Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
1.
Sci Rep ; 14(1): 17673, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39085414

RESUMEN

Utilizing observational data from the Xiamen radar station during the warm season of 2015-2018 (May to September), this study employs a convective storm identification algorithm to statistically analyze the spatiotemporal distribution, diurnal propagation, and seasonal variability of convective storms over the southeastern coast of China. Key findings include: (1) Significant monthly variations in convective storm frequency, with peaks in August over land areas of Zhangzhou and Xiamen's northwest, and offshore southeast of Xiamen. Seasonal circulation patterns, particularly the subtropical high and northern high-level troughs, drive these variations. (2) Large-scale convective storms are most frequent, while small-scale ones are less common. Mid-deep convective storms dominate, particularly in southern Zhangzhou and southwestern mountainous Quanzhou, whereas shallow convective storms are rare and scattered. High-frequency areas correlate with higher terrain, underscoring the influence of topography on storm occurrence and development. (3) Hovmöller plots reveal a bimodal diurnal pattern in propagation of storms for July and August, with peaks in the daytime and late night. Daytime storms propagate from coastal to higher terrain areas, while nighttime storms maybe driven by enhanced vertical wind shear. These findings enhance the understanding of convective storms in the region and highlight the crucial role of the circulation background, terrain, and prevailing wind directions in the spatiotemporal characteristics of warm season convective storms in southeastern China.

2.
ACS Appl Mater Interfaces ; 16(30): 40131-40138, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39021097

RESUMEN

The achievement of consistent and static chemical gradients is critically important in the study of diffusion and chemotaxis at the micro- and nanoscales. In this context, a number of groups have reported on hydrogel-based systems for generating concentration gradients. Here, we analyze the behavior of agarose and gelatin-based hydrogels in hybridization chambers of different heights. Our focus is on the issues that are caused by the presence of robust bulk fluid flows in such systems due to the solutes present in the hydrogel and/or the surrounding fluid. We describe the key insights derived from these experiments, offering practical guidelines for establishing gradients using hydrogel-based systems and make the community aware of different variables that can make the experiments nonreproducible and prone to misinterpretations.

3.
Photochem Photobiol ; 100(4): 1140-1150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39073163

RESUMEN

We explore the photothermal response of methanol, ethylene glycol, and glycerol using the femtosecond laser-induced thermal lens spectroscopy (FTLS) technique. A mode mismatched pump-probe spectroscopic technique was utilized to analyze the influence of localized thermal heating on the photothermal response of solvents. The findings revealed a strong dependence on both the input pump power and the molecular characteristics of the solvents. At significantly high pump power, the excess heat load deposited to the solvent is found to be responsible for the induction of the convection currents in the heat transfer mechanisms. Our results highlight that the influence of pump power on photothermal and thermal lens characteristics is intricately linked to the natural drifting and heat transfer mechanisms of solvent molecules. The molecular motion and existing connective processes were correlated with the molecular characteristics of the samples. The present finding reveals that FTLS is a sensitive probe for comprehending the impact of input laser power, molecular structure, and intermolecular H bonding on the photothermal characteristics and thermo-optical properties of the alcoholic medium.

4.
Sci Rep ; 14(1): 13100, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849360

RESUMEN

Despite the historical position of the F-expansion method as a method for acquiring exact solutions to nonlinear partial differential equations (PDEs), this study highlights its superiority over alternative auxiliary equation methods. The efficacy of this method is demonstrated through its application to solve the convective-diffusive Cahn-Hilliard (cdCH) equation, describing the dynamic of the separation phase for ternary iron alloys (Fe-Cr-Mo) and (Fe-X-Cu). Significantly, this research introduces an extensive collection of exact solutions by the auxiliary equation, comprising fifty-two distinct types. Six of these are associated with Weierstrass-elliptic function solutions, while the remaining solutions are expressed in Jacobi-elliptic functions. I think it is important to emphasize that, exercising caution regarding the statement of the term 'new,' the solutions presented in this context are not entirely unprecedented. The paper examines numerous examples to substantiate this perspective. Furthermore, the study broadens its scope to include soliton-like and trigonometric-function solutions as special cases. This underscores that the antecedently obtained outcomes through the recently specific cases encompassed within the more comprehensive scope of the present findings.

5.
Sci Rep ; 14(1): 13419, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862551

RESUMEN

Investigation of the major factors determining tropical upper-level cloud radiative effect (TUCRE) is crucial for understanding cloud feedback mechanisms. We examined the TUCRE inferred from the outputs of historical runs and AMIP runs from CMIP6 models employing a radiative-convective equilibrium (RCE). In this study, we incorporated the RCE model configurations of atmospheric dynamics and thermodynamics from the climate models, while simplifying the intricate systems. Using the RCE model, we adjusted the global mean surface temperature to achieve energy balance, considering variations in tropical cloud fraction, regional reflectivity, and emission temperature corresponding to each climate model. Subsequently, TUCRE was calculated as a unit of K/%, representing the change in global mean surface temperature (K) in response to an increment in the tropical upper-level clouds (%). Our RCE model simulation indicates that the major factors determining the TUCRE are the emission temperatures of tropical moist-cloudy and moist-clear regions, as well as the fraction of tropical upper-level clouds. The higher determination coefficients between TUCRE and both the emission temperature of tropical moist regions and the upper-level cloud fraction are attributable to their contribution to the trapping effect on the outgoing longwave radiations, which predominantly determines TUCRE. Consequently, the results of this study underscore the importance of accurately representing the upper-level cloud fraction and emission temperature in tropical moist regions to enhance the representation of TUCRE in climate models.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38903021

RESUMEN

In this study, the average values of vertical velocity of particles emitted from an aluminum smelter in the surface layer of the atmosphere were estimated using a semi-empirical method. The method is based on regression analysis of the horizontal profile of pollutants measured along the selected direction using moss bioindicators. The selection of epiphytic mosses Sanionia uncinata was carried out in 2013 in the zone of influence of a metallurgical industry enterprise in the city of Kandalaksha, Murmansk region. The concentrations of As, Si, Ni, Zn, Ti, Cd, Na, Pb, Co, K, Ba, Ca, Mg, Mn, Sr, Fe, Al, V, Cr, Cu were determined using atomic emission spectrometry. The conducted assessments showed that the average particle velocity toward the Earth's surface, when considering large spatial and temporal scales, is tens of times higher than gravitational settling velocities.


Asunto(s)
Contaminantes Atmosféricos , Aluminio , Monitoreo del Ambiente , Metalurgia , Aluminio/análisis , Aluminio/química , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Tamaño de la Partícula , Material Particulado/análisis , Material Particulado/química , Briófitas/química
7.
Sci Total Environ ; 933: 173129, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38734104

RESUMEN

The vertical structure and microphysical characteristics of stratiform precipitation (SP) and convective precipitation (CP) in North China are revealed based on the GPM-DPR product during boreal summer of 2014-2021 in this study. Additionally, the differences in precipitation features between the mountain and the plain are investigated. Under the combined influence of climatic factors and local topography, the precipitation amount is larger in the plain than in the mountain while precipitation frequency exhibits an opposite pattern. The proportions of the two precipitation types are similar in the mountain and the plain, with CP contributing to approximately a quarter of total precipitation frequency. In terms of mean intensity, both SP and CP are roughly 20 % more intense in the plain than in the mountain. The greater number of light SPs is a major contributor to higher precipitation frequency in the mountain, while more intense CPs result in larger precipitation amount in the plain. Compared to the mountain, the precipitation system is deeper in the plain, where higher storm top altitudes (STAs) and larger freezing level heights contribute to more intense CPs. Besides, it is observed that for the STA, more intense CPs occur in the plain compared to the mountain. In both the mountain and the plain, the coalescence process is dominant in the low-level layers for heavy (8-20 mm/h) to storm-level (>20 mm/h) CPs. Compared to the mountain, the low-level growth of hydrometeor size and radar reflectivity is more significant in the plain. These findings are important to quantitative precipitation estimation and precipitation prediction in the mountainous region, and can help understand the influence of local topography on precipitation.

8.
Foods ; 13(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38672911

RESUMEN

This study aims to comprehensively investigate the effects of hot-air dehydration on the quality of blue honeysuckle berries (Lonicera caerulea L.). The results demonstrated that drying with hot air at 40-65 °C for 7-72 h resulted in blue honeysuckle berries with a moisture content of 0.21-1.10 g H2O/g dry weight. Generally, low to medium temperatures (40-55 °C) showed a better effect on the quality than high temperatures (60-65 °C). Specifically, drying at 40 °C exclusively resulted in better retention of cuticular wax, the best sensory appearance, and the highest total phenolic content. Drying at 45 °C and 50 °C resulted in the highest antioxidant capacity and the optimal sensory flavor. Drying at 55 °C led to the highest soluble solid/acid ratio, ascorbic acid concentration, total flavonoid, and total anthocyanin. The work introduces an innovative raw berry product and provides a comprehensive practical and theoretical framework for convective dehydration of blue honeysuckle berries.

9.
Materials (Basel) ; 17(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612082

RESUMEN

Shielding gas, metal vapors, and gases trapped inside powders during atomization can result in gas porosity, which is known to degrade the fatigue strength and tensile properties of components made by laser powder bed fusion additive manufacturing. Post-processing and trial-and-error adjustment of processing conditions to reduce porosity are time-consuming and expensive. Here, we combined mechanistic modeling and experimental data analysis and proposed an easy-to-use, verifiable, dimensionless gas porosity index to mitigate pore formation. The results from the mechanistic model were rigorously tested against independent experimental data. It was found that the index can accurately predict the occurrence of porosity for commonly used alloys, including stainless steel 316, Ti-6Al-4V, Inconel 718, and AlSi10Mg, with an accuracy of 92%. In addition, experimental data showed that the amount of pores increased at a higher value of the index. Among the four alloys, AlSi10Mg was found to be the most susceptible to gas porosity, for which the value of the gas porosity index can be 5 to 10 times higher than those for the other alloys. Based on the results, a gas porosity map was constructed that can be used in practice for selecting appropriate sets of process variables to mitigate gas porosity without the need for empirical testing.

10.
Foods ; 13(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38472903

RESUMEN

This study aimed to evaluate the effect of convective and microwave drying on the bioactive-compounds content of blackberry (Rubus fruticosus) fruits, as well as drying parameters and energy consumption. The fruit was dehydrated in a convective dehydrator at a temperature of 50 °C and 70 °C and in a microwave oven at power levels of 90 W, 180 W and 240 W. The highest amount of anthocyanins, polyphenols and antioxidant capacity were obtained in blackberry fruits that were microwave dried at 90 W and 180 W (46.3-52.5 and 51.8-83.5 mg 100 g-1 dm of total anthocyanins, 296.3-255.8 and 418.4-502.2 mg 100 g-1 dm of total phenolics, and 1.20-1.51 and 1.45-2.35 mmol TE 100 g-1 dm of antioxidant capacity for 90 W and 180 W models, respectively). It turned out that microwave dehydration shortened the processing time and lowered the energy consumption compared to convective drying (a significantly reduced drying time of 92-99% with microwave dehydration). Blackberry fruits dehydrated at 240 W showed the shortest dehydration time (59-67 min), minimal energy consumption (0.23 kWh) and the most efficient diffusion (1.48-1.66 × 10-8 m2 s-1).

11.
Heliyon ; 10(5): e26354, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434281

RESUMEN

The biomechanical and biochemical processes in the biological systems of living organisms are extremely complex. Advances in understanding these processes are mainly achieved by laboratory and clinical investigations, but in recent decades they are supported by computational modeling. Besides enormous efforts and achievements in this modeling, there still is a need for new methods that can be used in everyday research and medical practice. In this report, we give a view of the generality of the finite element methodology introduced by the first author and supported by his collaborators. It is based on the multiscale smeared physical fields, termed as Kojic Transport Model (KTM), published in several journal papers and summarized in a recent book (Kojic et al., 2022) [1]. We review relevant literature to demonstrate the distinctions and advantages of our methodology and indicate possible further applications. We refer to our published results by a selection of a few examples which include modeling of partitioning, blood flow, molecular transport within the pancreas, multiscale-multiphysics model of coupling electrical field and ion concentration, and a model of convective-diffusive transport within the lung parenchyma. Two new examples include a model of convective-diffusive transport within a growing tumor, and drug release from nanofibers with fiber degradation.

12.
Waste Manag Res ; : 734242X241237195, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501255

RESUMEN

The EU's circular economy concept necessitates increasing the recycling ratio of municipal solid wastes. There are many existing mechanical-biological processing plants in Hungary for the preparation of residual municipal solid wastes (RMSWs). The two most important products of these plants are the bio-fraction and the refuse derived fuel (RDF). Currently, there are problems with both of these material streams in Hungary, since most of the bio-fraction is still landfilled, and the local thermal utilisation of the RDF has not been implemented yet. The high moisture content of the produced bio-fraction and RDF causes difficulties for the downstream operations; therefore, there is recent engineering interest in drying and agglomeration of these materials. The authors have carried out systematic and parallel drying and briquetting experimental series to study the effect of the material, material composition, mass (volume or surface) of the material, particle size distribution and pre-treatment with a cutting mill on drying intensity in a 1 m3 oven and their effect on briquettability by a laboratory briquette press. The initial slope of the relative moisture loss as function of time was determined. Process engineering design methods of convective hot air-drying can be further developed taking into account the research results. Results can be used for the design of the feed of a pyrolysis reactor once reactor experiments have provided the optimal feed requirements.

13.
J Hazard Mater ; 469: 133990, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460261

RESUMEN

Heavy metal migration in soil poses a serious threat to the soil and groundwater. Understanding the migration pattern of heavy metals (HMs) under different factors could provide a more reasonable position for pollution evaluation and targetoriented treatment of soil heavy metal. In this study, the migration behavior of Pb and Cd in co-contaminated soil under different pH and ionic strength (NaCl concentration) was simulated using convective dispersion equation (CDE). We predicted the migration trends of Pb and Cd in soils after 5, 10, and 20 years via PHREEQC. The results showed that the migration time of Cd in the soil column experiment was about 60 days faster than that of Pb, and the migration trend was much steeper. The CDE was proved to describe the migration behavior of Pb and Cd (R2 > 0.75) in soil. The predicted results showed that Cd migrated to 15-20 cm of soil within 7 years and Pb stayed mainly in the top 0-6 cm of soil within 5 years as the duration of irrigation increased. Overall, our study is expected to provide new insight into the migration of heavy metal in soil ecosystems and guidance for reducing risk of heavy metal in the environment.

14.
Sci Total Environ ; 925: 171750, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494019

RESUMEN

Precipitation plays a crucial role in the natural hydrological cycle. Understanding the spatial and temporal variations of precipitation isotopes is essential for identifying hydrological, meteorological, and ecological processes. In high mountain areas with arid and semi-arid conditions, especially in regions with endorheic basins, the portion of precipitation that infiltrates the groundwater as the primary source of water recharge. However, estimating this recharge is challenging and prone to high uncertainty. The main objective of this study was to implement a robust and detailed methodology to analyze the influence of meteorological variables and the origin of moisture sources on the stable isotopic composition (δ18O and δ2H) of precipitation. As an illustrative case, we focused on the Los Pozuelos Basin, an endorheic basin in the Altiplano-Puna region of the Andes. The analysis incorporated precipitation samples collected over a 3-year period (January 2020 to April 2023) along with comprehensive monitoring of local atmospheric variables, satellite imagery, and HYSPLIT backward trajectory models. The examination involved a multivariate analysis of meteorological and stable isotope data and atmospheric transport pattern. Precipitation characteristics exhibited seasonal variability, with summer precipitation being depleted in heavy isotopes due to its extended continental journey and the recycling it undergoes while crossing the Amazon basin with convective activity. Another moisture path from the Atlantic Ocean, via the Río de la Plata or Gran Chaco basin, represented an intermediate isotopic stage. La Niña events intensified westerly winds, drawing moist air masses from the Pacific Ocean and causing rainfall in the study area. In winter, precipitation comes from the Pacific Ocean and isotopically enriched due to the low amount of precipitation and lower convective activity. By employing a meticulous methodology and multivariate statistical analysis, the study contributes positively to the broader discourse on water resource management and conservation in arid and semi-arid environments.

15.
Turk J Chem ; 48(1): 128-136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544888

RESUMEN

In the current study, the impact of C-ratio, convective heat transfer coefficient, and free stream temperature on the maximal cell temperature and temperature uniformity was computationally and statistically examined. Results revealed that the free stream temperature was the main influential factor for the maximal cell temperature for both natural and forced convection conditions while the C-ratio was the most effective parameter for the temperature uniformity for both natural and forced convections. On the other hand, the contribution of the free stream temperature to the maximum battery temperature increased from 63% to 94% when the conditions were changed from natural convection to forced convection. Moreover, the contribution of the C-rate to the temperature uniformity decreased from 89% to 79% when the conditions were changed from natural convection to forced convection. The results obtained from this study are significant in terms of determining which factor should be given more importance under natural and forced convection conditions.

16.
Sci Rep ; 14(1): 7193, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531996

RESUMEN

This article investigates natural convection with double-diffusive properties numerically in a vertical bi-layered square enclosure. The cavity has two parts: one part is an isotropic and homogeneous porous along the wall, and an adjacent part is an aqueous fluid. Adiabatic, impermeable horizontal walls and constant and uniform temperatures and concentrations on other walls are maintained. To solve the governing equations, the finite element method (FEM) employed and predicted results shows the impact of typical elements of convection on double diffusion, namely the porosity thickness, cavity rotation angle, and thermal conductivity ratio. Different Darcy and Rayleigh numbers effects on heat transfer conditions were investigated, and the Nusselt number in the border of two layers was obtained. The expected results, presented as temperature field (isothermal lines) and velocity behavior in X and Y directions, show the different effects of the aforementioned parameters on double diffusion convective heat transfer. Also results show that with the increase in the thickness of the porous layer, the Nusselt number decreases, but at a thickness higher than 0.8, we will see an increase in the Nusselt number. Increasing the thermal conductivity ratio in values less than one leads to a decrease in the average Nusselt number, and by increasing that parameter from 1 to 10, the Nusselt values increase. A higher rotational angle of the cavity reduces the thermosolutal convective heat transfer, and increasing the Rayleigh and Darcy numbers, increases Nusselt. These results confirm that the findings obtained from the Finite Element Method (FEM), which is the main idea of this research, are in good agreement with previous studies that have been done with other numerical methods.

17.
Proc Natl Acad Sci U S A ; 121(12): e2318716121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483991

RESUMEN

Deep convection in the Asian summer monsoon is a significant transport process for lifting pollutants from the planetary boundary layer to the tropopause level. This process enables efficient injection into the stratosphere of reactive species such as chlorinated very-short-lived substances (Cl-VSLSs) that deplete ozone. Past studies of convective transport associated with the Asian summer monsoon have focused mostly on the south Asian summer monsoon. Airborne observations reported in this work identify the East Asian summer monsoon convection as an effective transport pathway that carried record-breaking levels of ozone-depleting Cl-VSLSs (mean organic chlorine from these VSLSs ~500 ppt) to the base of the stratosphere. These unique observations show total organic chlorine from VSLSs in the lower stratosphere over the Asian monsoon tropopause to be more than twice that previously reported over the tropical tropopause. Considering the recently observed increase in Cl-VSLS emissions and the ongoing strengthening of the East Asian summer monsoon under global warming, our results highlight that a reevaluation of the contribution of Cl-VSLS injection via the Asian monsoon to the total stratospheric chlorine budget is warranted.

18.
Med Eng Phys ; 125: 104123, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38508794

RESUMEN

The current research findings will have potential applications in the development of drug-targeted and self-sterilizing technologies. This research investigates the bio-convective flow of Maxwell ferrofluid over a flexible spinning plate in the presence of a stationary magnetic field in this paper. This theoretical model is based on the CattaneoChristov theories, the Buongiorno microorganism model, and the Shliomis model, and it is solved using the finite element technique. Using the Galerkin weighted residual approach in COMSOL Multiphysics, the non-dimensional equations of this Maxwell ferrofluid model are numerically solved. The concentration and motility of the organism decrease with an increase in the ferromagnetic interaction number, concentration relaxation time parameter, Lewis number, and stretching parameter. In addition to increasing local heat transfer, local mass transfer, and local density of microorganisms, the ferromagnetic interaction number lowers the stress on the surface of the disk.


Asunto(s)
Calor , Modelos Teóricos
19.
Sci Rep ; 14(1): 6908, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519526

RESUMEN

Nanofluid is a specially crafted fluid comprising a pure fluid with dispersed nanometer-sized particles. Incorporation these nanoparticles into pure fluid results in a fluid with improved thermal properties in comparison of pure fluid. The enhanced properties of nanofluids make them highly sought after, in diverse applications, consisting of coolant of devices, heat exchangers, and thermal solar systems. In this study hybrid nanofluid consisting of copper, alumina and titanium nanoparticles on a curved sheet has investigated with impact of chemical reactivity, magnetic field and Joule heating. The leading equations have converted to normal equations by using appropriate set of variables and has then evaluated by homotopy analysis method. The outcomes are shown through Figures and Tables and are discussed physically. It has revealed in this study that Cu-nanofluid flow has augmented velocity, temperature, and volume fraction distributions than those of Al2O3-nanofluid and TiO2-nanofluid. Also, the Cu-nanofluid flow has higher heat and mass transfer rates than those of Al2O3-nanofluid and TiO2-nanofluid.

20.
Heliyon ; 10(4): e26432, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420390

RESUMEN

The scrutinization of entropy optimization in the various flow mechanisms of non-Newtonian fluids with heat transfer has been incredibly enhanced. Through the investigation of irreversibility sources in the steady flow of a non-Newtonian Willaimson fluid, an analysis of entropy generation is carried out in this current work. The current study has an essential aspect of investigating the heat transfer mechanism with flow phenomenon by considering convective-radiative boundary conditions. A horizontal MHD channel is assumed with two parallel plates to develop a mathematical model for the flow phenomenon by considering the variable viscosity of the fluid. The contribution of physical impacts of thermal radiation, Joule heating, and viscous dissipation is interpolated in the constitutive energy equation. The complete flow of the current analysis is established in the form of ordinary differential equations which further take the form of the dimensionless system through the contribution of the similarity variables. A graphical scrutinization of the physical features of the flow phenomenon in relation to the pertinent parameters is proposed. This study reveals that the higher magnitude of radiation parameter and Brinkman number dominates the system's entropy. Moreover, the temperature distribution experiences an increasing mechanism with improved conduction-radiation parameter at the lower plate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA