Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Intervalo de año de publicación
1.
Polymers (Basel) ; 16(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38932027

RESUMEN

In this work, the electrochemical synthesis of PANI and GO-modified PANI was performed using cyclic voltammetry, varying the amount of GO, 1 mg (PG1), 5 mg (PG5), and 10 mg (PG10) to analyze the effect of the amount of GO on the composite. PANI, PG1, PG5, and PG10 materials were characterized using optical microscopy, SEM, UV-vis, FTIR, Raman, and wettability. A stability test was also carried out by putting the materials to 500 oxidation-reduction cycles using cyclic voltammetry. The synthesis method allowed GO in PANI to be added through a chemical interaction between the two compounds. It was also found that the addition of GO led to an improvement in the hydrophilic character of the composite, which would lead to an improvement in the diffusion of reagents/species when the composites are used in aqueous media processes. The results of the stability test showed that the PG10 material presented a lower % loss of specific capacitance and energy compared with the other materials, which indicates that the GO presence (in the amount specified) improves the stability of the PANI. The PG10 material showed favorable and promising conditions for its use in fuel cell and battery processes.

2.
Arch Biochem Biophys ; 758: 110077, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38942109

RESUMEN

Ammonium and hexyltrimethylammonium thiomolybdates (ATM and ATM-C6) and thiotungstates (ATT and ATT-C6) were synthesized. Their toxicity was evaluated using both in vitro and in vivo approaches via the zebrafish embryo acute toxicity assay (ZFET), while the copper-thiometallate interaction was studied using cyclic voltammetry, as well as in an in vivo assay. Cyclic voltammetry suggests that all thiometallates form complexes with copper in a 2:1 Cu:thiometallate ratio. Both in vitro and in vivo assays demonstrated low toxicity in BALB/3T3 cells and in zebrafish embryos, with high IC50 and LC50 values. Furthermore, the hexyltrimethylammonium ion played a crucial role in enhancing viability and reducing toxicity during prolonged treatments for ATM and ATT. In particular, the ZEFT assay uncovered the accumulation of ATM in zebrafish yolk, averted by the incorporation of the hexyltrimethylammonium ion. Notably, the copper-thiometallate interaction assay highlighted the improved viability of embryos when cultured in CuCl2 and ATM-C6, even at high CuCl2 concentrations. The hatching assay further confirmed that copper-ATM-C6 interaction mitigates inhibitory effects induced by thiomolybdates and CuCl2 when administered individually. These results suggest that the incorporation of the hexyltrimethylammonium ion in ATM increase its ability to interact with copper and its potential application as a copper chelator.


Asunto(s)
Quelantes , Cobre , Molibdeno , Pez Cebra , Animales , Pez Cebra/embriología , Cobre/química , Quelantes/química , Quelantes/farmacología , Molibdeno/química , Molibdeno/farmacología , Ratones , Embrión no Mamífero/efectos de los fármacos , Células 3T3 BALB , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología
3.
Water Environ Res ; 96(1): e10981, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38264917

RESUMEN

Green-synthesized iron nanoparticles (GAP-FeNP) were used as particle electrodes in a three-dimensional electro-Fenton (3DEF) process to accelerate the removal of hexavalent chromium [Cr (VI)]. Removal was evaluated by varying the pH (3.0, 6.0, and 9.0) and initial Cr (VI) concentrations (10, 30, and 50 mg/L) at 5 and 25 min. These results demonstrated that GAP-FeNP/3DEF treatment achieved more than 94% Cr (VI) removal under all tested conditions. Furthermore, it was observed that Cr (VI) removal exceeded 98% under pH 9.0 in all experimental parameters tested. The results of the response surface methodology (RSM) determined two optimal conditions: the first, characterized by a pH of 3.0, Cr (VI) concentration at 50 mg/L, and 25 min, yielded a Cr (VI) removal of 99.7%. The second optimal condition emerged at pH 9.0, with Cr (VI) concentrations of 10 mg/L and 5 min, achieving a Cr (VI) removal of 99.5%. This study highlights the potential of the GAP-FeNP to synergistically accelerate Cr (VI) removal by the 3DEF process, allowing faster elimination and expansion of the alkaline (pH 9.0) applicability. PRACTITIONER POINTS: The required time for >99% of Cr (VI) removal by the GAP-FeNP/3DEF process was shortened from 25 to 5 min. EF process with GAP-FeNP reduces the time necessary for Cr (VI) removal, which is 67% faster than conventional methods. EF process using GAP-FeNP removed >94% of Cr (VI) after 25 min for all initial Cr (VI) concentrations and pH treatments. Cr (VI) removal by the GAP-FeNP/3DEF process was >98% at a pH of 9.0, widening the solution pH applicability.


Asunto(s)
Hierro , Nanopartículas , Electrodos
4.
Heliyon ; 10(1): e23808, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38226225

RESUMEN

A method to access carbonyl compounds using reductive conditions was evaluated via electrochemical reduction of their corresponding N-benzyloxyphthalimide derivatives (NBOPIs). The mechanism of this originally reported electrochemical reaction was proposed based on DFT calculation and is experimentally confirmed herein, contrasting simulated and experimental cyclic voltammetry data. The reaction scope studied in a preparative scale and using redox sensitive functional groups showed good selectivity and tolerance toward oxidation under the reaction conditions with a moderate to good yield (50-71%). Nevertheless, some restrictions with reducible functional groups, like benzyl-brominated and nitro-aromatic derivatives, were observed. The present approach can be considered a self-sustainable electrochemical catalysis for the synthesis of aromatic carbonylic compounds passing through anion radical intermediates produced by a cathodic reaction.

5.
Sensors (Basel) ; 23(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37765789

RESUMEN

In this work we describe a straightforward approach for creating a nanocomposite comprising multiwalled carbon nanotubes (MWCNTs) and titanium dioxide (TiO2) using the hydrothermal technique, which is then characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectrometer (EDS), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA) to assess its properties. Nafion is employed as a reticular agent for the nanocomposite on the glassy carbon electrode (GCE), creating the MWCNT/TiO2/Nafion/GCE system. The electrochemical behavior of the system was evaluated using cyclic voltammetry, revealing its remarkable electrocatalytic activity for detecting hydrogen peroxide in water. The developed sensor showcased a broad linear response range of 14.00 to 120.00 µM, with a low detection limit of 4.00 µM. This electrochemical sensor provides a simple and highly sensitive method for detecting hydrogen peroxide in aqueous solutions and shows promising potential for various real-world applications, particularly in H2O2 monitoring.

6.
Mikrochim Acta ; 190(8): 338, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37522993

RESUMEN

Pencil drawing is one of the simplest and most cost-effective ways of fabricating miniaturized electrodes on a paper substrate. However, it is limited by the lack of reproducibility regarding the electrode drawing process. A 3D-printed pencil holder (3DPH) is proposed here for simple, reproducible, and low-cost hand-drawn fabrication of paper-based electrochemical devices. 3DPH was designed to keep pressure and angulation of the graphite mine constant on the paper substrate using a micromechanical pencil regardless of the user/operator. This approach significantly improved the reproducibility and cost of making reliable pencil-drawn electrodes. The results showed high reproducibility and accuracy of the 3DPH-assisted electrodes prepared by 4 different operators in terms of sheet resistance and electrochemical behavior. Cyclic voltammetric (CV) curves in the presence of [Fe(CN)6]3-/4- redox probe showed only 3.9% variation for the anodic peak currents of different electrodes prepared by different operators when compared with electrodes prepared without the 3D-printed support. SEM analyses revealed a more uniform graphite deposition/design of the electrodes prepared with 3DPH, which corroborates the results obtained by CV. As a proof of concept, 3DPH-assisted pencil-drawn graphite electrodes were employed for dopamine detection in synthetic saliva, showing a proportional increase in anodic peak current at 0.12 V vs. carbon pRE with increasing dopamine (DA) concentration, with a detection limit of 0.39µmol L-1. Moreover recovery was in the range 93-104% of DA (4-7% RSD) in synthetic saliva for three different concentrations, demonstrating the reliability of the approach. Finally, we believe this approach can make pencil-drawn technology more robust, accessible, reliable, and inexpensive for real on-site applications, especially in hard-to-reach locations or research centers with little investment.

7.
Micromachines (Basel) ; 14(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37374847

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease with only late-stage detection; thus, diagnosis is made when it is no longer possible to treat the disease, only its symptoms. Consequently, this often leads to caregivers who are the patient's relatives, which adversely impacts the workforce along with severely diminishing the quality of life for all involved. It is, therefore, highly desirable to develop a fast, effective and reliable sensor to enable early-stage detection in an attempt to reverse disease progression. This research validates the detection of amyloid-beta 42 (Aß42) using a Silicon Carbide (SiC) electrode, a fact that is unprecedented in the literature. Aß42 is considered a reliable biomarker for AD detection, as reported in previous studies. To validate the detection with a SiC-based electrochemical sensor, a gold (Au) electrode-based electrochemical sensor was used as a control. The same cleaning, functionalization and Aß1-28 antibody immobilization steps were used on both electrodes. Sensor validation was carried out by means of Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) aiming to detect an 0.5 µg·mL-1 Aß42 concentration in 0.1 M buffer solution as a proof of concept. A repeatable peak directly related to the presence of Aß42 was observed, indicating that a fast SiC-based electrochemical sensor was constructed and may prove to be a useful approach for the early detection of AD.

8.
ACS Appl Mater Interfaces ; 15(21): 25884-25897, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37208817

RESUMEN

Following the secular idea of ″restitutio ad integrum″, regeneration is the pursued option to restore bones lost after a disease; accordingly, complementing antibiotic and regeneration capacity to bone grafts represents a great scientific success. This study is a framework proposal for understanding the antimicrobial effect of biocompatible nano-hydroxyapatite/MoOx (nano-HA/MoOx) platforms on the basis of their electroactive behavior. Through cyclic voltammetry and chronoamperometry measurements, the electron transference capacity of nano-HA and nano-HA/MoOx electrodes was determined in the presence of pathogenic organisms: Pseudomonas aeruginosa and Staphylococcus aureus. Faradaic processes were confirmed and related to the switch of MoO42-/PO43- groups in the original hexagonal nano-HA crystal lattice and to the extent of OH vacancies that act as electron acceptors. Microscopic analysis of bacteria's ultrastructure showed a disruptive effect on the cytoplasmic membrane upon direct contact with the materials, which is not evident in the presence of eukaryotic cells. Experiments support the existence of a type of extracellular electron transfer (EET) process that alters the function of the bacterial cytoplasmic membrane, accelerating their death. Our findings provide strong quantitative support for a drug-independent biocidal physical approach based on EET processes between microorganisms and phosphate ceramics that can be used to combat local orthopedic infections associated with implants.


Asunto(s)
Durapatita , Infecciones Estafilocócicas , Humanos , Durapatita/farmacología , Durapatita/química , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Huesos
9.
Materials (Basel) ; 16(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36903043

RESUMEN

In the development of electrochemical sensors, carbon micro-structured or micro-materials have been widely used as supports/modifiers to improve the performance of bare electrodes. In the case of carbon fibers (CFs), these carbonaceous materials have received extensive attention and their use has been proposed in a variety of fields. However, to the best of our knowledge, no attempts for electroanalytical determination of caffeine with CF microelectrode (µE) have been reported in the literature. Therefore, a homemade CF-µE was fabricated, characterized, and used to determine caffeine in soft beverage samples. From the electrochemical characterization of the CF-µE in K3Fe(CN)6 10 mmol L-1 plus KCl 100 mmol L-1, a radius of about 6 µm was estimated, registering a sigmoidal voltammetric profile that distinguishes a µE indicating that the mass-transport conditions were improved. Voltammetric analysis of the electrochemical response of caffeine at the CF-µE clearly showed that no effects were attained due to the mass transport in solution. Differential pulse voltammetric analysis using the CF-µE was able to determine the detection sensitivity, concentration range (0.3 to 4.5 µmol L-1), limit of detection (0.13 µmol L-1) and linear relationship (I (µA) = (11.6 ± 0.09) × 10-3 [caffeine, µmol L-1] - (0.37 ± 0.24) × 10-3), aiming at the quantification applicability in concentration quality-control for the beverages industry. When the homemade CF-µE was used to quantify the caffeine concentration in the soft beverage samples, the values obtained were satisfactory in comparison with the concentrations reported in the literature. Additionally, the concentrations were analytically determined by high-performance liquid chromatography (HPLC). These results show that these electrodes may be an alternative to the development of new and portable reliable analytical tools at low cost with high efficiency.

10.
Antioxidants (Basel) ; 12(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36829877

RESUMEN

This study evaluated the antioxidant properties and chemical composition of the seeds, pulp and peels of Ungurahua (Oenocarpus bataua) and Pasu (Gustavia macarenensis)-fruits, native to the Ecuadorian Amazon. The antioxidant capacity was measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and cyclic voltammetry (antioxidant index 50 (AI50)) assays; differential pulse voltammetry was used to evaluate antioxidant power using the electrochemical index. The total phenolic content, as well as the yellow flavonoid and anthocyanin content, were quantified via spectrophotometry. In addition, the trans-resveratrol and ascorbic acid content were evaluated through high performance liquid chromatography (HPLC). Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to identify secondary metabolites with possible therapeutic properties. Results showed that the Pasu peel and seed extracts had the highest antioxidant capacity, followed by the Ungurahua peel; these results were consistent for both spectroscopic and electrochemical assays. HPLC and UPLC-MS analysis suggest that Oenocarpus bataua and Gustavia macarenensis are important sources of beneficial bioactive compounds.

11.
Biotechnol Prog ; 39(3): e3334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36795023

RESUMEN

This article developed a novel electrochemical immunosensor for the specific detection of aflatoxin B1 (AFB1). Amino-functionalized iron oxide nanoparticles (Fe3 O4 -NH2 ) were synthesized. Fe3 O4 -NH2 were chemically bound on self-assembly monolayers (SAMs) of mercaptobenzoic acid (MBA). Finally, polyclonal antibodies (pAb) were immobilized on Fe3 O4 -NH2 -MBA. The sensor system was evaluated through atomic force microscopy (AFM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). A reduction in the anodic and cathodic peak currents was observed after the assembly of the sensor platform. The charge transfer resistance (Rct ) was increased due to the electrically insulating bioconjugates. Then, the specific interaction between the sensor platform and AFB1 blocks the electron transfer of the [Fe(CN)6 ]3-/4- redox pair. The nanoimmunosensor showed a linear response range estimated from 0.5 to 30 µg/mL with a limit of detection (LOD) of 9.47 µg/mL and a limit of quantification (LOQ) of 28.72 µg/mL for AFB1 identification in a purified sample. In addition, a LOD of 3.79 µg/mL, a LOQ of 11.48 µg/mL, and a regression coefficient of 0.9891 were estimated for biodetection tests on peanut samples. The proposed immunosensor represents a simple alternative, successfully applied in detecting AFB1 in peanuts, and therefore, represents a valuable tool for ensuring food safety.


Asunto(s)
Arachis , Técnicas Biosensibles , Aflatoxina B1/análisis , Aflatoxina B1/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Inmunoensayo , Límite de Detección , Oro/química
12.
Talanta ; 256: 124285, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706502

RESUMEN

Systemic sclerosis (SSc) is a chronic, autoimmune disease that primarily affects connective tissue. SSc can be classified into limited cutaneous (lSSc) and diffuse cutaneous (dSSc). Oncostatin M receptor (sOSMR) is an important inflammatory biomarker expressed in the serum of patients with autoimmune diseases. A nanoengineered immunosensor surface was developed. The biosensor was composed of a conductive layer of polypyrrole, electrodeposited gold nanoparticles, and sOSMR protein for anti-human OSMR monoclonal antibody biorecognition. The electrochemical response evaluated by cyclic voltammetry and electrochemical impedance spectroscopy indicated the detection of the target analyte present in clinical samples from lSSc and dSSc patients. The voltammetric anodic shift for lSSc specimens was 82.7% ± 0.9-93.6% ± 3.2, and dSSc specimens was 118.7 ± 2.6 to 379.6 ± 2.6, revealing a differential diagnostic character for SSc subtypes. The sensor platform was adapted for identifying sOSMR, using anti-OSMR antibodies as bioreceptors. With a linear response range estimated from 0.005 to 500 pg mL-1 and a limit of detection of 0.42 pg mL-1, the sensing strategy demonstrated high sensitivity in identifying the human OSMR protein in clinical samples. The proposed biosensor is a promising and innovative tool for SSc-related biomarker research.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Esclerodermia Sistémica , Humanos , Autoanticuerpos , Biomarcadores , Oro , Inmunoensayo , Polímeros , Pirroles , Receptores de Oncostatina M , Esclerodermia Sistémica/diagnóstico , Técnicas Electroquímicas
13.
Molecules ; 28(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36677628

RESUMEN

In this work, we provide electrochemical and spectroscopic evidence of the conducting polymer-heavy metal ion interaction by comparing the electrochemical and spectroscopic behavior (FTIR) of two different conducting polymer-modified electrodes based on 3,4-alkoxythiophenes: 3,4-ethylenedioxythiophene (EDOT) and ortho-xylen-3,4-dioxythiophene (XDOT) during the potentiodynamic stripping of copper. By analyzing the electrochemical and spectroscopic results, it is possible to propose two different copper dissolution processes during the electrochemical stripping process, which depend on the conducting polymer used. With PEDOT matrix, stripping occurs in a two-step pathway, observed as two anodic peaks, involving the formation of the Cu+-PEDOT complex and the subsequent oxidation step of the Cu+ complex to release Cu2+ ions. On the other side, the experiments carried out let us propose the formation of a poorly stable Cu2+-PXDOT complex or a superficial mechanism for the Cu2+ release, characterized by a single stripping signal for this process. Thus, the incorporation of Cu ions into the matrix and the stripping release are intimately related to the chemical structure of the polymer used.

14.
Food Chem ; 403: 134411, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36358097

RESUMEN

Analytical assurance of coffees' geographical indication (GI) authenticity is essential for producers and consumers. In this way, chemometric methods, electrochemical techniques, and 3D printed sensors become attractive to assure the coffee's quality. These sensors are low-cost, fast, and simple, with the possibility of miniaturization and portability. Therefore, 3D printed electrodes with chemometrics were used to classify-three Brazilian coffees from regions with GI. Further, Au/Gpt-PLA electrodes with partial least squares regression were used to detect the blending of GI coffee with traditional coffee. Soft independent modelling of class analogies coupled with cyclic voltammetry had the best performance, with 91-95% accuracy, specificity of 94-100%, and 80-83% sensitivity. Furthermore, the calibration models detected and quantified traditional coffee in all three coffees from regions with GI. The detection limits ranged from 1.4 to 10% (w/w), and quantification 4.6-32%, depending on the specific coffee.


Asunto(s)
Quimiometría , Café , Brasil , Análisis de los Mínimos Cuadrados , Impresión Tridimensional
15.
Chemphyschem ; 24(2): e202200371, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36073234

RESUMEN

A clear case of relationship between the monomer molecular structure and the capability of tuning the morphology of electrodeposited gas bubbles template polymer thin films is shown. To this end, a series of fluorene-bridged dicarbazole derivatives containing either linear or terminally branched polyfluorinated side chains connected to the fluorene subunit were synthesized and their electrochemical properties were investigated. The new compounds underwent electrochemical polymerization over indium tin oxide electrodes to give hydrophobic films with nanostructural and morphological properties strongly dependent on the nature of the side chains. Gas bubbles templated electropolymerization was next achieved by the addition of tiny amounts of water to the monomer solutions, without using surfactants. Within the investigated set of molecules, the nanostructural properties of the soft-templated films obtained from monomers bearing linear side chains could be fine-tuned by adjusting electrochemical parameters, leading to superhydrophobic surfaces.


Asunto(s)
Nanoestructuras , Interacciones Hidrofóbicas e Hidrofílicas , Nanoestructuras/química , Agua , Fluorenos
16.
Mikrochim Acta ; 189(12): 483, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36446842

RESUMEN

Fentanyl is a powerful synthetic opioid used to treat severe pain. New administration routes toward its illegal consumption for recreational purposes pose a growing threat to public health, either due to misuse or abuse of this substance. As a result, the rapid qualitative and quantitative determination of fentanyl in biofluids is of great interest. A novel enzymatic biosensor based on adsorptive-stripping cyclic voltammetry is proposed as a cost-effective, reliable, and efficient device for fentanyl determination in urine samples. Disposable screen-printed carbon electrodes modified with multi-walled carbon nanotubes and cytochrome c were used to develop the testing platform. The electrochemical behavior of fentanyl exhibited a well-defined anodic wave around 0.66 V vs. pseudo reference electrode. The experimental conditions were optimized to obtain the best analytical response, and linear regression analysis of increasing concentration standards was applied to estimate the performance parameters. The results suggest a simple method with a wide linearity range, high sensitivity, low limits of detection (0.086 µg/mL) and quantification, and satisfactory precision (2.9% RSD). The feasibility and applicability of the voltammetric approach were assessed by fentanyl-spiked urine samples by standard additions calibration curves in two levels of enrichment with an accuracy of 92% and 100%.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Citocromos c , Fentanilo , Electrodos
17.
Enzyme Microb Technol ; 160: 110088, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35777193

RESUMEN

The increasing number of multidrug resistance microorganisms is an alarming threat, and their rapid detection is essential to prevent nosocomial, foodborne, or waterborne infections. Many peptides derived from the venom of wasp Synoeca surinama have antimicrobial activity against Gram-positive and Gram-negative bacteria. Synoeca-MP, an antimicrobial peptide (AMP) from mastoparan family, seems to increase bacterial membrane permeability, promoting cytotoxicity and membrane disruption. Here Synoeca-MP was evaluated as biorecognition element tethered over chitosan-coated magnetic nanoparticles (Fe3O4-Chit). The transducing layer of the biosensor was developed from the self-assembling of 4-mercaptobenzoic acid (4-MBA) monolayer onto gold substrate. Atomic force microscopy (AFM) analyses confirmed the biointeraction between AMP and different pathogens membranes. The fabrication and performance of the biosensing assembly were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Detection of Enterococcus faecalis (G+), Klebsiella pneumoniae (G-), Pseudomonas aeruginosa (G-), and Candida tropicalis was assessed in a recognition range from 101 to 105 CFU.mL-1. An instrumental limit of detection of 10 CFU.mL-1 was obtained for each specimen. However, the device presented a preferential selectivity towards Gram-negative bacteria. The proposed biosensor is a sensitive, fast, and straightforward platform for microbial detection in aqueous samples, envisaged for environmental monitoring applications.


Asunto(s)
Técnicas Biosensibles , Nanopartículas de Magnetita , Antibacterianos/farmacología , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Oro/química , Bacterias Gramnegativas , Bacterias Grampositivas , Péptidos y Proteínas de Señalización Intercelular , Nanopartículas de Magnetita/química , Venenos de Avispas
18.
Chem Biodivers ; 19(6): e202101036, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35581163

RESUMEN

The successful application of fragment-based drug discovery strategy for the efficient synthesis of phenoxy- or phenylamino-2-phenyl-benzofuran, -benzoxazole and -benzothiazole quinones is described. Interestingly, in the final step of the synthesis of the target compounds, unusual results were observed on the regiochemistry of the reaction of bromoquinones with phenol and aniline. A theoretical study was carried out for better understanding the factors that control the regiochemistry of these reactions. The substituted heterocyclic quinones were evaluated in vitro to determine their cytotoxicity by the MTT method in three pancreatic cancer cell lines (MIA-PaCa-2, BxPC-3, and AsPC-1). Phenoxy benzothiazole quinone 26a showed potent cytotoxic activity against BxPC-3 cell lines, while phenylamino benzoxazole quinone 20 was the most potent on MIA-PaCa-2 cells. Finally, electrochemical properties of these quinones were determined to correlate with a potential mechanism of action. All these results, indicate that the phenoxy quinone fragment led to compounds with increased activity against pancreatic cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Antineoplásicos/química , Benzotiazoles/química , Línea Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Quinonas/química , Quinonas/farmacología , Neoplasias Pancreáticas
19.
Clin Chim Acta ; 531: 223-229, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35447142

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia and affect more than 50 million people worldwide. Thus, there is a high demand by non-invasive methods for an early diagnosis. This work explores the AD diagnostic using the amyloid beta 1-40 (Aß40) peptide encapsulated into dipalmitoyl phosphatidyl glycerol (DPPG) liposomes and immobilized on polyethylene imine previously deposited on screen-printed carbon electrodes to detect autoantibodies against Aß40, a potential biomarker found in plasma samples. METHODS: The immunosensor assembly was accompanied by atomic force microscopy (AFM) images that showed globular aggregates from 20 to 200 nm corresponding liposomes and by cyclic voltammetry (CV) through increase of the voltammogram area each material deposited. After building the immunosensor, when it was exposed to antibody anti-Aß40, there was an increase in film roughness of approximately 9 nm, indicating the formation of the immunocomplex. RESULTS: In the detection by CV, the presence of specific antibody, in the range of 0.1 to 10 µg/ml, resulted in an increase in the voltammograms area and current in 0.45 V reaching 3.2 µA.V and 5.7 µA, respectively, in comparison with the control system, which remained almost unchanged from 0.1 µg/ml. In patient samples, both cerebrospinal fluid (CSF) and plasma, was possible separated among positive and negative samples for AD using CV profile and area, with a difference of 0.1 µA.V from the upper error bar of healthy samples for CSF sample and 0.6 µA.V for plasma sample. CONCLUSIONS: These results showed the feasibility of the method employed for the non-invasive diagnostic of Alzheimer's disease detecting natural autoantibodies that circulate in plasma through a simple and easy-to-interpret method.


Asunto(s)
Enfermedad de Alzheimer , Técnicas Biosensibles , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Autoanticuerpos , Biomarcadores , Humanos , Inmunoensayo/métodos , Liposomas , Fragmentos de Péptidos
20.
Molecules ; 27(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35458692

RESUMEN

In this work, we present an electrochemical study of the boron cage monomercaptoundecahydro-closo-dodecaborate [B12H11SH]2- in solution and in a self-assembled monolayer over a polycrystalline gold electrode. Cyclic voltammetry of the anion [B12H11SH]2- in solution showed a shift in the peak potentials related to the redox processes of gold hydroxides, which evidences the interaction between the boron cage and the gold surface. For an Au electrode modified with the anion [B12H11SH]2-, cyclic voltammetry response of the probe Fe(CN)63-/Fe(CN)64- showed a ΔEp value typical for a surface modification. Electrochemical impedance spectroscopy presented Rtc and Cdl values related to the formation of a self-assembled monolayer (SAM). A comparison of electrochemical responses of a modified electrode with thioglycolic acid (TGA) reveals that the boron cage [B12H11SH]2- diminishes the actives sites over the Au surface due to the steric effects. Differential capacitance measurements for bare gold electrode and those modified with [B12H11SH]2- and (TGA), indicate that bulky thiols enhance charge accumulation at the electrode-solution interface. In addition to electrochemical experiments, DFT calculations and surface plasmon resonance measurements (SPR) were carried out to obtain quantum chemical descriptors and to evaluate the molecular length and the dielectric constant of the Boron cage. From SPR experiments, the adsorption kinetics of [B12H11SH]2- were studied. The data fit for a Langmuir kinetic equation, typical for the formation of a monolayer.


Asunto(s)
Boro , Oro , Compuestos de Boro , Electrodos , Oro/química , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA