Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
J Pharm Sci ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004417

RESUMEN

Real-time monitoring of critical quality attributes, such as residual water in granules after drying which can be determined through loss-on-drying (LOD), during wet granulation and drying is essential in continuous manufacturing. Near-infrared (NIR) spectroscopy has been widely used as process analytical technology (PAT) for in-line LOD monitoring. This study aims to develop and apply a model for predicting the LOD based on process parameters. Additionally, the efficacy of an orthogonal PAT approach using NIR and mass balance (MB) for a vibrating fluidized bed dryer (VFBD) is demonstrated. An in-house-built, cost-effective NIR sensor was utilized for measurements and exhibited good correlation compared to standard method via infrared drying. The combination of NIR and MB, as independent methods, has demonstrated their applicability. A good correlation, with a Pearson r above 0.99, was observed for LOD up to 16 % (w/w). The use of an orthogonal PAT method mitigated the risk of false process adaption. In some experiments where the NIR sensor might have been covered by powder and therefore did not measure accurately, LOD monitoring via MB remained feasible. The developed model effectively predicted LOD or process parameters, resulting in an R2 of 0.882 and a RMSE of 0.475 between predicted and measured LOD using the standard method.

2.
Pharm Dev Technol ; : 1-7, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38995216

RESUMEN

The appearance of an extrudate formulation was monitored during hot-melt extrusion (HME) continuous manufacturing over 3 days. The formulation matrix consisted of a polymeric component, copovidone, and a low molecular weight surfactant, polysorbate 80. Based on studies prior to the continuous manufacturing, the desired appearance of the target extrudate is translucent. Although process parameters such as feed rate and screw speed were fixed during the continuous manufacturing, the extrudate appearance changed over time from turbid to translucent. For root-cause investigation, the extrudates were analyzed offline by differential scanning calorimetry (DSC) and advanced polymer chromatography (APC™). Although the polysorbate 80 content of both turbid and translucent extrudates was within target, the glass transition temperature of the turbid extrudate was 2 °C above expected value. The observed turbidity was traced to lot-to-lot variability of the polysorbate 80 used in the continuous manufacturing, where APC™ analysis revealed that the relative content of the low molecular weight component varied from 23% to 27% in correlation with the evolution from turbid to translucent extrudates. This work stresses the importance of taking feeding material variability into account during continuous manufacturing.

3.
Pharmaceutics ; 16(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39065551

RESUMEN

Binder selection is a crucial step in continuous twin-screw wet granulation (TSWG), as the material experiences a much shorter residence time (2-40 s) in the granulator barrel compared to batch-wise granulation processes. Polyvinyl alcohol (PVA) 4-88 was identified as an effective binder during TSWG, but the potential of other PVA grades-differing in polymerization and hydrolysis degree-has not yet been studied. Therefore, the aim of the current study was to evaluate the potential of different PVA grades as a binder during TSWG. The breakage and drying behavior during the fluidized bed drying of drug-loaded granules containing the PVA grades was also studied. Three PVA grades (4-88, 18-88, and 40-88) were characterized and their attributes were compared to previously investigated binders by Vandevivere et al. through principal component analysis. Three binder clusters could be distinguished according to their attributes, whereby each cluster contained a PVA grade and a previously investigated binder. PVA 4-88 was the most effective binder of the PVA grades for both a good water-soluble and water-insoluble formulation. This could be attributed to its high total surface energy, low viscosity, good wettability of hydrophilic and hydrophobic surfaces, and good wettability by water of the binder. Compared to the previously investigated binders, all PVA grades were more effective in the water-insoluble formulation, as they yielded strong granules (friability below 30%) at lower L/S-ratios. This was linked to the high dispersive surface energy of the high-energy sites on the surface of PVA grades and their low surface tension. During fluidized bed drying, PVA grades proved suitable binders, as the acetaminophen (APAP) granules were dried within a short time due to the low L/S-ratio, at which high-quality granules could be produced. In addition, no attrition occurred, and strong tablets were obtained. Based on this study, PVA could be the preferred binder during twin screw granulation due to its high binder effectiveness at a low L/S-ratio, allowing efficient downstream processing. However, process robustness must be controlled by the included excipients, as PVA grades are operating in a narrow L/S-ratio range.

4.
Biotechnol Prog ; : e3487, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980213

RESUMEN

WuXiUPTM, WuXi Biologics' Ultra-high Productivity platform, is an intensified and integrated continuous bioprocess platform developed for production of various biologics including monoclonal antibodies, fusion proteins, and bispecific antibodies. This process technology platform has manifested its remarkable capability in boosting the volumetric productivity of various biologics and has been implemented for large-scale clinical material productions. In this paper, case studies of the production of different pharmaceutical proteins using two high-producing and intensified culture modes of WuXiUPTM and the concentrated fed-batch (CFB), as well as the traditional fed-batch (TFB) are discussed from the perspectives of cell growth, productivity, and protein quality. Both WuXiUPTM and CFB outperformed TFB regarding volumetric productivity. Additionally, distinctive advantages in product quality profiles in the WuXiUPTM process, such as reduced acidic charge variants and fragmentation, are revealed. Therefore, a simplified downstream purification process with only two chromatographic steps can be developed to deliver the target product at a satisfactory purity and an extremely-high yield.

5.
Int J Pharm ; 661: 124478, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019300

RESUMEN

Continuous manufacturing has the potential to offer several benefits for the production of oral solid dosage forms, including reduced costs, low-scale equipment, and the application of process analytical technology (PAT) for real-time process control. This study focuses on the implementation of a stream sampler to develop a near infrared (NIR) calibration model for blend uniformity monitoring in a continuous manufacturing mixing process. Feeding and mixing characterizations were performed for three loss-in-weight feeders and a commercial continuous mixer to prepare powder blends of 2.5-7.5 % w/w ibuprofen DC 85 W with a total throughput of 33 kg/h. The NIR spectral acquisition was performed after the mixing stage using a stream sampler for flowing powders. A continuous mixer shaft speed of 250 RPM was selected to operate the mixing process based on a variability analysis developed with in-line spectral data acquired using the stream sampler at 6 RPM. A partial least squares regression (PLS-R) model was performed and evaluated, yielding a root-mean-square error of prediction (RMSEP) of 0.39 % w/w and a bias of 0.05 % w/w. An independent experimental run conducted two days later revealed that the continuous mixing process and the NIR calibration model presented low day-to-day variation. The minimum practical error (MPE) and sill values through variographic analysis showed low variance associated with the sampling process using the stream sampler. Results demonstrated the promising capacity of the stream sampler coupled to an NIR probe to be implemented within continuous manufacturing processes for the real-time determination of API concentration.


Asunto(s)
Composición de Medicamentos , Ibuprofeno , Polvos , Espectroscopía Infrarroja Corta , Tecnología Farmacéutica , Espectroscopía Infrarroja Corta/métodos , Espectroscopía Infrarroja Corta/instrumentación , Composición de Medicamentos/métodos , Composición de Medicamentos/instrumentación , Tecnología Farmacéutica/métodos , Tecnología Farmacéutica/instrumentación , Ibuprofeno/análisis , Ibuprofeno/química , Análisis de los Mínimos Cuadrados , Calibración , Química Farmacéutica/métodos
6.
J Control Release ; 373: 617-639, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39002799

RESUMEN

Lipid-based complex injectables are renowned for their effectiveness in delivering drugs, with many approved products. While significant strides have been made in formulating nanosystems for small molecular weight drugs, a pivotal breakthrough emerged with the recognition of lipid nanoparticles as a promising platform for delivering nucleic acids. This finding has paved the way for tackling long-standing challenges in molecular and delivery aspects (e.g., mRNA stability, intracellular delivery) that have impeded the clinical translation of gene therapy, especially in the realm of immunotherapy. Nonetheless, developing and implementing new lipid-based delivery systems pose significant challenges, as industrial manufacturing of these formulations often involves complex, multi-batch processes, giving rise to issues related to scalability, stability, sterility, and regulatory compliance. To overcome these obstacles, embracing the principles of quality-by-design (QbD) is imperative. Furthermore, adopting cutting-edge manufacturing and process analytical tools (PAT) that facilitate the transition from batch to continuous production is essential. Herein, the key milestones and insights derived from the development of currently approved lipid- nanosystems will be explored. Additionally, a comprehensive and critical overview of the latest technologies and regulatory guidelines that underpin the creation of more efficient, scalable, and flexible manufacturing processes for complex lipid-based nanoformulations will be provided.

7.
Bioprocess Biosyst Eng ; 47(7): 1107-1116, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38864863

RESUMEN

Menaquinone-7 (MK-7), a vital vitamin with numerous health benefits, is synthesized and secreted extracellularly by the formation of biofilm, dominantly in Bacillus strains. Our team developed an innovative biofilm reactor utilizing Bacillus subtilis natto cells to foster biofilm growth on plastic composite supports to produce MK-7. Continuous fermentation in biofilm reactors offers a promising strategy for achieving sustainable and efficient production of Menaquinone-7 (MK-7). Unlike conventional batch fermentation, continuous biofilm reactors maintain a steady state of operation, which reduces resource consumption and waste generation, contributing to sustainability. By optimizing fermentation conditions, MK-7 production was significantly enhanced in this study, demonstrating the potential for sustainable industrial-scale production. To determine the optimal operational parameters, various dilution rates were tested. These rates were selected based on their potential to enhance nutrient supply and biofilm stability, thereby improving MK-7 production. By carefully considering the fermentation conditions and systematically varying the dilution rates, MK-7 production was significantly enhanced during continuous fermentation. The MK-7 productivity was found to increase from 0.12 mg/L/h to 0.33 mg/L/h with a dilution rate increment from 0.007 to 0.042 h-1). This range was chosen to explore the impact of various nutrient supply rates on MK-7 production and to identify the optimal conditions for maximizing productivity. However, a further increase in the dilution rate to 0.084 h-1 led to reduced productivity at approximately 0.16 mg/L/h, likely due to insufficient retention time for effective biofilm formation. Consequently, a dilution rate of 0.042 h-1 exhibited the highest productivity of 0.33 mg/L/h, outperforming all investigated dilution rates and demonstrating the critical balance between nutrient supply and retention time in continuous fermentation. These findings validate the feasibility of operating continuous fermentation at a 0.084 h-1 dilution rate, corresponding to a 48 h retention time, to achieve the highest MK-7 productivity compared to conventional batch fermentation. The significant advancements achieved in enhancing Menaquinone-7 (MK-7) productivity through continuous fermentation at optimal dilution rates in the present work indicate promising prospects for even greater efficiency and sustainability in MK-7 production through future developments.


Asunto(s)
Bacillus subtilis , Biopelículas , Reactores Biológicos , Vitamina K 2 , Biopelículas/crecimiento & desarrollo , Vitamina K 2/metabolismo , Vitamina K 2/análogos & derivados , Bacillus subtilis/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Fermentación
8.
Biotechnol Bioeng ; 121(8): 2524-2541, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795025

RESUMEN

Governments and biopharmaceutical organizations aggressively leveraged expeditious communication capabilities, decision models, and global strategies to make a COVID-19 vaccine happen within a period of 12 months. This was an unusual effort and cannot be transferred to normal times. However, this focus on a single vaccine has also led to other treatments and drug developments being sidelined. Society expects the pharmaceutical industry to provide an uninterrupted supply of medicines. However, it is often overlooked how complex the manufacture of these compounds is and what logistics are required, not to mention the time needed to develop new drugs. The overarching theme, therefore, is patient access and how we can help ensure access and extend it to low- and middle-income countries. Despite unceasing efforts to make medications available to all patient populations, this must never be done at the expense of patient safety. A major fraction of the costs in biopharmaceutical manufacturing are for drug discovery, process development, and clinical studies. Infrastructure costs are very difficult to quantify because they often depend on whether a greenfield facility or an existing, depreciated facility is used or adapted for a new product. To accelerate process development concepts of platform process and prior knowledge are increasingly leveraged. While more traditional protein therapeutics continue to dominate the field, we are also experiencing the exciting emergence and evolution of other therapeutic formats (bispecifics, tetravalent mAbs, antibody-drug conjugates, enzymes, peptides, etc.) that offer unique treatment options for patients. Protein modalities are still dominant, but new modalities are being developed that can be learned from including advanced therapeutics-like cell and gene therapies. The industry must develop a model-based strategy for process development and technologies such as continuous integrated biomanufacturing must be adopted. The overall conclusion is that the pandemic pace was unsustainable, focused on vaccine delivery at the expense of other modalities/disease targets, and had implications for professional and personal life (work-life balance). Routinely reducing development time from 10 years to 1 year is nearly impossible to achieve. Environmental aspects of sustainable downstream processing are also described.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , Industria Farmacéutica
9.
Pharm Res ; 41(5): 833-837, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698195

RESUMEN

Currently, the lengthy time needed to bring new drugs to market or to implement postapproval changes causes multiple problems, such as delaying patients access to new lifesaving or life-enhancing medications and slowing the response to emergencies that require new treatments. However, new technologies are available that can help solve these problems. The January 2023 NIPTE pathfinding workshop on accelerating drug product development and approval included a session in which participants considered the current state of product formulation and process development, barriers to acceleration of the development timeline, and opportunities for overcoming these barriers using new technologies. The authors participated in this workshop, and in this article have shared their perspective of some of the ways forward, including advanced manufacturing techniques and adaptive development. In addition, there is a need for paradigm shifts in regulatory processes, increased pre-competitive collaboration, and a shared strategy among regulators, industry, and academia.


Asunto(s)
Aprobación de Drogas , Humanos , Desarrollo de Medicamentos/métodos , Industria Farmacéutica/métodos , Tecnología Farmacéutica/métodos , Preparaciones Farmacéuticas/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos
10.
Biotechnol Bioeng ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702962

RESUMEN

The growing demand for biological therapeutics has increased interest in large-volume perfusion bioreactors, but the operation and scalability of perfusion membranes remain a challenge. This study evaluates perfusion cell culture performance and monoclonal antibody (mAb) productivity at various membrane fluxes (1.5-5 LMH), utilizing polyvinylidene difluoride (PVDF), polyethersulfone (PES), or polysulfone (PS) membranes in tangential flow filtration mode. At low flux, culture with PVDF membrane maintained higher cell culture growth, permeate titer (1.06-1.34 g/L) and sieving coefficients (≥83%) but showed lower permeate volumetric throughput and higher transmembrane pressure (TMP) (>1.50 psi) in the later part of the run compared to cultures with PES and PS membrane. However, as permeate flux increased, the total mass of product decreased by around 30% for cultures with PVDF membrane, while it remained consistent with PES and PS membrane, and at the highest flux studied, PES membrane generated 12% more product than PVDF membrane. This highlights that membrane selection for large-volume perfusion bioreactors depends on the productivity and permeate flux required. Since operating large-volume perfusion bioreactors at low flux would require several cell retention devices and a complex setup, PVDF membranes are suitable for low-volume operations at low fluxes whereas PES membranes can be a desirable alternative for large-volume higher demand products at higher fluxes.

11.
Pharm Dev Technol ; 29(5): 395-414, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38618690

RESUMEN

The MCS initiative was first introduced in 2013. Since then, two MCS papers have been published: the first proposing a structured approach to consider the impact of drug substance physical properties on manufacturability and the second outlining real world examples of MCS principles. By 2023, both publications had been extensively cited by over 240 publications. This article firstly reviews this citing work and considers how the MCS concepts have been received and are being applied. Secondly, we will extend the MCS framework to continuous manufacture. The review structure follows the flow of drug product development focussing first on optimisation of API properties. The exploitation of links between API particle properties and manufacturability using large datasets seems particularly promising. Subsequently, applications of the MCS for formulation design include a detailed look at the impact of percolation threshold, the role of excipients and how other classification systems can be of assistance. The final review section focusses on manufacturing process development, covering the impact of strain rate sensitivity and modelling applications. The second part of the paper focuses on continuous processing proposing a parallel MCS framework alongside the existing batch manufacturing guidance. Specifically, we propose that continuous direct compression can accommodate a wider range of API properties compared to its batch equivalent.


Asunto(s)
Excipientes , Tecnología Farmacéutica , Excipientes/química , Tecnología Farmacéutica/métodos , Preparaciones Farmacéuticas/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Industria Farmacéutica/métodos
12.
Int J Pharm ; 657: 124135, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38643808

RESUMEN

Pharmaceutical twin-screw wet granulation is a multifaceted and intricate process pivotal to drug product development. Accurate modeling of this process is indispensable for optimizing manufacturing parameters and ensuring product quality. The fluid bed dryer, an integral component of this granulation process, significantly influences the granular critical quality attributes. This study builds upon prior research by integrating experimental findings on granule segregation during fluid bed drying into an existing compartmental model, enhancing its predictive capabilities. An additional model layer on granule segregation behavior is composed and integrated into the existing model structure in this study. The added model compartment describes probability distributions on the vertical position of granules within each granule size class considered. To beware of overfitting, predictions of both the moisture content after drying and the granule bed temperature throughout drying are discussed in this study relative to experimental data from earlier published studies. These independent analyses demonstrated a marked improvement in prediction accuracy compared to earlier published model structures. The refined model accurately predicts the residual moisture content after drying for an untrained formulation. Moreover, it simultaneously makes accurate predictions of the granular bed temperature, which emboldens its structural correctness. This advancement makes it a powerful tool for predicting the behavior of the pharmaceutical fluid bed drying, which holds significant promise to facilitate pharmaceutical product development.


Asunto(s)
Desecación , Temperatura , Desecación/métodos , Tamaño de la Partícula , Composición de Medicamentos/métodos , Tecnología Farmacéutica/métodos , Química Farmacéutica/métodos , Modelos Teóricos , Excipientes/química
13.
Int J Pharm ; 657: 124163, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670473

RESUMEN

Parenteral administration is one of the most commonly used drug delivery routes for nanoparticle-based dosage forms, such as lipid-based and polymeric nanoparticles. For the treatment of various diseases, parenteral administration include intravenous, subcutaneous, and intramuscular route. In drug development phase, multiparameter strategy with a focus on drug physicochemical properties and the specificity of the administration route is required. Nanoparticle properties in terms of size and targeted delivery, among others, are able to surpass many drawbacks of conventional dosage forms, but these unique properties can be a bottleneck for approval by regulatory authorities. Quality by Design (QbD) approach has been widely utilized in development of parenteral nanoparticle-based dosage forms. It fosters knowledge of product and process quality by involving sound scientific data and risk assessment strategies. A full and comprehensive investigation into the state of implementation and applications of the QbD approach in these complex drug products can highlight the gaps and challenges. In this review, the analysis of critical attributes and Design of Experiment (DoE) approach in different nanoparticulate systems, together with the proper utilization of Process Analytical Technology (PAT) applications are described. The essential of QbD approach for the design and development of nanoparticle-based dosage forms for delivery via parenteral routes is discussed thoroughly.


Asunto(s)
Nanopartículas , Nanopartículas/química , Humanos , Animales , Sistemas de Liberación de Medicamentos/métodos , Infusiones Parenterales , Formas de Dosificación , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química
14.
Eur J Pharm Biopharm ; 199: 114278, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583787

RESUMEN

The transfer from batch-based to continuous tablet manufacturing increases the quality and efficiency of processes. Nonetheless, as in the development of a batch process, the continuous process design requires optimization studies to ensure a robust process. In this study, processing of a commercially batch-manufactured tablet product was tested with two continuous direct compression lines while keeping the original formulation composition and tablet quality requirements. Tableting runs were conducted with different values of process parameters. Changes in parameter settings were found to cause differences in tablet properties. Most of these quality properties could be controlled and maintained within the set limits effortlessly already at this stage of studies. However, the API content and content uniformity seemed to require more investigation. The observed content uniformity challenges were traced to individual tablets with a high amount of API. This was suspected to be caused by API micro-agglomerates since tablet weight variability did not explain the issue. This could be solved by adding a mill between two blenders in the process line. Overall, this case study produced promising results with both tested manufacturing lines since many tablet properties complied with the test result limits without optimization of process parameter settings.


Asunto(s)
Química Farmacéutica , Composición de Medicamentos , Excipientes , Comprimidos , Composición de Medicamentos/métodos , Química Farmacéutica/métodos , Excipientes/química , Tecnología Farmacéutica/métodos
15.
Int J Pharm ; 656: 124100, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38609059

RESUMEN

Transferring an existing marketed pharmaceutical product from batch to continuous manufacturing (CM) without changes in regulatory registration is a challenging task in the pharmaceutical industry. Continuous manufacturing can provide an increased production rate and better equipment utilisation while retaining key quality attributes of the final product. Continuous manufacturing necessitates the monitoring of critical quality attributes in real time by appropriate process analytical tools such as near infra-red (NIR) probes. The present work reports a successful transfer of an existing drug product from batch to continuous manufacturing process without changing the formulation. A key step was continuous powder blending, whose design and operating parameters including weir type, agitation rate, dynamic hold-up and residence time were systematically investigated with respect to process repeatability. A NIR-based multivariate data model for in-line composition monitoring has been developed and validated against an existing quality control method for measuring tablet content uniformity. A continuous manufacturing long-run with a throughput of 30 kg/h (approx. 128,000 tablets per hour), uninterrupted for 320 min, has been performed to test and validate the multivariate data model as well as the batch to continuous process transfer. The final disintegration and dissolution properties of tablets manufactured by the continuous process were found to be equivalent to those manufactured by the original batch process.


Asunto(s)
Comprimidos , Tecnología Farmacéutica , Tecnología Farmacéutica/métodos , Composición de Medicamentos/métodos , Control de Calidad , Polvos/química , Química Farmacéutica/métodos , Espectroscopía Infrarroja Corta/métodos , Excipientes/química , Solubilidad , Liberación de Fármacos
16.
Int J Pharm X ; 7: 100242, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38601059

RESUMEN

In continuous pharmaceutical manufacturing processes, it is crucial to control the powder flow rate. The feeding process is characterized by the amount of powder delivered per screw rotation, referred to as the feed factor. This study aims to develop models for predicting the feed factor profiles (FFPs) of two-component mixed powders with various formulations, while most previous studies have focused on single-component powders. It further aims to identify the suitable model type and to determine the significance of material properties in enhancing prediction accuracy by using several FFP prediction models with different input variables. Four datasets from the experiment were generated with different ranges of the mass fraction of active pharmaceutical ingredients (API) and the powder weight in the hopper. The candidates for the model inputs are (a) the mass fraction of API, (b) process parameters, and (c) material properties. It is desirable to construct a high-performance prediction model without the material properties because their measurement is laborious. The results show that using (c) as input variables did not improve the prediction accuracy as much, thus there is no need to use them.

17.
Pharmaceutics ; 16(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38675117

RESUMEN

Twin-screw granulation (TSG) is an emerging continuous wet granulation technique that has not been widely applied in the industry due to a poor mechanistic understanding of the process. This study focuses on improving this mechanistic understanding by analyzing the effects of the mixing dynamics on the granule quality attributes (PSD, content uniformity, and microstructure). Mixing is an important dynamic process that simultaneously occurs along with the granulation rate mechanisms during the wet granulation process. An improved mechanistic understanding was achieved by identifying and quantifying the physically relevant intermediate parameters that affect the mixing dynamics in TSG, and then their effects on the granule attributes were analyzed by investigating their effects on the granulation rate mechanisms. The fill level, granule liquid saturation, extent of nucleation, and powder wettability were found to be the key physically relevant intermediate parameters that affect the mixing inside the twin-screw granulator. An improved geometrical model for the fill level was developed and validated against existing experimental data. Finally, a process map was developed to depict the effects of mixing on the temporal and spatial evolution of the materials inside the twin-screw granulator. This process map illustrates the mechanism of nucleation and the growth of the granules based on the fundamental material properties of the primary powders (solubility and wettability), liquid binders (viscosity), and mixing dynamics present in the system. Furthermore, it was shown that the process map can be used to predict the granule product quality based on the granule growth mechanism.

18.
Int J Pharm ; 655: 124049, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38537921

RESUMEN

In in-process quality monitoring for Continuous Manufacturing (CM) and Critical Quality Attributes (CQA) assessment for Real-time Release (RTR) testing, ultrasonic characterization is a critical technology for its direct, non-invasive, rapid, and cost-effective nature. In quality evaluation with ultrasound, relating a pharmaceutical tablet's ultrasonic response to its defect state and quality parameters is essential. However, ultrasonic CQA characterization requires a robust mathematical model, which cannot be obtained with traditional first principles-based modeling approaches. Machine Learning (ML) using experimental data is emerging as a critical analytical tool for overcoming such modeling challenges. In this work, a novel Deep Neural Network-based ML-driven Non-Destructive Evaluation (ML-NDE) modeling framework is developed, and its effectiveness for extracting and predicting three CQAs, namely defect states, compression force levels, and amounts of disintegrant, is demonstrated. Using a robotic tablet handling experimental rig, each attribute's distinct waveform dataset was acquired and utilized for training, validating, and testing the respective ML models. This study details an advanced algorithmic quality assessment framework for pharmaceutical CM in which automated RTR testing is expected to be critical in developing cost-effective in-process real-time monitoring systems. The presented ML-NDE approach has demonstrated its effectiveness through evaluations with separate (unused) test datasets.


Asunto(s)
Tecnología Farmacéutica , Ultrasonido , Fenómenos Mecánicos , Presión , Comprimidos
19.
Pharmaceutics ; 16(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38543235

RESUMEN

Hydroxypropyl methylcellulose (HPMC) is a preferred hydrophilic matrix former for controlled release formulations produced through continuous twin-screw wet granulation. However, a non-homogeneous API distribution over sieve fractions with underdosing in the fines fraction (<150 µm) was previously reported. This could result in content uniformity issues during downstream processing. Therefore, the current study investigated the root cause of the non-homogeneous theophylline distribution. The effect of process parameters (L/S-ratio and screw configuration) and formulation parameters (matrix former and filler type) on content uniformity was studied. Next, the influence of the formulation parameters on tableting and dissolution behavior was investigated. Altering the L/S-ratio or using a more aggressive screw configuration did not result in a homogeneous API distribution over the granule sieve fractions. Using microcrystalline cellulose (MCC) as filler improved the API distribution due to its similar behavior as HPMC. As excluding HPMC or including a hydrophobic matrix former (Kollidon SR) yielded granules with a homogeneous API distribution, HPMC was identified as the root cause of the non-homogeneous API distribution. This was linked to its fast hydration and swelling (irrespective of the HPMC grade) upon addition of the granulation liquid.

20.
Biotechnol Prog ; : e3459, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553839

RESUMEN

Advances in manufacturing technology coupled with the increased potency of new biotherapeutic modalities have created an external environment where continuous manufacturing (CM) can address a growing need. Amgen has successfully implemented a hybrid CM process for a commercial lifecycle program. In this process, the bioreactor, harvest, capture column, and viral inactivation/depth filtration unit operations were integrated together in an automated, continuous module, while the remaining downstream unit operations took place in stand-alone batch mode. CM operations are particularly suited for so-called "high mix, low volume" manufacturing plants, where a variety of molecules are manufactured in relatively low volumes. The selected molecule fit this mold and was manufactured in a low-capital micro-footprint suite attached to an existing therapeutic production facility. Use of a hybrid process within an already operating facility required less capital and minimized complexity. To enable this hybrid CM process, an established fed-batch process was converted to a perfusion process with continuous harvest. Development efforts included both process changes and the generation of a novel cell line adapted to long-term perfusion. Chromatography resins were updated, and purification processes adapted to handle variable inputs due to the fluctuations in harvest titer from the lengthy production process. A novel automated single-use (SU) viral inactivation (VI) skid was introduced, which entailed the development of a robust pH verification and alarm system, along with procedures for product isolation to allow discard of specific cycles. The CM process demonstrated consistent performance, meaning it met predefined performance criteria (including product quality attributes, or PQAs) when operated within established process parameters and manufactured according to applicable procedures. Using a 75% reduction in scale, it resulted in a five-fold reduction in process media and buffer usage, a fifteen-fold increase in mass per thaw, and an overall process productivity increase of 45-fold (as measured by grams drug substance per liter per day.) The hybrid CM process also enabled increased material demand to be met with no change in cost of goods manufactured or plant capacity, due to the repurposing of existing facility space and the flexible duration of the hybrid CM harvest. Overall, the success of the hybrid CM platform represents an exciting opportunity to reduce costs and increase process efficiency in industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA