Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Gastric Cancer ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822931

RESUMEN

BACKGROUND: The CDKN2A gene is frequently affected by somatic copy number variations (SCNVs, including deletions and amplifications [SCNdel and SCNamp]) in the cancer genome. Using surgical gastric margin tissue samples (SMs) as the diploid reference in SCNV analysis via CDKN2A/P16-specific real-time PCR (P16-Light), we previously reported that the CDKN2A SCNdel was associated with a high risk of metastasis of gastric carcinoma (GC). However, the status of CDKN2A SCNVs in SMs and their clinical significance have not been reported. METHODS: Peripheral white blood cell (WBC) and frozen GC and SM tissue samples were collected from patients (n = 80). Droplet digital PCR (ddPCR) was used to determine the copy number (CN) of the CDKN2A gene in tissue samples using paired WBCs as the diploid reference. RESULTS: A novel P16-ddPCR system was initially established with a minimal proportion (or limit, 10%) of the detection of CDKN2A CN alterations. While CDKN2A SCNamp events were detected in both SMs and GCs, fewer CDKN2A SCNdel events were detected in SMs than in GCs (15.0% vs. 41.3%, P = 4.77E-04). Notably, significantly more SCNamp and fewer SCNdel of the CDKN2A gene were detected in SMs from GC patients without metastasis than in those from patients with lymph node metastasis by P16-ddPCR (P = 0.023). The status of CDKN2A SCNVs in SM samples was significantly associated with overall survival (P = 0.032). No cancer deaths were observed among the 11 patients with CDKN2A SCNamp. CONCLUSION: CDKN2A SCNVs in SMs identified by P16-ddPCR are prevalent and significantly associated with GC metastasis and overall survival.

2.
Med Genet ; 36(1): 59-73, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38835967

RESUMEN

The identification of recurrent genomic alterations in tumour cells has a significant role in the classification of mature B- and T-cell lymphomas. Following the development of new technologies, such as next generation sequencing and the improvement of classical technologies such as conventional and molecular cytogenetics, a huge catalogue of genomic alterations in lymphoid neoplasms has been established. These alterations are relevant to refine the taxonomy of the classification of lymphomas, to scrutinize the differential diagnosis within different lymphoma entities and to help assessing the prognosis and clinical management of the patients. Consequently, here we describe the key genetic alterations relevant in mature B- and T-cell lymphomas.

3.
Methods Mol Biol ; 2825: 345-360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913320

RESUMEN

Many cancers display whole chromosome instability (W-CIN) and structural chromosomal instability (S-CIN), referring to increased rates of acquiring numerically and structurally abnormal chromosome changes. This protocol provides detailed steps to analyze the W-CIN and S-CIN across cancer types, intending to leverage large-scale bulk sequencing and SNP array data complemented with the computational models to gain a better understanding of W-CIN and S-CIN.


Asunto(s)
Inestabilidad Cromosómica , Neoplasias , Polimorfismo de Nucleótido Simple , Humanos , Neoplasias/genética , Aberraciones Cromosómicas , Biología Computacional/métodos
4.
Trends Mol Med ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772764

RESUMEN

Breast cancer (BCa) is a prevalent malignancy that predominantly affects women around the world. Somatic copy number alterations (CNAs) are tumor-specific amplifications or deletions of DNA segments that often drive BCa development and therapy resistance. Hence, the complex patterns of CNAs complement BCa classification systems. In addition, understanding the precise contributions of CNAs is essential for tailoring personalized treatment approaches. This review highlights how tumor evolution drives the acquisition of CNAs, which in turn shape the genomic landscapes of BCas. It also discusses advanced methodologies for identifying recurrent CNAs, studying CNAs in BCa and their clinical impact.

5.
Genes (Basel) ; 15(4)2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38674331

RESUMEN

Copy number alterations (CNAs) are significant in tumor initiation and progression. Identifying these aberrations is crucial for targeted therapies and personalized cancer diagnostics. Next-generation sequencing (NGS) methods present advantages in scalability and cost-effectiveness, surpassing limitations associated with reference assemblies and probe capacities in traditional laboratory approaches. This retrospective study evaluated CNAs in 50 FFPE tumor samples (breast cancer, ovarian carcinoma, pancreatic cancer, melanoma, and prostate carcinoma) using Illumina's TruSight Oncology 500 (TSO500) and the Affymetrix Oncoscan Molecular Inversion Probe (OS-MIP) (ThermoFisher Scientific, Waltham, MA, USA). NGS analysis with the NxClinical 6.2 software demonstrated a high sensitivity and specificity (100%) for CNA detection, with a complete concordance rate as compared to the OS-MIP. All 54 known CNAs were identified by NGS, with gains being the most prevalent (63%). Notable CNAs were observed in MYC (18%), TP53 (12%), BRAF (8%), PIK3CA, EGFR, and FGFR1 (6%) genes. The diagnostic parameters exhibited high accuracy, including a positive predictive value, negative predictive value, and overall diagnostic accuracy. This study underscores NxClinical as a reliable software for identifying clinically relevant gene alterations using NGS TSO500, offering valuable insights for personalized cancer treatment strategies based on CNA analysis.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias , Programas Informáticos , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Femenino , Masculino , Neoplasias/genética , Estudios Retrospectivos
6.
Cancers (Basel) ; 16(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473323

RESUMEN

Bladder urothelial carcinoma (BLCA) is the 10th most common cancer with a low survival rate and strong male bias. We studied the field cancerization in BLCA using multi-sample- and multi-tissue-per-patient protocol for sensitive detection of autosomal post-zygotic chromosomal alterations and loss of chromosome Y (LOY). We analysed 277 samples of histologically normal urothelium, 145 tumors and 63 blood samples from 52 males and 15 females, using the in-house adapted Mosaic Chromosomal Alterations (MoChA) pipeline. This approach allows identification of the early aberrations in urothelium from BLCA patients. Overall, 45% of patients exhibited at least one alteration in at least one normal urothelium sample. Recurrence analysis resulted in 16 hotspots composed of either gains and copy number neutral loss of heterozygosity (CN-LOH) or deletions and CN-LOH, encompassing well-known and new BLCA cancer driver genes. Conservative assessment of LOY showed 29%, 27% and 18% of LOY-cells in tumors, blood and normal urothelium, respectively. We provide a proof of principle that our approach can characterize the earliest alterations preconditioning normal urothelium to BLCA development. Frequent LOY in blood and urothelium-derived tissues suggest its involvement in BLCA.

7.
Biology (Basel) ; 13(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38534445

RESUMEN

Traditional gene set enrichment analysis falters when applied to large genomic domains, where neighboring genes often share functions. This spatial dependency creates misleading enrichments, mistaking mere physical proximity for genuine biological connections. Here we present Spatial Adjusted Gene Ontology (SAGO), a novel cyclic permutation-based approach, to tackle this challenge. SAGO separates enrichments due to spatial proximity from genuine biological links by incorporating the genes' spatial arrangement into the analysis. We applied SAGO to various datasets in which the identified genomic intervals are large, including replication timing domains, large H3K9me3 and H3K27me3 domains, HiC compartments and lamina-associated domains (LADs). Intriguingly, applying SAGO to prostate cancer samples with large copy number alteration (CNA) domains eliminated most of the enriched GO terms, thus helping to accurately identify biologically relevant gene sets linked to oncogenic processes, free from spatial bias.

8.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38300514

RESUMEN

Somatic copy number alterations (SCNAs) are a predominant type of oncogenomic alterations that affect a large proportion of the genome in the majority of cancer samples. Current technologies allow high-throughput measurement of such copy number aberrations, generating results consisting of frequently large sets of SCNA segments. However, the automated annotation and integration of such data are particularly challenging because the measured signals reflect biased, relative copy number ratios. In this study, we introduce labelSeg, an algorithm designed for rapid and accurate annotation of CNA segments, with the aim of enhancing the interpretation of tumor SCNA profiles. Leveraging density-based clustering and exploiting the length-amplitude relationships of SCNA, our algorithm proficiently identifies distinct relative copy number states from individual segment profiles. Its compatibility with most CNA measurement platforms makes it suitable for large-scale integrative data analysis. We confirmed its performance on both simulated and sample-derived data from The Cancer Genome Atlas reference dataset, and we demonstrated its utility in integrating heterogeneous segment profiles from different data sources and measurement platforms. Our comparative and integrative analysis revealed common SCNA patterns in cancer and protein-coding genes with a strong correlation between SCNA and messenger RNA expression, promoting the investigation into the role of SCNA in cancer development.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Humanos , Neoplasias/genética , Algoritmos , Análisis por Conglomerados , Análisis de Datos
9.
BMC Cancer ; 24(1): 173, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317080

RESUMEN

Copy-number alterations (CNAs) are a hallmark of cancer and can regulate cancer cell states via altered gene expression values. Herein, we have developed a copy-number impact (CNI) analysis method that quantifies the degree to which a gene expression value is impacted by CNAs and leveraged this analysis at the pathway level. Our results show that a high CNA is not necessarily reflected at the gene expression level, and our method is capable of detecting genes and pathways whose activity is strongly influenced by CNAs. Furthermore, the CNI analysis enables unbiased categorization of CNA categories, such as deletions and amplifications. We identified six CNI-driven pathways associated with poor treatment response in ovarian high-grade serous carcinoma (HGSC), which we found to be the most CNA-driven cancer across 14 cancer types. The key driver in most of these pathways was amplified wild-type KRAS, which we validated functionally using CRISPR modulation. Our results suggest that wild-type KRAS amplification is a driver of chemotherapy resistance in HGSC and may serve as a potential treatment target.


Asunto(s)
Carcinoma , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Genoma , Variaciones en el Número de Copia de ADN , Carcinoma/genética , Expresión Génica
10.
Clin Mol Hepatol ; 30(2): 177-190, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38163441

RESUMEN

BACKGROUND/AIMS: New prognostic markers are needed to identify patients with hepatocellular carcinoma (HCC) who carry a worse prognosis. Ultra-low-pass whole-genome sequencing (ULP-WGS) (≤0.5× coverage) of cell-free DNA (cfDNA) has emerged as a low-cost promising tool to assess both circulating tumor DNA (ctDNA) fraction and large structural genomic alterations. Here, we studied the performance of ULP-WGS of plasma cfDNA to infer prognosis in patients with HCC. METHODS: Plasma samples were obtained from patients with HCC prior to surgery, locoregional or systemic therapy, and were analyzed by ULP-WGS of cfDNA to an average genome-wide fold coverage of 0.3x. ctDNA and copy number alterations (CNA) were estimated using the software package ichorCNA. RESULTS: Samples were obtained from 73 HCC patients at different BCLC stages (BCLC 0/A: n=37, 50.7%; BCLC B/C: n=36, 49.3%). ctDNA was detected in 18 out of 31 patients who received systemic treatment. Patients with detectable ctDNA showed significantly worse overall survival (median, 13.96 months vs not reached). ctDNA remained an independent predictor of prognosis after adjustment by clinical-pathologic features and type of systemic treatment (hazard ratio 7.69; 95%, CI 2.09-28.27). Among ctDNA-positive patients under systemic treatments, the loss of large genomic regions in 5q and 16q arms was associated with worse prognosis after multivariate analysis. CONCLUSION: ULP-WGS of cfDNA provides clinically relevant information about the tumor biology. The presence of ctDNA and the loss of 5q and 16q arms in ctDNA-positive patients are independent predictors of worse prognosis in patients with advanced HCC receiving systemic therapy.


Asunto(s)
Carcinoma Hepatocelular , Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , ADN Tumoral Circulante/genética , Pronóstico , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Mutación , Biomarcadores de Tumor
11.
Endocr Relat Cancer ; 31(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38015791

RESUMEN

The genetic repertoire of primary thyroid cancers (TCs) is well documented, but there is a considerable lack of molecular profiling in metastatic TCs. Here, we retrieved and analyzed the molecular and clinical features of 475 primary and metastatic TCs subjected to targeted DNA sequencing, from the cBioPortal database. The cohort included primary and metastatic samples from 276 papillary thyroid carcinomas (PTCs), 5 follicular thyroid carcinomas, 22 Hürthle cell carcinomas (HCCs), 127 poorly differentiated thyroid carcinomas (PDTCs), 30 anaplastic thyroid carcinomas (ATCs) and 15 medullary thyroid carcinomas. The ATCs had the highest tumor mutational burden and the HCCs the highest fraction of the genome altered. Compared to primary PTCs, the metastases had a significantly higher frequency of genetic alterations affecting TERT (51% vs 77%, P < 0.001), CDKN2A (2% vs 10%, P < 0.01), RET (2% vs 7%, P < 0.05), CDKN2B (1% vs 6%, P < 0.05) and BCOR (0% vs 4%, P < 0.05). The distant metastases had a significantly lower frequency of BRAF (64% vs 85%, P < 0.01) and a significantly higher frequency of NRAS (13% vs 3%, P < 0.05) hotspot mutations than the lymph node metastases. Metastases from HCCs and PDTCs were found to be enriched for NF1 (29%) and TP53 (18%) biallelic alterations, respectively. The frequency of subclonal mutations in ATCs was significantly higher than in PTCs (43% vs 25%, P < 0.01) and PDTCs (43% vs 22%, P < 0.01). Metastatic TCs are enriched in clinically informative genetic alterations such as RET translocations, BRAF hotspot mutations and NF1 biallelic losses that may be explored therapeutically.


Asunto(s)
Carcinoma Papilar , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Carcinoma Papilar/genética , Carcinoma Papilar/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Carcinoma Anaplásico de Tiroides/genética , Cáncer Papilar Tiroideo/genética , Mutación , Genómica
12.
Curr Issues Mol Biol ; 45(12): 9549-9565, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38132443

RESUMEN

Colorectal cancer (CRC) represents the second deadliest malignancy worldwide. Around 75% of CRC patients exhibit high levels of chromosome instability that result in the accumulation of somatic copy number alterations. These alterations are associated with the amplification of oncogenes and deletion of tumor-ppressor genes and contribute to the tumoral phenotype in different malignancies. Even though this relationship is well known, much remains to be investigated regarding the effect of said alterations in long non-coding RNAs (lncRNAs) and, in turn, the impact these alterations have on the tumor phenotype. The present study aimed to evaluate the role of differentially expressed lncRNAs coded in regions with copy number alterations in colorectal cancer patient samples. We downloaded RNA-seq files of the Colorectal Adenocarcinoma Project from the The Cancer Genome Atlas (TCGA) repository (285 sequenced tumor tissues and 41 non-tumor tissues), evaluated differential expression, and mapped them over genome sequencing data with regions presenting copy number alterations. We obtained 78 differentially expressed (LFC > 1|< -1, padj < 0.05) lncRNAs, 410 miRNAs, and 5028 mRNAs and constructed a competing endogenous RNA (ceRNA) network, predicting significant lncRNA-miRNA-mRNA interactions. Said network consisted of 30 lncRNAs, 19 miRNAs, and 77 mRNAs. To understand the role that our ceRNA network played, we performed KEGG and GO analysis and found several oncogenic and anti-oncogenic processes enriched by the molecular players in our network. Finally, to evaluate the clinical relevance of the lncRNA expression, we performed survival analysis and found that C5orf64, HOTAIR, and RRN3P3 correlated with overall patient survival. Our results showed that lncRNAs coded in regions affected by SCNAs form a complex gene regulatory network in CCR.

13.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139431

RESUMEN

The landscape of chromosomal aberrations in the tumor cells of the patients with B-ALL is diverse and can influence the outcome of the disease. Molecular karyotyping at the onset of the disease using chromosomal microarray (CMA) is advisable to identify additional molecular factors associated with the prognosis of the disease. Molecular karyotyping data for 36 patients with Ph-negative B-ALL who received therapy according to the ALL-2016 protocol are presented. We analyzed copy number alterations and their prognostic significance for CDKN2A/B, DMRTA, DOCK8, TP53, SMARCA2, PAX5, XPA, FOXE1, HEMGN, USP45, RUNX1, NF1, IGF2BP1, ERG, TMPRSS2, CRLF2, FGFR3, FLNB, IKZF1, RUNX2, ARID1B, CIP2A, PIK3CA, ATM, RB1, BIRC3, MYC, IKZF3, ETV6, ZNF384, PTPRJ, CCL20, PAX3, MTCH2, TCF3, IKZF2, BTG1, BTG2, RAG1, RAG2, ELK3, SH2B3, EP300, MAP2K2, EBI3, MEF2D, MEF2C, CEBPA, and TBLXR1 genes, choosing t(4;11) and t(7;14) as reference events. Of the 36 patients, only 5 (13.8%) had a normal molecular karyotype, and 31 (86.2%) were found to have various molecular karyotype abnormalities-104 deletions, 90 duplications or amplifications, 29 cases of cnLOH and 7 biallelic/homozygous deletions. We found that 11q22-23 duplication involving the BIRC3, ATM and MLL genes was the most adverse prognostic event in the study cohort.


Asunto(s)
Proteínas Inmediatas-Precoces , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Variaciones en el Número de Copia de ADN , Aberraciones Cromosómicas , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , ADN , Pérdida de Heterocigocidad , Proteínas Nucleares/genética , Proteínas Inmediatas-Precoces/genética , Proteínas Supresoras de Tumor/genética , Factores de Intercambio de Guanina Nucleótido/genética
14.
Cancers (Basel) ; 15(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38001691

RESUMEN

Adult acute lymphoblastic leukemia (ALL) is associated with poor outcomes. ALL is initiated by primary aberrations, but secondary genetic lesions are necessary for overt ALL. In this study, we reassessed the value of primary and secondary aberrations in intensively treated ALL patients in relation to mutator enzyme expression. RT-PCR, genomic PCR, and sequencing were applied to evaluate primary aberrations, while qPCR was used to measure the expression of RAG and AID mutator enzymes in 166 adult ALL patients. Secondary copy number alterations (CNA) were studied in 94 cases by MLPA assay. Primary aberrations alone stratified 30% of the patients (27% high-risk, 3% low-risk cases). The remaining 70% intermediate-risk patients included BCR::ABL1pos subgroup and ALL lacking identified genetic markers (NEG ALL). We identified three CNA profiles: high-risk bad-CNA (CNAhigh/IKZF1pos), low-risk good-CNA (all other CNAs), and intermediate-risk CNAneg. Furthermore, based on RAG/AID expression, we report possible mechanisms underlying the CNA profiles associated with poor outcome: AID stratified outcome in CNAneg, which accompanied most likely a particular profile of single nucleotide variations, while RAG in CNApos increased the odds for CNAhigh/IKZF1pos development. Finally, we integrated primary genetic aberrations with CNA to propose a revised risk stratification code, which allowed us to stratify 75% of BCR::ABL1pos and NEG patients.

15.
Chromosome Res ; 31(4): 32, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910282

RESUMEN

This review investigates the role of aneuploidy and chromosome instability (CIN) in the aging brain. Aneuploidy refers to an abnormal chromosomal count, deviating from the normal diploid set. It can manifest as either a deficiency or excess of chromosomes. CIN encompasses a broader range of chromosomal alterations, including aneuploidy as well as structural modifications in DNA. We provide an overview of the state-of-the-art methodologies utilized for studying aneuploidy and CIN in non-tumor somatic tissues devoid of clonally expanded populations of aneuploid cells.CIN and aneuploidy, well-established hallmarks of cancer cells, are also associated with the aging process. In non-transformed cells, aneuploidy can contribute to functional impairment and developmental disorders. Despite the importance of understanding the prevalence and specific consequences of aneuploidy and CIN in the aging brain, these aspects remain incompletely understood, emphasizing the need for further scientific investigations.This comprehensive review consolidates the present understanding, addresses discrepancies in the literature, and provides valuable insights for future research efforts.


Asunto(s)
Aneuploidia , Neoplasias , Animales , Humanos , Inestabilidad Cromosómica , Aberraciones Cromosómicas , Encéfalo , Cromosomas , Neoplasias/genética , Mamíferos/genética
16.
Cell Rep Methods ; 3(11): 100625, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37918402

RESUMEN

Single-cell whole-genome sequencing (scWGS) enables the assessment of genome-level molecular differences between individual cells with particular relevance to genetically diverse systems like solid tumors. The application of scWGS was limited due to a dearth of accessible platforms capable of producing high-throughput profiles. We present a technique that leverages nucleosome disruption methodologies with the widely adopted 10× Genomics ATAC-seq workflow to produce scWGS profiles for high-throughput copy-number analysis without new equipment or custom reagents. We further demonstrate the use of commercially available indexed transposase complexes from ScaleBio for sample multiplexing, reducing the per-sample preparation costs. Finally, we demonstrate that sequential indexed tagmentation with an intervening nucleosome disruption step allows for the generation of both ATAC and WGS data from the same cell, producing comparable data to the unimodal assays. By exclusively utilizing accessible commercial reagents, we anticipate that these scWGS and scWGS+ATAC methods can be broadly adopted by the research community.


Asunto(s)
Cromatina , Nucleosomas , Cromatina/genética , Nucleosomas/genética , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genoma
17.
Front Genet ; 14: 1231415, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37867602

RESUMEN

Stomach Adenocarcinoma (STAD) is a leading cause of death worldwide. Somatic Copy Number Alterations (SCNAs), which result in Homologous recombination (HR) deficiency in double-strand break repair, are associated with the progression of STAD. However, the landscape of frequent breakpoints of SCNAs (hotspots) and their functional impacts remain poorly understood. In this study, we aimed to explore the frequency and impact of these hotspots in 332 STAD patients and 1,043 cancer cells using data from the Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE). We studied the rates of DSB (Double-Strand Breaks) loci in STAD patients by employing the Non-Homogeneous Poisson Distribution (λ), based on which we identified 145 DSB-hotspots with genes affected. We further verified DNA cytosine deamination as a critical process underlying the burden of DSB in STAD. Finally, we illustrated the clinical impact of the significant biological processes. Our findings highlighted the relationship between DNA cytosine deamination and SCNA in cancer was associated with recurrent Somatic Copy Number Alterations in STAD.

18.
Biomed Pharmacother ; 168: 115630, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806091

RESUMEN

Circulating tumor DNA (ctDNA) analysis has emerged as a promising tool for detecting and profiling longitudinal genomics changes in cancer. While copy-number alterations (CNAs) play a major role in cancers, treatment effect monitoring using copy-number profiles has received limited attention as compared to mutations. A major reason for this is the insensitivity of CNA analysis for the real-life tumor-fraction ctDNA samples. We performed copy-number analysis on 152 plasma samples obtained from 29 patients with high-grade serous ovarian cancer (HGSC) using a sequencing panel targeting over 500 genes. Twenty-one patients had temporally matched tissue and plasma sample pairs, which enabled assessing concordance with tissues sequenced with the same panel or whole-genome sequencing and to evaluate sensitivity. Our approach could detect concordant CNA profiles in most plasma samples with as low as 5% tumor content and highly amplified regions in samples with ∼1% of tumor content. Longitudinal profiles showed changes in the CNA profiles in seven out of 11 patients with high tumor-content plasma samples at relapse. These changes included focal acquired or lost copy-numbers, even though most of the genome remained stable. Two patients displayed major copy-number profile changes during therapy. Our analysis revealed ctDNA-detectable subclonal selection resulting from both surgical operations and chemotherapy. Overall, longitudinal ctDNA data showed acquired and diminished CNAs at relapse when compared to pre-treatment samples. These results highlight the importance of genomic profiling during treatment as well as underline the usability of ctDNA.


Asunto(s)
Carcinoma , ADN Tumoral Circulante , Humanos , ADN Tumoral Circulante/genética , Mutación/genética , Variaciones en el Número de Copia de ADN/genética , Recurrencia , Biomarcadores de Tumor/genética
19.
Trends Genet ; 39(12): 968-980, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37778926

RESUMEN

Chromosome copy number imbalances, otherwise known as aneuploidies, are a common but poorly understood feature of cancer. Here, we describe recent advances in both detecting and manipulating aneuploidies that have greatly advanced our ability to study their role in tumorigenesis. In particular, new clustered regularly interspaced short palindromic repeats (CRISPR)-based techniques have been developed that allow the creation of isogenic cell lines with specific chromosomal changes, thereby facilitating experiments in genetically controlled backgrounds to uncover the consequences of aneuploidy. These approaches provide increasing evidence that aneuploidy is a key driver of cancer development and enable the identification of multiple dosage-sensitive genes encoded on aneuploid chromosomes. Consequently, measuring aneuploidy may inform clinical prognosis, while treatment strategies that target aneuploidy could represent a novel method to counter malignant growth.


Asunto(s)
Aneuploidia , Neoplasias , Humanos , Neoplasias/genética
20.
ESMO Open ; 8(6): 102036, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866028

RESUMEN

BACKGROUND: Baseline plasma androgen-receptor copy number (AR-CN) is a promising biomarker for metastatic castration-resistant prostate cancer (mCRPC) outcome and treatment response; however, the role of its longitudinal testing is unproven. We aimed to evaluate the prognostic role of AR-CN assessed before subsequent treatment lines in mCRPC patients. METHODS: A subgroup analysis of a prospective multicenter biomarker trial (IRSTB030) was carried out. Plasma AR-CN status (classified as normal or gain, cut-off value = 2) was assessed with digital PCR before each treatment line. RESULTS: Forty mCRPC patients receiving sequentially docetaxel, cabazitaxel and an AR signaling inhibitor (abiraterone or enzalutamide) were analyzed. At multivariate analysis, at each assessment overall survival (OS) was independently correlated with AR-CN status [first line: hazard ratio (HR) 4.1 [95% confidence interval (CI) 1.6-10.5]; second line: HR 2.4 (95% CI 1.1-5.3); third line: HR 2.1 (95% CI 1.0-4.3)] and median prostate-specific antigen [first line: HR 4.4 (95% CI 1.8-10.9); second line: HR 3.4 (95% CI 1.6-7.2); third line: HR 2.5 (95% CI 1.2-5.6)]. In the three subsequent assessments, AR-CN status changed from normal to gain in 15 (38%) patients. These patients had longer OS (47 months) compared with patients presenting AR-CN gain from first assessment (36 months), but shorter than those maintaining normal AR-CN (69 months) (P = 0.003). CONCLUSIONS: Plasma AR-CN correlates with survival not only at baseline (before first treatment), but also in the assessments before the following lines. Interestingly, AR-CN status may change from normal to gain across subsequent treatments in a significant number of cases, identifying a group of patients with intermediate outcomes. Longitudinal assessment of AR-CN status could represent a promising method to capture mCRPC intrinsic heterogeneity and to improve clinical management.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Variaciones en el Número de Copia de ADN , Estudios Prospectivos , Antígeno Prostático Específico/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...