud points from 15 to 64 °C were successfully prepared by varying the lengths of 1,2-epoxybutane (BO) and ethylene oxide (EO) blocks and their phase behavior across Tcloud was studied using nuclear magnetic resonance spectroscopy (NMR), dynamic light scattering (DLS) and differential scanning calorimetry (DSC). FINDINGS: In the absence of silica, the NMR signals are not greatly affected by the cloud point transition, but both the water and surfactant exhibit a decrease in spin-spin relaxation time once the temperature reaches the Tcloud. In the presence of silica, the NMR spectra indicate significantly reduced mobility of the EO portion relative to the alkyl and BO segments. Furthermore, our results suggest that the BAE surfactants are not fractionally clouding out or precipitating with a portion of the compositional distribution during the cloud point transition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA