Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.010
Filtrar
1.
Front Mol Biosci ; 11: 1467366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351155

RESUMEN

3D cell culture models replicate tissue complexity and aim to study cellular interactions and responses in a more physiologically relevant environment compared to traditional 2D cultures. However, the spherical structure of these models makes it difficult to extract meaningful data, necessitating advanced techniques for proper analysis. In silico simulations enhance research by predicting cellular behaviors and therapeutic responses, providing a powerful tool to complement experimental approaches. Despite their potential, these simulations often require advanced computational skills and significant resources, which creates a barrier for many researchers. To address these challenges, we developed an accessible pipeline using open-source software to facilitate virtual tissue simulations. Our approach employs the Cellular Potts Model, a versatile framework for simulating cellular behaviors in tissues. The simulations are constructed from real world 3D image stacks of cancer spheroids, ensuring that the virtual models are rooted in experimental data. By introducing a new metric for parameter optimization, we enable the creation of realistic simulations without requiring extensive computational expertise. This pipeline benefits researchers wanting to incorporate computational biology into their methods, even if they do not possess extensive expertise in this area. By reducing the technical barriers associated with advanced computational modeling, our pipeline enables more researchers to utilize these powerful tools. Our approach aims to foster a broader use of in silico methods in disease research, contributing to a deeper understanding of disease biology and the refinement of therapeutic interventions.

2.
Front Plant Sci ; 15: 1437118, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39372861

RESUMEN

Introduction: Single-cell RNA-seq (scRNA-seq) technologies have been widely used to reveal the diversity and complexity of cells, and pioneering studies on scRNA-seq in plants began to emerge since 2019. However, existing studies on plants utilized scRNA-seq focused only on the gene expression regulation. As an essential post-transcriptional mechanism for regulating gene expression, alternative polyadenylation (APA) generates diverse mRNA isoforms with distinct 3' ends through the selective use of different polyadenylation sites in a gene. APA plays important roles in regulating multiple developmental processes in plants, such as flowering time and stress response. Methods: In this study, we developed a pipeline to identify and integrate APA sites from different scRNA-seq data and analyze APA dynamics in single cells. First, high-confidence poly(A) sites in single root cells were identified and quantified. Second, three kinds of APA markers were identified for exploring APA dynamics in single cells, including differentially expressed poly(A) sites based on APA site expression, APA markers based on APA usages, and APA switching genes based on 3' UTR (untranslated region) length change. Moreover, cell type annotations of single root cells were refined by integrating both the APA information and the gene expression profile. Results: We comprehensively compiled a single-cell APA atlas from five scRNA-seq studies, covering over 150,000 cells spanning four major tissue branches, twelve cell types, and three developmental stages. Moreover, we quantified the dynamic APA usages in single cells and identified APA markers across tissues and cell types. Further, we integrated complementary information of gene expression and APA profiles to annotate cell types and reveal subtle differences between cell types. Discussion: This study reveals that APA provides an additional layer of information for determining cell identity and provides a landscape of APA dynamics during Arabidopsis root development.

3.
Elife ; 132024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39383060

RESUMEN

Assay for Transposase-Accessible Chromatin sequencing (ATAC-Seq) is a widely used technique to explore gene regulatory mechanisms. For most ATAC-Seq data from healthy and diseased tissues such as tumors, chromatin accessibility measurement represents a mixed signal from multiple cell types. In this work, we derive reliable chromatin accessibility marker peaks and reference profiles for most non-malignant cell types frequently observed in the microenvironment of human tumors. We then integrate these data into the EPIC deconvolution framework (Racle et al., 2017) to quantify cell-type heterogeneity in bulk ATAC-Seq data. Our EPIC-ATAC tool accurately predicts non-malignant and malignant cell fractions in tumor samples. When applied to a human breast cancer cohort, EPIC-ATAC accurately infers the immune contexture of the main breast cancer subtypes.


Asunto(s)
Neoplasias de la Mama , Secuenciación de Inmunoprecipitación de Cromatina , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Microambiente Tumoral , Femenino , Cromatina/metabolismo , Cromatina/genética , Neoplasias/genética , Neoplasias/inmunología
4.
Elife ; 122024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39374133

RESUMEN

Diffusional kurtosis imaging (DKI) is a methodology for measuring the extent of non-Gaussian diffusion in biological tissue, which has shown great promise in clinical diagnosis, treatment planning, and monitoring of many neurological diseases and disorders. However, robust, fast, and accurate estimation of kurtosis from clinically feasible data acquisitions remains a challenge. In this study, we first outline a new accurate approach of estimating mean kurtosis via the sub-diffusion mathematical framework. Crucially, this extension of the conventional DKI overcomes the limitation on the maximum b-value of the latter. Kurtosis and diffusivity can now be simply computed as functions of the sub-diffusion model parameters. Second, we propose a new fast and robust fitting procedure to estimate the sub-diffusion model parameters using two diffusion times without increasing acquisition time as for the conventional DKI. Third, our sub-diffusion-based kurtosis mapping method is evaluated using both simulations and the Connectome 1.0 human brain data. Exquisite tissue contrast is achieved even when the diffusion encoded data is collected in only minutes. In summary, our findings suggest robust, fast, and accurate estimation of mean kurtosis can be realised within a clinically feasible diffusion-weighted magnetic resonance imaging data acquisition time.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Conectoma/métodos , Procesamiento de Imagen Asistido por Computador/métodos
5.
Elife ; 132024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39388235

RESUMEN

Variant calling is fundamental in bacterial genomics, underpinning the identification of disease transmission clusters, the construction of phylogenetic trees, and antimicrobial resistance detection. This study presents a comprehensive benchmarking of variant calling accuracy in bacterial genomes using Oxford Nanopore Technologies (ONT) sequencing data. We evaluated three ONT basecalling models and both simplex (single-strand) and duplex (dual-strand) read types across 14 diverse bacterial species. Our findings reveal that deep learning-based variant callers, particularly Clair3 and DeepVariant, significantly outperform traditional methods and even exceed the accuracy of Illumina sequencing, especially when applied to ONT's super-high accuracy model. ONT's superior performance is attributed to its ability to overcome Illumina's errors, which often arise from difficulties in aligning reads in repetitive and variant-dense genomic regions. Moreover, the use of high-performing variant callers with ONT's super-high accuracy data mitigates ONT's traditional errors in homopolymers. We also investigated the impact of read depth on variant calling, demonstrating that 10× depth of ONT super-accuracy data can achieve precision and recall comparable to, or better than, full-depth Illumina sequencing. These results underscore the potential of ONT sequencing, combined with advanced variant calling algorithms, to replace traditional short-read sequencing methods in bacterial genomics, particularly in resource-limited settings.


Imagine being part of a public health institution when, suddenly, cases of Salmonella surge across your country. You are facing an outbreak of this foodborne disease, and the clock is ticking. People are consuming a contaminated product that is making them sick; how do you identify related cases, track the source of the infection, and shut down its production? In situations like these, scientists need to tell apart even closely related strains of the same bacterial species. This process, known as variant calling, relies on first analysing (or 'sequencing') the genetic information obtained from the bacteria of interest, then comparing it to a reference genome. Currently, two main approaches are available for genome sequencing. Traditional 'short-read' technologies tend to be more accurate but less reliable when covering certain types of genomic regions. New 'long-read' approaches can bypass these limitations though they have historically been less accurate. Comparison with a reference genome can be performed using a tool known as a variant caller. Many of the most effective ones are now based on artificial intelligence approaches such as deep learning. However, these have primarily been applied to human genomic data so far; it therefore remains unclear whether they are equally useful for bacterial genomes. In response, Hall et al. set out to investigate the accuracy of four deep learning-based and three traditional variant callers on datasets from 14 bacterial species obtained via long-read approaches. Their respective performance was also benchmarked against a more conventional approach representing a standard of accuracy (that is, a popular, non-deep learning variant caller used on short-read datasets). These analyses were performed on a 'truthset' established by Hall et al., a collection of validated data that allowed them to assess the performance of the various tools tested. The results show that, in this context, the deep learning variant callers more accurately detected genetic variations compared to the traditional approach. These tools, which could be run on standard laptops, were effective even with low amounts of sequencing data ­ making them useful even in settings where resources are limited. Variant calling is an essential step in tracking the emergence and spread of disease, identifying new strains of bacteria, and examining their evolution. The findings by Hall et al. should therefore benefit various sectors, particularly clinical and public health laboratories.


Asunto(s)
Bacterias , Benchmarking , Aprendizaje Profundo , Genoma Bacteriano , Secuenciación de Nanoporos , Secuenciación de Nanoporos/métodos , Bacterias/genética , Bacterias/clasificación , Nanoporos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genómica/métodos , Variación Genética
6.
mBio ; : e0320623, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230289

RESUMEN

Viruses of bacteria, "phages," are fundamental, poorly understood components of microbial community structure and function. Additionally, their dependence on hosts for replication positions phages as unique sensors of ecosystem features and environmental pressures. High-throughput sequencing approaches have begun to give us access to the diversity and range of phage populations in complex microbial community samples, and metagenomics is currently the primary tool with which we study phage populations. The study of phages by metagenomic sequencing, however, is fundamentally limited by viral diversity, which results in the vast majority of viral genomes and metagenome-annotated genomes lacking annotation. To harness bacteriophages for applications in human and environmental health and disease, we need new methods to organize and annotate viral sequence diversity. We recently demonstrated that methods that leverage self-supervised representation learning can supplement statistical sequence representations for remote viral protein homology detection in the ocean virome and propose that consideration of the functional content of viral sequences allows for the identification of similarity in otherwise sequence-diverse viruses and viral-like elements for biological discovery. In this review, we describe the potential and pitfalls of large language models for viral annotation. We describe the need for new approaches to annotate viral sequences in metagenomes, the fundamentals of what protein language models are and how one can use them for sequence annotation, the strengths and weaknesses of these models, and future directions toward developing better models for viral annotation more broadly.

7.
Elife ; 132024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230417

RESUMEN

We determined the intersubject association between the rhythmic entrainment abilities of human subjects during a synchronization-continuation tapping task (SCT) and the macro- and microstructural properties of their superficial (SWM) and deep (DWM) white matter. Diffusion-weighted images were obtained from 32 subjects who performed the SCT with auditory or visual metronomes and five tempos ranging from 550 to 950 ms. We developed a method to determine the density of short-range fibers that run underneath the cortical mantle, interconnecting nearby cortical regions (U-fibers). Notably, individual differences in the density of U-fibers in the right audiomotor system were correlated with the degree of phase accuracy between the stimuli and taps across subjects. These correlations were specific to the synchronization epoch with auditory metronomes and tempos around 1.5 Hz. In addition, a significant association was found between phase accuracy and the density and bundle diameter of the corpus callosum, forming an interval-selective map where short and long intervals were behaviorally correlated with the anterior and posterior portions of the corpus callosum. These findings suggest that the structural properties of the SWM and DWM in the audiomotor system support the tapping synchronization abilities of subjects, as cortical U-fiber density is linked to the preferred tapping tempo and the bundle properties of the corpus callosum define an interval-selective topography.

8.
Cancers (Basel) ; 16(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39272814

RESUMEN

A multitude of exogenous and endogenous processes have the potential to result in DNA damage. While the repair mechanisms are typically capable of correcting this damage, errors in the repair process can result in mutations. The findings of research conducted in 2012 indicate that mutations do not occur randomly but rather follow specific patterns that can be attributed to known or inferred mutational processes. The process of mutational signature analysis allows for the inference of the predominant mutational process for a given cancer sample, with significant potential for clinical applications. A deeper comprehension of these mutational signatures in CRC could facilitate enhanced prevention strategies, facilitate the comprehension of genotoxic drug activity, predict responses to personalized treatments, and, in the future, inform the development of targeted therapies in the context of precision oncology. The efforts of numerous researchers have led to the identification of several mutational signatures, which can be categorized into different mutational signature references. In CRC, distinct mutational signatures are identified as correlating with mismatch repair deficiency, polymerase mutations, and chemotherapy treatment. In this context, a mutational signature analysis offers considerable potential for enhancing minimal residual disease (MRD) tests in stage II (high-risk) and stage III CRC post-surgery, stratifying CRC based on the impacts of genetic and epigenetic alterations for precision oncology, identifying potential therapeutic vulnerabilities, and evaluating drug efficacy and guiding therapy, as illustrated in a proof-of-concept clinical trial.

9.
BioData Min ; 17(1): 28, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227987

RESUMEN

Pangenomics is a relatively new scientific field which investigates the union of all the genomes of a clade. The word pan means everything in ancient Greek; the term pangenomics originally regarded genomes of bacteria and was later intended to refer to human genomes as well. Modern bioinformatics offers several tools to analyze pangenomics data, paving the way to an emerging field that we can call computational pangenomics. Current computational power available for the bioinformatics community has made computational pangenomic analyses easy to perform, but this higher accessibility to pangenomics analysis also increases the chances to make mistakes and to produce misleading or inflated results, especially by beginners. To handle this problem, we present here a few quick tips for efficient and correct computational pangenomic analyses with a focus on bacterial pangenomics, by describing common mistakes to avoid and experienced best practices to follow in this field. We believe our recommendations can help the readers perform more robust and sound pangenomic analyses and to generate more reliable results.

10.
Elife ; 132024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240985

RESUMEN

Mass cytometry is a cutting-edge high-dimensional technology for profiling marker expression at the single-cell level, advancing clinical research in immune monitoring. Nevertheless, the vast data generated by cytometry by time-of-flight (CyTOF) poses a significant analytical challenge. To address this, we describe ImmCellTyper (https://github.com/JingAnyaSun/ImmCellTyper), a novel toolkit for CyTOF data analysis. This framework incorporates BinaryClust, an in-house developed semi-supervised clustering tool that automatically identifies main cell types. BinaryClust outperforms existing clustering tools in accuracy and speed, as shown in benchmarks with two datasets of approximately 4 million cells, matching the precision of manual gating by human experts. Furthermore, ImmCellTyper offers various visualisation and analytical tools, spanning from quality control to differential analysis, tailored to users' specific needs for a comprehensive CyTOF data analysis solution. The workflow includes five key steps: (1) batch effect evaluation and correction, (2) data quality control and pre-processing, (3) main cell lineage characterisation and quantification, (4) in-depth investigation of specific cell types; and (5) differential analysis of cell abundance and functional marker expression across study groups. Overall, ImmCellTyper combines expert biological knowledge in a semi-supervised approach to accurately deconvolute well-defined main cell lineages, while maintaining the potential of unsupervised methods to discover novel cell subsets, thus facilitating high-dimensional immune profiling.


Asunto(s)
Análisis de Datos , Citometría de Flujo , Análisis de la Célula Individual , Humanos , Citometría de Flujo/métodos , Análisis de la Célula Individual/métodos , Programas Informáticos , Análisis por Conglomerados
11.
Res Pract Thromb Haemost ; 8(5): 102523, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39252825

RESUMEN

Background: Platelet function is driven by the expression of specialized surface markers. The concept of distinct circulating subpopulations of platelets has emerged in recent years, but their exact nature remains debatable. Objectives: To design a spectral flow cytometry-based phenotyping workflow to provide a more comprehensive characterization, at a global and individual level, of surface markers in resting and activated healthy platelets, and to apply this workflow to investigate how responses differ according to platelet age. Methods: A 14-marker flow cytometry panel was developed and applied to vehicle- or agonist-stimulated platelet-rich plasma and whole blood samples obtained from healthy volunteers, or to platelets sorted according to SYTO-13 (Thermo Fisher Scientific) staining intensity as an indicator of platelet age. Data were analyzed using both user-led and independent approaches incorporating novel machine learning-based algorithms. Results: The assay detected differences in marker expression in healthy platelets, at rest and on agonist activation, in both platelet-rich plasma and whole blood samples, that are consistent with the literature. Machine learning identified stimulated populations of platelets with high accuracy (>80%). Similarly, machine learning differentiation between young and old platelet populations achieved 76% accuracy, primarily weighted by forward scatter, cluster of differentiation (CD) 41, side scatter, glycoprotein VI, CD61, and CD42b expression patterns. Conclusion: Our approach provides a powerful phenotypic assay coupled with robust bioinformatic and machine learning workflows for deep analysis of platelet subpopulations. Cleavable receptors, glycoprotein VI and CD42b, contribute to defining shared and unique subpopulations. This adoptable, low-volume approach will be valuable in deep characterization of platelets in disease.

12.
Elife ; 122024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254193

RESUMEN

The force developed by actively lengthened muscle depends on different structures across different scales of lengthening. For small perturbations, the active response of muscle is well captured by a linear-time-invariant (LTI) system: a stiff spring in parallel with a light damper. The force response of muscle to longer stretches is better represented by a compliant spring that can fix its end when activated. Experimental work has shown that the stiffness and damping (impedance) of muscle in response to small perturbations is of fundamental importance to motor learning and mechanical stability, while the huge forces developed during long active stretches are critical for simulating and predicting injury. Outside of motor learning and injury, muscle is actively lengthened as a part of nearly all terrestrial locomotion. Despite the functional importance of impedance and active lengthening, no single muscle model has all these mechanical properties. In this work, we present the viscoelastic-crossbridge active-titin (VEXAT) model that can replicate the response of muscle to length changes great and small. To evaluate the VEXAT model, we compare its response to biological muscle by simulating experiments that measure the impedance of muscle, and the forces developed during long active stretches. In addition, we have also compared the responses of the VEXAT model to a popular Hill-type muscle model. The VEXAT model more accurately captures the impedance of biological muscle and its responses to long active stretches than a Hill-type model and can still reproduce the force-velocity and force-length relations of muscle. While the comparison between the VEXAT model and biological muscle is favorable, there are some phenomena that can be improved: the low frequency phase response of the model, and a mechanism to support passive force enhancement.


Asunto(s)
Modelos Biológicos , Músculo Esquelético/fisiología , Fenómenos Biomecánicos , Humanos , Contracción Muscular/fisiología , Animales , Sarcómeros/fisiología , Impedancia Eléctrica
13.
Elife ; 132024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255191

RESUMEN

There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.


Mutations in an organism's DNA make the individual more likely to survive and reproduce in its environment, passing on its mutations to the next generation. Mutations can alter the proteins that a gene codes for in many ways. This leads to a situation where seemingly similar mutations ­ such as two mutations in the same gene ­ can have different effects. For example, two different mutations could affect the primary function of the encoded protein in the same way but have different side effects. One mutation might also cause the protein to interact with a new molecule or protein. Organisms possessing one or the other mutation will thus have similar odds of surviving and reproducing in some environments, but differences in environments where the new interaction is important. In microorganisms, mutations can lead to drug resistance. If drug-resistant mutations have different side effects, it can be challenging to treat microbial infections, as drug-resistant pathogens are often treated with sequential drug strategies. These strategies rely on mutations that cause resistance to the first drug all having susceptibility to the second drug. But if similar seeming mutations can have diverse side effects, predictions about how they will respond to a second drug are more complicated. To address this issue, Schmidlin, Apodaca et al. collected a diverse group of nearly a thousand mutant yeast strains that were resistant to a drug called fluconazole. Next, they asked to what extent the fitness ­ the ability to survive and reproduce ­ of these mutants responded similarly to environmental change. They used this information to cluster mutations into groups that likely have similar effects at the molecular level, finding at least six such groups with unique trade-offs across environments. For example, some groups resisted only low drug concentrations, and others were unique in that they resisted treatment with two single drugs but not their combination. These diverse types of fluconazole-resistant yeast lineages highlight the challenges of designing a simple sequential drug treatment that targets all drug-resistant mutants. However, the results also suggest some predictability in how drug-resistant infections can evolve and be treated.


Asunto(s)
Antifúngicos , Farmacorresistencia Fúngica , Fluconazol , Aptitud Genética , Mutación , Saccharomyces cerevisiae , Fluconazol/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética
14.
Comput Biol Chem ; 113: 108209, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260229

RESUMEN

Fusion proteins have the potential to become the new norm for targeted therapeutic treatments. Highly specific payload delivery can be achieved by combining custom targeting moieties, such as VHH domains, with active parts of proteins that have a particular activity not naturally targeted to the intended cells. Conversely, novel drug products may make use of the highly specific targeting properties of naturally occurring proteins and combine them with custom payloads. When designing such a product, there is rarely a known structure for the final construct which makes it difficult to assess molecular behaviour that may ultimately impact therapeutic outcome. Considering the time and cost of expressing a construct, optimising the purification procedure, obtaining sufficient quantities for biophysical characterisation, and performing structural studies in vitro, there is an enormous benefit to conduct in silico studies ahead of wet lab work. By following a repeatable, streamlined, and fast workflow of molecular dynamics assessment, it is possible to eliminate low-performing candidates from costly experimental work. There are, however, many aspects to consider when designing a novel fusion protein and it is crucial not to overlook some elements. In this work, we suggest a set of user-friendly, open-source methods which can be used to screen fusion protein candidates from the sequence alone. We used the light chain and translocation domain of botulinum toxin A (BoNT/A) fused with a selected VHH domain, termed here LC-HN-VHH, as a case study for a general approach to designing, modelling, and simulating fusion proteins. Its behaviour in silico correlated well with initial in vitro work, with SEC HPLC showing multiple protein states in solution and a dynamic protein shifting between these states over time without loss of material.

15.
Front Immunol ; 15: 1415435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247201

RESUMEN

Background: Hepatocellular carcinoma (HCC) poses a significant health burden globally, with high mortality rates despite various treatment options. Immunotherapy, particularly immune-checkpoint inhibitors (ICIs), has shown promise, but resistance and metastasis remain major challenges. Understanding the intricacies of the tumor microenvironment (TME) is imperative for optimizing HCC management strategies and enhancing patient prognosis. Methods: This study employed a comprehensive approach integrating multi-omics approaches, including single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing (Bulk RNA-seq), and validation in clinical samples using spatial transcriptomics (ST) and multiplex immunohistochemistry (mIHC). The analysis aimed to identify key factors influencing the immunosuppressive microenvironment associated with HCC metastasis and immunotherapy resistance. Results: HMGB2 is significantly upregulated in HCCTrans, a transitional subgroup associated with aggressive metastasis. Furthermore, HMGB2 expression positively correlates with an immunosuppressive microenvironment, particularly evident in exhausted T cells. Notably, HMGB2 expression correlated positively with immunosuppressive markers and poor prognosis in HCC patients across multiple cohorts. ST combined with mIHC validated the spatial expression patterns of HMGB2 within the TME, providing additional evidence of its role in HCC progression and immune evasion. Conclusion: HMGB2 emerges as a critical player of HCC progression, metastasis, and immunosuppression. Its elevated expression correlates with aggressive tumor behavior and poor patient outcomes, suggesting its potential as both a therapeutic target and a prognostic indicator in HCC management.


Asunto(s)
Carcinoma Hepatocelular , Proteína HMGB2 , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Regulación Neoplásica de la Expresión Génica , Progresión de la Enfermedad , Biomarcadores de Tumor/metabolismo , Pronóstico , Masculino , Femenino , Análisis de la Célula Individual , Multiómica
16.
Comput Biol Chem ; 113: 108205, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39265460

RESUMEN

In the realm of plant biology, understanding the intricate regulatory mechanisms governing stress responses stands as a pivotal pursuit. Circular RNAs (circRNAs), emerging as critical players in gene regulation, have garnered attention in recent days for their potential roles in abiotic stress adaptation. A comprehensive grasp of circRNAs' functions in stress response offers avenues for breeders to manipulating plants to develop abiotic stress resistant crop cultivars to thrive in challenging climates. This study pioneers a machine learning-based model for predicting abiotic stress-responsive circRNAs. The K-tuple nucleotide composition (KNC) and Pseudo KNC (PKNC) features were utilized to numerically represent circRNAs. Three different feature selection strategies were employed to select relevant and non-redundant features. Eight shallow and four deep learning algorithms were evaluated to build the final predictive model. Following five-fold cross-validation process, XGBoost learning algorithm demonstrated superior performance with LightGBM-chosen 260 KNC features (Accuracy: 74.55 %, auROC: 81.23 %, auPRC: 76.52 %) and 160 PKNC features (Accuracy: 74.32 %, auROC: 81.04 %, auPRC: 76.43 %), over other combinations of learning algorithms and feature selection techniques. Further, the robustness of the developed models were evaluated using an independent test dataset, where the overall accuracy, auROC and auPRC were found to be 73.13 %, 72.34 % and 72.68 % for KNC feature set and 73.52 %, 79.53 % and 73.09 % for PKNC feature set, respectively. This computational approach was also integrated into an online prediction tool, AScirRNA (https://iasri-sg.icar.gov.in/ascirna/) for easy prediction by the users. Both the proposed model and the developed tool are poised to augment ongoing efforts in identifying stress-responsive circRNAs in plants.

17.
Iran J Biotechnol ; 22(2): e3787, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39220333

RESUMEN

Background: In-silico analysis provides a fast, simple, and cost-free method for identifying potentially pathogenic single nucleotide variants. Objective: To propose a simple and relatively fast method for the prediction of variant pathogenicity using free online in-silico (IS) tools with AURKA gene as a model. Materials and Methods: We aim to propose a methodology to predict variants with high pathogenic potential using computational analysis, using AURKA gene as model. We predicted a protein model and analyzed 209 out of 64,369 AURKA variants obtained from Ensembl database. We used bioinformatic tools to predict pathogenicity. The results were compared through the VarSome website, which includes its own pathogenicity score and the American College of Medical Genetics (ACMG) classification. Results: Out of the 209 analyzed variants, 16 were considered pathogenic, and 13 were located in the catalytic domain. The most frequent protein changes were size and hydrophobicity modifications of amino acids. Proline and Glycine amino acid substitutions were the most frequent changes predicted as pathogenic. These bioinformatic tools predicted functional changes, such as protein up or down-regulation, gain or loss of molecule interactions, and structural protein modifications. When compared to the ACMG classification, 10 out of 16 variants were considered likely pathogenic, with 7 out of 10 changes at Proline/Glycine substitutions. Conclusion: This method allows quick and cost-free bulk variant screening to identify variants with pathogenic potential for further association and/or functional studies.

18.
Methods ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276958

RESUMEN

The metabolic pathway known as gluconeogenesis, which produces glucose from non-carbohydrate substrates, is essential for maintaining balanced blood sugar levels while fasting. It's extremely important to anticipate gluconeogenesis rates accurately to recognize metabolic disorders and create efficient treatment strategies. The implementation of deep learning and machine learning methods to forecast complex biological processes has been gaining popularity in recent years. The recognition of both the regulation of the pathway and possible therapeutic applications of proteins depends on accurate identification associated with their gluconeogenesis patterns. This article analyzes the uses of machine learning and deep learning models, to predict gluconeogenesis efficiency. The study also discusses the challenges that come with restricted data availability and model interpretability, as well as possible applications in personalized healthcare, metabolic disease treatment, and the discovery of drugs. The predictor utilizes statistics moments on the structures of gluconeogenesis and their enzymes, while Random Forest is utilized as a classifier to ensure the accuracy of this model in identifying the best outcomes. The method was validated utilizing the independent test, self-consistency, 10 k fold cross-validations, and jackknife test which achieved 92.33 %, 91.87 %, 87.88 %, and 87.02 %. An accurate prediction of gluconeogenesis has significant implications for understanding metabolic disorders and developing targeted therapies. This study contributes to the rising field of predictive biology by mixing algorithms for deep learning, and machine learning, with metabolic pathways.

19.
Protein Sci ; 33(10): e5180, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39324697

RESUMEN

Aggrescan4D (A4D) is an advanced computational tool designed for predicting protein aggregation, leveraging structural information and the influence of pH. Building upon its predecessor, Aggrescan3D (A3D), A4D has undergone numerous enhancements aimed at assisting the improvement of protein solubility. This manuscript reviews A4D's updated functionalities and explains the fundamental principles behind its pH-dependent calculations. Additionally, it presents an antibody case study to evaluate its performance in comparison with other structure-based predictors. Notably, A4D integrates advanced protein engineering protocols with pH-dependent calculations, enhancing its utility in advising solubility-enhancing mutations. A4D considers the impact of structural flexibility on aggregation propensities, and includes a large set of precalculated predictions. These capabilities should help to open new avenues for both understanding and managing protein aggregation. A4D is accessible through a dedicated web server at https://biocomp.chem.uw.edu.pl/a4d/.


Asunto(s)
Agregado de Proteínas , Ingeniería de Proteínas , Concentración de Iones de Hidrógeno , Ingeniería de Proteínas/métodos , Programas Informáticos , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Solubilidad
20.
Int J Biol Markers ; 39(3): 191-192, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39286918
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA