Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(26): 38196-38216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795297

RESUMEN

Finding a cost-effective, efficient, and environmentally friendly technique for the removal of mercury ion (Hg2+) in water and wastewater can be a challenging task. This paper presents a novel and efficient adsorbent known as the graphene oxide-Cu2SnS3-polyaniline (GO-CTS-PANI) nanocomposite, which was synthesised and utilised to eliminate Hg2+ from water samples. The soft-soft interaction between Hg2+ and sulphur atoms besides chelating interaction between -N and Hg2+ is the main mechanism for Hg2+ adsorption onto the GO-CTS-PANI adsorbent. Various characterisation techniques, including Fourier transform infrared spectrophotometry (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), elemental mapping analysis, and X-ray diffraction analysis (XRD), were employed to analyse the adsorbent. The Box-Behnken method, utilising Design Expert Version 7.0.0, was employed to optimise the crucial factors influencing the adsorption process, such as pH, adsorbent quantity, and contact time. The results indicated that the most efficient adsorption occurred at pH 6.5, with 12 mg of GO-CTS-PANI adsorbent, and 30-min contact time that results in a maximum removal rate of 95% for 50 mg/L Hg2+ ions. The study also investigated the isotherm and kinetics of the adsorption process that the adsorption of Hg2+ onto the adsorbent happened in sequential layers (Freundlich isotherm) and followed by the pseudo-second-order kinetic model. Furthermore, response surface methodology (RSM) analysis indicates that pH is the most influential parameter in enhancing adsorption efficiency. In addition to traditional models, this study employed some artificial intelligence (AI) methods including the Random Forest algorithm to enhance the prediction of adsorption process efficiency. The findings demonstrated that the Random Forest algorithm exhibited high accuracy with a correlation coefficient of 0.98 between actual and predicted adsorption rates. This study highlights the potential of the GO-CTS-PANI nanocomposite for effectively removing of Hg2+ ions from water resources.


Asunto(s)
Compuestos de Anilina , Grafito , Mercurio , Nanocompuestos , Contaminantes Químicos del Agua , Mercurio/química , Grafito/química , Nanocompuestos/química , Adsorción , Compuestos de Anilina/química , Contaminantes Químicos del Agua/química , Cinética , Cobre/química , Purificación del Agua/métodos
2.
ACS Appl Mater Interfaces ; 15(48): 56022-56033, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38010192

RESUMEN

Flexible paper-based thermoelectric generators (PTEGs) have drawn significant interest in recent years due to their various advantages such as flexibility, adaptability, environment friendliness, low cost, and easy fabrication process. However, the reported PTEG's output performance still lags behind the performance of other flexible devices as it is not so easy to obtain a compact film on a paper-based substrate with desirable power output with the standard thermoelectric (TE) materials that have been previously utilized. In this direction, Cu2SnS3 (CTS), an earth-abundant, ternary sulfide, can be a good choice p-type semiconductor, when paired with a suitable n-type TE material. In this article, CTS nanocubes are synthesized via a simple hot injection method and a thick film device on emery paper was prepared and optimized. Furthermore, a flexible, 20-pair PTEG is fabricated with p-type CTS legs and traced and pressed n-type bismuth legs assembled using Kapton tape that produced a significantly high output power of 2.18 µW (output power density ∼0.85 nW cm-2 K-1) for a temperature gradient of ΔT = 80 K. The TE properties are also supported by finite element simulation. The bending test conducted for the PTEG suggests device stability for up to 800 cycles with <0.05% change in the internal resistance. A proof-of-concept field-based demonstration for energy harvesting from waste heat of a motorbike exhaust is shown recovering an output power of ∼42 nW for ΔT = 20 K, corroborating the experimental and theoretical results.

3.
Small ; 19(29): e2301963, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37178393

RESUMEN

Cu2 SnS3 is a promising thermoelectric candidate for power generation at medium temperature due to its low-cost and environmental-benign features. However, the high electrical resistivity due to low hole concentration severely restricts its final thermoelectric performance. Here, analog alloying with CuInSe2 is first adopted to optimize the electrical resistivity by promoting the formation of Sn vacancies and the precipitation of In, and optimize lattice thermal conductivity through the formation of stacking faults and nanotwins. Such analog alloying enables a greatly enhanced power factor of 8.03 µW cm-1 K-2 and a largely reduced lattice thermal conductivity of 0.38 W m-1  K-1 for Cu2 SnS3 - 9 mol.% CuInSe2 . Eventually, a peak ZT as high as 1.14 at 773 K is achieved for Cu2 SnS3 - 9 mol.% CuInSe2 , which is one of the highest ZT among the researches on Cu2 SnS3 -based thermoelectric materials. The work implies analog alloying with CuInSe2 is a very effective route to unleash superior thermoelectric performance of Cu2 SnS3 .

4.
Materials (Basel) ; 16(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36984274

RESUMEN

Cu2SnS3 (CSS) has gained great attraction due to its constitutive earth-abundant elements and intrinsic low lattice thermal conductivity, κl, potentially providing high quality factor, B, and high zT value. However, the lack of band convergence is the bottleneck to enhancing the thermoelectric performance of Cu2SnS3 when performing the band engineering. To study the doping effect on the band structure and the thermoelectric performance, the composite Cu2Sn0.7Co0.3S3-xCuCl (x = 0, 0.1, 0.2, 0.3) (CSCS-xCuCl) has been investigated for the first time. The samples showed excellent data repeatability at high temperatures of up to 700 K. It was found that CuCl could compensate the Cu loss, enhance the phonon scattering and minimize the adverse effect on the power factor, PF. The ultralow lattice thermal conductivity could reach 0.38 W m-1 K-1 for the nominal composition of CSCS-0.3CuCl at 700 K. A peak zT of 0.56 (evaluated with no cold finger effect) was realized at 700 K when x = 0.3, which is almost double the performance of pristine samples.

5.
J Colloid Interface Sci ; 640: 750-760, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36898181

RESUMEN

HYPOTHESIS: Despite that the development of Cu2SnS3 (CTS) catalyst has attracted increasing interests, few study has reported to investigate its heterogeneous catalytic degradation of organic pollutants in a Fenton-like process. Furthermore, the influence of Sn components towards Cu (II)/Cu (I) redox cycling in CTS catalytic systems remains a fascinating research. EXPERIMENTS: In this work, a series of CTS catalysts with controlled crystalline phases were prepared via a microwave-assisted pathway and applied in the H2O2 activation for phenol degradation. The efficiency of phenol degradation in CTS-1/H2O2 system (CTS-1: the molar ratio of Sn (copper acetate) and Cu (tin dichloride) is determined to be Sn:Cu = 1:1) was systematically investigated by controlling various reaction parameters including H2O2 dosage, initial pH and reaction temperature. We discovered that Cu2SnS3 exhibited superior catalytic activity to the contrast monometallic Cu or Sn sulfides and Cu (I) acted as the dominant active sites. The higher Cu (I) proportions conduce to the higher catalytic activities of CTS catalysts. Quenching experiments and electron paramagnetic resonance (EPR) further proved that the activation of H2O2 by CTS catalyst produces reactive oxygen species (ROS) and subsequently leads to degradation of the contaminants. A reasonable mechanism of enhanced H2O2 activation in Fenton-like reaction of CTS/H2O2 system was proposed for phenol degradation by investigating the roles of copper, tin and sulfur species. FINDINGS: The developed CTS acted as a promising catalyst in Fenton-like oxidation progress for phenol degradation. Importantly, the copper and tin species contribute to a synergetic effect for the promotion of Cu (II)/Cu (I) redox cycle, which thus enhanced the activation of H2O2. Our work may offer new insight on the facilitation of Cu (II)/Cu (I) redox cycle in Cu-based Fenton-like catalytic systems.

6.
Nanomaterials (Basel) ; 13(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36678122

RESUMEN

Copper-based chalcogenides have emerged as promising thermoelectric materials due to their high thermoelectric performance, tunable transport properties, earth abundance and low toxicity. We have presented an overview of experimental results and first-principal calculations investigating the thermoelectric properties of various polymorphs of Cu2SnS3 (CTS), Cu2ZnSnS4 (CZTS), and Cu2ZnSnSe4 (CZTSe) synthesized by high-energy reactive mechanical alloying (ball milling). Of particular interest are the disordered polymorphs of these materials, which exhibit phonon-glass-electron-crystal behavior-a decoupling of electron and phonon transport properties. The interplay of cationic disorder and nanostructuring leads to ultra-low thermal conductivities while enhancing electronic transport. These beneficial transport properties are the consequence of a plethora of features, including trap states, anharmonicity, rattling, and conductive surface states, both topologically trivial and non-trivial. Based on experimental results and computational methods, this report aims to elucidate the details of the electronic and lattice transport properties, thereby confirming that the higher thermoelectric (TE) performance of disordered polymorphs is essentially due to their complex crystallographic structures. In addition, we have presented synchrotron X-ray diffraction (SR-XRD) measurements and ab initio molecular dynamics (AIMD) simulations of the root-mean-square displacement (RMSD) in these materials, confirming anharmonicity and bond inhomogeneity for disordered polymorphs.

7.
Materials (Basel) ; 15(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35160656

RESUMEN

The thermoelectric behavior and stability of Cu2SnS3 (CTS) has been investigated in relation to different preparations and sintering conditions, leading to different microstructures and porosities. The studied system is CTS in its cubic polymorph, produced in powder form via a bottom-up approach based on high-energy reactive milling. The as-milled powder was sintered in two batches with different synthesis conditions to produce bulk CTS samples: manual cold pressing followed by traditional sintering (TS), or open die pressing (ODP). Despite the significant differences in densities, ~75% and ~90% of the theoretical density for TS and ODP, respectively, we observed no significant difference in electrical transport. The stable, best performing TS samples reached zT ~0.45, above 700 K, whereas zT reached ~0.34 for the best performing ODP in the same conditions. The higher zT of the TS sintered sample is due to the ultra-low thermal conductivity (κ ~0.3-0.2 W/mK), three-fold lower than ODP in the entire measured temperature range. The effect of porosity and production conditions on the transport properties is highlighted, which could pave the way to produce high-performing TE materials.

8.
Sci Technol Adv Mater ; 22(1): 363-372, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34104116

RESUMEN

Heavily acceptor-doped Cu2SnS3 (CTS) shows promisingly large power factor (PF) due to its rather high electrical conductivity (σ) which causes a modest ZT with a high electronic thermal conductivity (κe ). In the present work, a strategy of carrier compensation through Sb-doping at the Sn site in Cu2Sn0.8Co0.2S3 was investigated, aiming at tailoring electrical and phonon transport properties simultaneously. Rietveld analysis suggested a complex polymorphic microstructure in which the cation-(semi)ordered tetragonal phase becomes dominant over the coherently bonded cation-disordered cubic phase, as is preliminarily revealed using TEM observation, upon Sb-doping and Sb would substitute Sn preferentially in the tetragonal structure. With increasing content of Sb, the σ was lowered and the Seebeck coefficient (S) was enhanced effectively, which gave rise to high PFs maintained at ~10.4 µWcm-1K-2 at 773 K together with an optimal reduction in κe by 60-70% in the whole temperature range. The lattice thermal conductivity was effectively suppressed from 1.75 Wm-1K-1 to ~1.2 Wm-1K-1 at 323 K while maintained very low at 0.3-0.4 Wm-1K-1 at 773 K. As a result, a peak ZT of ~0.88 at 773 K has been achieved for Cu2Sn0.74Sb0.06Co0.2S3, which stands among the tops so far of the CTS-based diamond-like ternary sulfides. These findings demonstrate that polymorphic microstructures with cation-disordered interfaces as an approach to achieve effective phonon-blocking and low lattice thermal conductivity, of which further crystal chemistry, microstructural and electrical tailoring are possible by appropriate doping.

9.
Nanoscale Res Lett ; 16(1): 17, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33507420

RESUMEN

Cu2SnS3, as a modified material for high-capacity tin-based anodes, has great potential for lithium-ion battery applications. The solvothermal method is simple, convenient, cost-effective, and easy to scale up, and has thus been widely used for the preparation of nanocrystals. In this work, Cu2SnS3 nanoparticles were prepared by the solvothermal method. The effects of high-temperature annealing on the morphology, crystal structure, and electrochemical performance of a Cu2SnS3 nano-anode were studied. The experimental results indicate that high-temperature annealing improves the electrochemical performance of Cu2SnS3, resulting in higher initial coulombic efficiency and improved cycling and rate characteristics compared with those of the as-prepared sample.

10.
J Hazard Mater ; 382: 121026, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31446355

RESUMEN

In this work, 3D hierarchical Cu2SnS3@SnS2 flower assembled from nanopetals with sandwich-like Cu2SnS3-SnS2-Cu2SnS3 double interfacial heterojunction was successfully designed and synthesized on fluoride doped tin oxide (FTO) for photoelectrochemical (PEC) sensor by in situ electrodeposition p-type Cu2SnS3 nanoparticles on both inner and outer surfaces of n-type SnS2 nanopetals. The unique double interfacial heterojunction simultaneously combines 3D flower-like architectures to drastically increase the light trapping and absorption in visible-near infrared range (Vis-NIR), and dramatically inhibites the charge carrier recombination, which is crucial for boosting the PEC activity. Benefitting from the shape and compositional merits, the Cu2SnS3@SnS2 heterojunction possess dual-mode signal by controlling the electrodeposition time to manipulate the composition ratio of Cu2SnS3 and SnS2. The Cu2SnS3@SnS2/FTO electrode not only exhibits excellent photoeletro-reduction capacity for ultra-sensitive sensing trace persistent organic pollutant (nitrobenzene, NB), but also presents photoeletro-oxidization activity for high selective detection of L-cysteine (L-Cys) without any auxiliary enzyme under the light illumination. Dual mode sensor displayed superb performance for the detection of NB/L-Cys, showing a wide linear range from 100 pM to 300 µM/10 nM to 100 µM and a low detection limit (3S/N) of 68 pM/8.5 nM, respectively. Such a tunable double interfacial heterojunction design opened up new avenue for constructing multifunction PEC sensing platform.


Asunto(s)
Cobre/química , Cisteína/análisis , Nanopartículas/química , Nitrobencenos/análisis , Sulfuros/química , Estaño/química , Cisteína/química , Técnicas Electroquímicas , Electrodos , Luz , Nitrobencenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA