Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.829
Filtrar
1.
Bioorg Chem ; 153: 107777, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39244968

RESUMEN

Inhibiting cyclin-dependent kinases (CDK) offers an important arsenal for cancer treatments by interfering with apoptotic proteins related to cancer. Novel selective cyclin-dependent kinases inhibitors using the Quinazoline as the cap with multiple electronic donating (EDG) and/or electron withdrawing group (EWG) substituted Aniline chain at the C-2 position were designed, synthesized, and evaluated for activity against liver cancer. Among the tested compounds, compounds B34 and B35 emerged as potent candidates in the series, with IC50 values of 0.102 ± 0.04 µM and 0.058 ± 0.003 µM, respectively. They also suppressed the enzymatic activity of CDK2/cyclinA2 selectively. Further biological studies revealed that compounds B34 and B35 arrested the cell cycle, and induced apoptosis in HepG-2 cancer cells through a Caspase-mediated mechanism, facilitating the release of Cyt-c through modulation of Caspase-3 expression. More importantly, compounds B34 and B35 suppressed the xenografted tumor growth in mice in a dose-dependent manner. Finally, through a molecular docking study, it was confirmed that compoundsB34 andB35 retained crucial hydrogen bonding and hydrophobic interactions with CDK receptor, rationalizing their higher efficacy compared to other compounds in the series. Taken together, the Quinazoline derivatives B34 and B35 may serve as novel chemotherapeutic agents through inhibition of CDK.

2.
Mol Med Rep ; 30(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39239742

RESUMEN

The tetraspanin family of membrane proteins is essential for controlling different biological processes such as cell migration, penetration, adhesion, growth, apoptosis, angiogenesis and metastasis. The present review summarized the current knowledge regarding the expression and roles of tetraspanins in different types of cancer of the digestive system, including gastric, liver, colorectal, pancreatic, esophageal and oral cancer. Depending on the type and context of cancer, tetraspanins can act as either tumor promoters or suppressors. In the present review, the importance of tetraspanins in serving as biomarkers and targets for different types of digestive system­related cancer was emphasized. Additionally, the molecular mechanisms underlying the involvement of tetraspanins in cancer progression and metastasis were explored. Furthermore, the current challenges are addressed and future research directions for advancing investigations related to tetraspanins in the context of digestive system malignancies are proposed.


Asunto(s)
Neoplasias del Sistema Digestivo , Tetraspaninas , Humanos , Tetraspaninas/metabolismo , Tetraspaninas/genética , Neoplasias del Sistema Digestivo/metabolismo , Neoplasias del Sistema Digestivo/genética , Neoplasias del Sistema Digestivo/patología , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Animales
3.
Neurochem Res ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235580

RESUMEN

Dr. Harish Chandra Pant was Chief of the Section on Neuronal Cytoskeletal Protein Regulation within the National Institute of Neurological Disorders and Stroke at the NIH. A main focus of his group was understanding the mechanisms regulating neuronal cytoskeletal phosphorylation. Phosphorylation of neurofilaments can increase filament stability and confer resistance to proteolysis, but aberrant hyperphosphorylation of neurofilaments can be found in the neurofibrillary tangles that are seen with neurodegenerative diseases like Alzheimer disease (AD). Through his work, Harish would inevitably come across cyclin dependent kinase 5 (Cdk5), a key kinase that can phosphorylate neurofilaments at KSPXK motifs. Cdk5 differs from other Cdks in that its activity is mainly in post-mitotic neurons rather than being involved in the cell cycle in dividing cells. With continued interest in Cdk5, Harish and his group were instrumental in identifying important roles for this neuronal kinase in not only neuronal cytoskeleton phosphorylation but also in neuronal development, synaptogenesis, and neuronal survival. Here, we review the accomplishments of Harish in characterizing the functions of Cdk5 and its involvement in neuronal health and disease.

4.
Heliyon ; 10(14): e34289, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100490

RESUMEN

The anti-programmed death-ligand 1 (PD-L1) antibody is a standard therapy for advanced hepatocellular carcinoma (HCC). Tumor expression of PD-L1 can be induced upon stimulus. Because cyclin-dependent kinase 9 (CDK9) inhibition reduces the expression of inducible proteins, we explored the influence of CDK9 inhibition on PD-L1 expression in HCC cells. We found that PD-L1 expression was low in HCC cells; however, IFN-γ treatment increased this expression. CDK9 inhibitors AZD4573 and atuveciclib reduced the IFN-γ induced PD-L1 expression in a dose-dependent manner. CDK9 knockdown yielded similar results, but CDK9 overexpression reversed the influence of the CDK9 inhibitors. In the orthotopic mouse model, mice treated with a CDK9 inhibitor and an anti-PD-L1 antibody had significantly smaller tumors and exhibited longer survival than mice treated with either agent. In conclusion, CDK9 inhibition could reduce the expression of PD-L1 in HCC cells. Using both CDK9 inhibitors and anti-PD-L1 antibodies is more effective than using either agent alone.

5.
Transl Androl Urol ; 13(7): 1145-1163, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39100843

RESUMEN

Background: Methyltransferase-like (METTL) plays an important role in various biological processes, but its role in prostate cancer (PCa) is still unclear. This study aimed to explore the mechanism by which methyltransferase-like 14 (METTL14) inhibits the physiological activity of PCa cells by increasing the N6-methyladenosine (m6A) modification of cyclin-dependent kinase 4 (CDK4). Methods: Clinical samples were collected for bioinformatics analysis. A PCa mouse model was constructed. Cell counting kit-8 (CCK-8), flow cytometry, colony formation assays, scratch assays, Transwell assays, real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence and western blotting were used to detect the corresponding indicators. Results: METTL14 was found to be beneficial to inhibit the proliferation, invasion, and migration of PCa cells. When the m6A RNA increased, the half-life of CDK4 mRNA decreased after oe-METTL14 (overexpression of METTL14). Overexpression of CDK4 reversed the effect of oe-METTL14. Coimmunoprecipitation experiments revealed there were interactions between CDK4 and forkhead box M1 (FOXM1). Transfection of si-CDK4 was similar to transfection of oe-METTL14. After transfection with oe-FOXM1, the invasion and migration ability of cells increased, and cell apoptosis decreased. After transfection with si-FOXM1 alone, autophagy related 7 (ATG7) expression was significantly downregulated, and autophagy levels were reduced. The overexpression of ATG7 reversed the effect of si-FOXM1. The tumor volume and weight of the oe-METTL14 group mice were significantly reduced, and tumor proliferation was decreased in comparison to untreated tumor-bearing mice. Conclusions: METTL14 inhibits the invasion and migration of PCa cells and induces cell apoptosis by inhibiting CDK4 stability and FOXM1/ATG7-mediated autophagy.

6.
J Mol Biol ; : 168746, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147127

RESUMEN

The RNA polymerase II (RNAPII) transcription cycle is regulated at every stage by a network of cyclin-dependent protein kinases (CDKs) and protein phosphatases. Progression of RNAPII from initiation to termination is marked by changing patterns of phosphorylation on the highly repetitive carboxy-terminal domain (CTD) of RPB1, its largest subunit, suggesting the existence of a CTD code. In parallel, the conserved transcription elongation factor SPT5, large subunit of the DRB sensitivity-inducing factor (DSIF), undergoes spatiotemporally regulated changes in phosphorylation state that may be directly linked to the transitions between transcription-cycle phases. Here we review insights gained from recent structural, biochemical, and genetic analyses of human SPT5, which suggest that two of its phosphorylated regions perform distinct functions at different points in transcription. Phosphorylation within a flexible, RNA-binding linker promotes release from the promoter-proximal pause-frequently a rate-limiting step in gene expression-whereas modifications in a repetitive carboxy-terminal region are thought to favor processive elongation, and are removed just prior to termination. Phosphorylations in both motifs depend on CDK9, catalytic subunit of positive transcription elongation factor b (P-TEFb); their different timing of accumulation on chromatin and function during the transcription cycle might reflect their removal by different phosphatases, different kinetics of phosphorylation by CDK9, or both. Perturbations of SPT5 regulation have profound impacts on viability and development in model organisms through largely unknown mechanisms, while enzymes that modify SPT5 have emerged as potential therapeutic targets in cancer; elucidating a putative SPT5 code is therefore a high priority.

7.
Front Oncol ; 14: 1401861, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109289

RESUMEN

Atypical lipomatous tumors (ALTs) are locally aggressive adipocytic malignancies that frequently occur in middle-aged adults. We report the rare case of an ALT of the thigh that occurred in a 4-year-old girl. Since the tumor was initially diagnosed as a lipoblastoma by incisional biopsy, marginal resection was performed. Histopathological findings of the surgical specimen revealed the proliferation of mature and variously sized adipocytes, as well as ectopic ossification; these features differ from the typical findings of lipoblastoma. Immunohistochemical findings showed nuclear positivity for a murine double minute 2 (MDM2) and cyclin-dependent kinase 4 (CDK4) and negativity for pleomorphic adenoma gene 1 (PLAG1). Fluorescence in situ hybridization showed abnormal amplification of the MDM2 gene. The patient was thus finally diagnosed as having an ALT. No signs of local recurrence or metastasis were noted 1 year postoperatively. This case is instructive in the differential diagnosis of primary adipocytic tumors. Lipoblastomas are the most common adipocytic tumors in children, but if a tumor is located in the deep tissue or imaging findings are not typical, the possibility of ALT should be considered and immunohistochemistry for MDM2 and CDK4 should be added.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39123071

RESUMEN

PURPOSE: In advanced breast cancer, endocrine therapy is preferred in the absence of visceral crisis. Cyclin-dependent kinase inhibitors (CDKi) are the gold standards. The selection of subsequent treatments after CDKi treatment is still controversial, and the efficacy of everolimus (EVE) combinations is unknown. In this study, we aimed to investigate the efficacy of EVE after CDKi administration in real-life experiences. METHOD: The study received data from 208 patients from 26 cancer centers. Demographic and histologic features, diagnosis, progression, last visit dates, and toxicities were recorded. This study was a retrospective case series. RESULTS: One hundred and seven patients received palbociclib, while 101 patients received ribociclib as a CDKi. The overall response and disease control rates of EVE combinations were 60% and 88%, respectively. In univariate analysis, the absence of liver metastasis, age > 40 years, better type of response, and immediate treatment after CDKi were related to increased progression-free survival. Liver metastasis and response type were significantly associated with overall survival. In the multivariate analysis, response remained significant in terms of progression-free survival, while response type, liver metastatic disease, and hematologic toxicity were prognostic in terms of overall survival. CONCLUSION: This study provides evidence of the benefits of EVE combinations after CDKi treatment. EVE combinations may be more appropriate for patients with non-liver metastasis, and the first treatment response shows the benefit of treatment. In addition, immediate treatment after CDKi treatment is more beneficial than later lines of treatment.

9.
Br J Radiol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120877

RESUMEN

BACKGROUND: Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) have significantly improved the survival of patients with hormone receptor-positive HER2-negative advanced breast cancer (ABC). Although stereotactic ablative radiotherapy (SABR) is used more often in routine clinical practice, data on the safety and efficacy of combining SABR with CDK4/6i are lacking. Herein, we present the results of SABR combined with CDK4/6i in ABC. MATERIALS AND METHODS: Patients with ABC who received CDK4/6i and SABR between 2018-2023 were analyzed. RESULTS: Among 384 patients treated with CDK4/6i, 34 patients received 44 courses of SABR. 2-year PFS was 63.6% (95%CI : 45.8-88.3), and the median PFS was 32 months. 3-year OS was 88.9% (95%CI : 77.7-100). 2-year local control was 92.7% [95%CI : 83.4-100]. Median OS and LC were not reached. The subgroup analysis showed the difference in survival between oligometastatic patients (OMD) and non-OMD subgroup. 2-year PFS was 69.2%(95%CI : 44.5-100) in OMD compared with 57.4% (95%CI : 36-91.7) in the non-OMD (p = 0.042). 3-year OS was 90%(95%CI : 73.2-100) in OMD compared with 86.2%(95%CI : 70-100) in the non-OMD (p = 0.67). Median PFS and OS in the non-OMD were 26 and 56 months, respectively, and were not reached in OMD. Fifteen patients required CDK4/6i dose reduction, and two discontinued treatment due to toxicity. No difference in high-grade toxicity was observed between the sequential and concurrent SABR. CONCLUSION: The addition of SABR to CDK4/6i seems to be safe and effective, especially in patients with oligometastatic disease. ADVANCES IN KNOWLEDGE: In advanced breast cancer patients treated with CDK4/6i, SABR provides a high local control and may provide additional benefit in an oligometastatic setting.

10.
OMICS ; 28(9): 478-488, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39149808

RESUMEN

Cyclin-dependent kinase 8 (CDK8) is highly expressed in various cancers and common complex human diseases, and an important therapeutic target for drug discovery and development. The CDK8 inhibitors are actively sought after, especially among natural products. We performed a virtual screening using the ZINC library comprising approximately 90,000 natural compounds. We applied Lipinski's rule of five, absorption, distribution, metabolism, excretion, and toxicity properties, and pan-assay interference compounds filter to eliminate promiscuous binders. Subsequently, the filtered compounds underwent molecular docking to predict their binding affinity and interactions with the CDK8 protein. Interaction analysis were carried out to elucidate the interaction mechanism of the screened hits with binding pockets of the CDK8. The ZINC02152165, ZINC04236005, and ZINC02134595 were selected with appreciable specificity and affinity with CDK8. An all-atom molecular dynamic (MD) simulation followed by essential dynamics was performed for 200 ns. Taken together, the results suggest that ZINC02152165, ZINC04236005, and ZINC02134595 can be harnessed as potential leads in therapeutic development. Moreover, the binding of the molecules brings change in protein conformation in a way that blocks the ATP-binding site of the protein, obstructing its kinase activity. These new findings from natural products offer insights into the molecular mechanisms underlying CDK8 inhibition. CDK8 was previously associated with behavioral and neurological diseases such as autism spectrum disorder, and cancers, for example, colorectal, prostate, breast, and acute myeloid leukemia. Hence, we call for further research and experimental validation, and with an eye to inform future clinical drug discovery and development in these therapeutic fields.


Asunto(s)
Antineoplásicos , Productos Biológicos , Quinasa 8 Dependiente de Ciclina , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas , Productos Biológicos/farmacología , Productos Biológicos/química , Humanos , Quinasa 8 Dependiente de Ciclina/antagonistas & inhibidores , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasa 8 Dependiente de Ciclina/química , Antineoplásicos/farmacología , Antineoplásicos/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Unión Proteica , Simulación de Dinámica Molecular , Descubrimiento de Drogas/métodos , Sitios de Unión , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
11.
Front Oncol ; 14: 1424569, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188686

RESUMEN

The incidence of cancer is increasing worldwide and is the most common cause of death. Identification of novel cancer diagnostic and prognostic biomarkers is important for developing cancer treatment strategies and reducing mortality. Cyclin-dependent kinase subunit 2 (CKS2) is involved in cell cycle and proliferation processes, and based on these processes, CKS2 was identified as a cancer gene. CKS2 is expressed in a variety of tissues in the human body, but its abnormal expression is associated with cancer in a variety of systems. CKS2 is generally elevated in cancer, plays a role in almost all aspects of cancer biology (such as cell proliferation, invasion, metastasis, and drug resistance) through multiple mechanisms regulating certain important genes, and is associated with clinicopathological features of patients. In addition, CKS2 expression patterns are closely related to cancer type, stage and other clinical variables. Therefore, CKS2 is considered as a tool for cancer diagnosis and prognosis and may be a promising tumor biomarker and therapeutic target. This article reviews the biological function, mechanism of action and potential clinical significance of CKS2 in cancer, in order to provide a new theoretical basis for clinical molecular diagnosis, molecular targeted therapy and scientific research of cancer.

12.
Dev Cell ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39191252

RESUMEN

To ensure an even segregation of chromosomes during somatic cell division, eukaryotes rely on mitotic spindles. Here, we measured prime characteristics of the Arabidopsis mitotic spindle and built a three-dimensional dynamic model using Cytosim. We identified the cell-cycle regulator CYCLIN-DEPENDENT KINASE B1 (CDKB1) together with its cyclin partner CYCB3;1 as key regulators of spindle morphology in Arabidopsis. We found that the augmin component ENDOSPERM DEFECTIVE1 (EDE1) is a substrate of the CDKB1;1-CYCB3;1 complex. A non-phosphorylatable mutant rescue of ede1 resembled the spindle phenotypes of cycb3;1 and cdkb1 mutants and the protein associated less efficiently with spindle microtubules. Accordingly, reducing the level of augmin in simulations recapitulated the phenotypes observed in the mutants. Our findings emphasize the importance of cell-cycle-dependent phospho-control of the mitotic spindle in plant cells and support the validity of our model as a framework for the exploration of mechanisms controlling the organization of the eukaryotic spindle.

13.
Eur J Intern Med ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39168715

RESUMEN

Thrombosis may be included in the profile of side effects associated with CDK4/6 inhibitors. Its significance might be greater than reported in randomized clinical trials. To investigate this, a retrospective, multicenter study was conducted. The primary objective was to calculate the incidence of thrombosis associated with CDK4/6 inhibitors. Secondary objectives included examining the impact of thrombosis on survival and identifying predictor variables for the development of venous thromboembolism (VTE) or arterial thrombosis (AT). A total of 986 patients were recruited. The incidence of VTE/AT associated with CDK4/6 inhibitor treatment during the follow-up period was 5.48 %. Survival analysis did not indicate that the development of VTE/AT during CDK4/6 inhibitor treatment significantly impacted patient survival (p = 0.133). In our analysis, two variables were found to be statistically significant (p < 0.05) as predictors of VTE/AT in breast cancer patients receiving CDK4/6 inhibitor therapy. These variables were the presence of central nervous system (CNS) metastasis with an odds ratio (OR) of 3.68 (95 % CI 1.18 - 11.49) and the use of abemaciclib with an OR of 2.3 (95 % CI 1.16 - 4.57).

14.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39201275

RESUMEN

The widespread use of wireless communication devices has necessitated unavoidable exposure to radiofrequency electromagnetic fields (RF-EMF). In particular, increasing RF-EMF exposure among children is primarily driven by mobile phone use. Therefore, this study investigated the effects of 1850 MHz RF-EMF exposure at a specific absorption rate of 4.0 W/kg on cortical neurons in mice at postnatal day 28. The results indicated a significant reduction in the number of mushroom-shaped dendritic spines in the prefrontal cortex after daily exposure for 4 weeks. Additionally, prolonged RF-EMF exposure over 9 days led to a gradual decrease in postsynaptic density 95 puncta and inhibited neurite outgrowth in developing cortical neurons. Moreover, the expression levels of genes associated with synapse formation, such as synaptic cell adhesion molecules and cyclin-dependent kinase 5, were reduced in the cerebral cortexes of RF-EMF-exposed mice. Behavioral assessments using the Morris water maze revealed altered spatial learning and memory after the 4-week exposure period. These findings underscore the potential of RF-EMF exposure during childhood to disrupt synaptic function in the cerebral cortex, thereby affecting the developmental stages of the nervous system and potentially influencing later cognitive function.


Asunto(s)
Neuronas , Ondas de Radio , Sinapsis , Animales , Ratones , Sinapsis/efectos de la radiación , Sinapsis/metabolismo , Neuronas/efectos de la radiación , Neuronas/metabolismo , Ondas de Radio/efectos adversos , Campos Electromagnéticos/efectos adversos , Corteza Cerebral/efectos de la radiación , Corteza Cerebral/metabolismo , Espinas Dendríticas/efectos de la radiación , Espinas Dendríticas/metabolismo , Memoria/efectos de la radiación , Aprendizaje por Laberinto/efectos de la radiación , Masculino , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Proyección Neuronal/efectos de la radiación , Aprendizaje/efectos de la radiación , Corteza Prefrontal/efectos de la radiación , Corteza Prefrontal/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo
15.
J Adv Res ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089617

RESUMEN

BACKGROUND: Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW: This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW: CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.

16.
Curr Alzheimer Res ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39136502

RESUMEN

BACKGROUND: Alzheimer's disease (AD) affects approximately 50 million people globally and is expected to triple by 2050. Arctiin is a lignan found in the Arctium lappa L. plant. Arctiin possesses anti-proliferative, antioxidative and anti-adipogenic. OBJECTIVES: We aimed to explore the potential therapeutic effects of Arctiin on rats with AD by evaluating the expression of TLR4, NLRP3, STAT3, TGF-ß, cyclin D1, and CDK2. METHODS: AD was induced in rats by administering 70 mg/kg of aluminum chloride through intraperitoneal injection daily for six weeks. After inducing AD, some rats were treated with 25 mg/kg of Arctiin daily for three weeks through oral gavage. Furthermore, to examine the brain tissue structure, hippocampal sections were stained with hematoxylin/eosin and anti-TLR4 antibodies. The collected samples were analyzed for gene expression and protein levels of TLR4, NLRP3, STAT3, TGF-ß, cyclin D1, and CDK2. RESULTS: In behavioral tests, rats showed a significant improvement in their behavior when treated with Arctiin. Microimages stained with hematoxylin/eosin showed that Arctiin helped to improve the structure and cohesion of the hippocampus, which was previously impaired by AD. Furthermore, Arctiin reduced the expression of TLR4, NLRP3, STAT3, TGF-ß, cyclin D1, and CDK2. CONCLUSION: Arctiin can enhance rats' behavior and structure of the hippocampus in AD rats. This is achieved through its ability to reduce the expression of both TLR4 and NLRP3, hence inhibiting the inflammasome pathway. Furthermore, Arctiin can improve tissue fibrosis by regulating STAT3 and TGF-ß. Lastly, it can block the cell cycle proteins cyclin D1 and CDK2.

17.
Artículo en Inglés | MEDLINE | ID: mdl-39002122

RESUMEN

OBJECTIVE: The purpose of this study was to evaluate the safety, tolerability, pharmacokinetics, and efficacy (as an exploratory endpoint) of TCK-276, a novel CDK4/6 inhibitor, after multiple oral doses for 7 days in patients with active RA. METHODS: This multicentre, randomized, placebo-controlled, dose-ascending, double-blind, phase 1b, multiple-dose study included 32 patients with active RA in 4 cohorts of 8 patients (6 active and 2 matching placebo), each receiving an oral dose of TCK-276 or matching placebo for 7 days (once daily). The doses of TCK-276 were 10, 25, 75, and 175 mg/day. Safety and pharmacokinetic endpoints, and exploratory disease activity parameters for RA were assessed. RESULTS: There were no deaths, serious adverse events, notable clinically meaningful laboratory findings (including hematological changes), clinically meaningful vital sign changes, or clinically meaningful electrocardiogram or cardiac telemetry changes. TCK-276 was rapidly absorbed and the half-life time ranged approximately from 6 to 12 hours. No obvious accumulation was observed, and the increase in TCK-276 exposure was dose proportional. At day 7, DAS28-CRP responses (EULAR good or moderate responses) were observed in 40%, 80%, and 66.7% at 25, 75, and 175 mg/day TCK-276, respectively, versus 12.5% in placebo; ACR20 responses were 33.3%, 60%, and 50% respectively, versus none in placebo. CONCLUSION: TCK-276 (≤175 mg) was well tolerated with no clinically meaningful safety signals in patients with active RA. Together with the preliminary efficacy (≥25 mg/day), these data warrant further study of TCK-276 for the treatment of active RA. TRIAL REGISTRATION: ClinicalTrails.gov, NCT05437419.

18.
Cureus ; 16(6): e62061, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38989391

RESUMEN

Background One unique criterion of colorectal carcinoma (CRC) is the different locations within the colorectum. Different CRC sidedness/locations could have distinct criteria, including risk factors, morphological features, genetic alterations, prognostic factors, and clinical outcomes. Nearly half of the CRC cases occur in the rectal-sigmoid locations, while other colonic locations constitute the other half. Investigating specific protein expression patterns in the rectosigmoid CRC (rsCRC) compared to other colonic (ocCRC) locations helps understand the disease pathogenesis, predict prognosis, and design personalized treatments. This study is the first to compare P16Ink4a and P57KIP2 immunohistochemical (IHC) expression in rsCRC to ocCRC and examine their relationship to disease outcomes in both locations. Materials and methods A comparative cross-sectional study used tissue microarray slides from rsCRC and ocCRC that were immunohistochemically stained by anti-P16Ink4a and P57KIP2 antibodies. A semi-quantitative scoring system classified each marker's expression as positive or negative. The statistical analysis compared clinicopathological features, P16Ink4a and P57KIP2 expressions, and their relationship to clinical outcomes in rsCRC and ocCRC cases. Results One hundred fifty CRCs were distributed into the rsCRC cases (n=86, 57.3%) and the ocCRC cases (n=64, 42.7%). The rsCRC cases had a significantly lower age <40 years (P=0.002), higher frequency of mismatch repair (MMR) proficient status (P=0.003), and perineural invasion (P=0.008), with lower disease-free (DFS) and overall survival (OS) (P=0.03, and P=0.015, respectively). Significantly higher positive P16Ink4a and P57KIP2 IHC expressions were found in the rsCRCs compared to the ocCRCs (P=0.02, and P=0.03, respectively); however, their relationship to the hazards (HR) of recurrence (HR=4.02, P=0.058, and HR=0.36, P=0.14, respectively) and mortality (HR=2.56, P=0.21, and HR=0.23, P=0.58, respectively) in the rsCRC group was statistically nonsignificant. In the ocCRC group, P16Ink4a positivity was significantly associated with a higher disease recurrence and mortality hazard (HR=8.19, P=0.007, and HR=5.57, P=0.037, respectively), while P57KIP2 positivity was significantly associated with a lower mortality hazard (HR=0.12, P=0.027). Conclusion The rsCRCs differ from ocCRCs in clinicopathological criteria and protein expression patterns. Though P16Ink4a and P57KIP2 IHC expressions are higher in the rsCRC than in the ocCRC, their value as outcome predictors is higher in the ocCRCs rather than the rsCRCs. P16Ink4a and P57KIP2 can act as prognostic markers and be suitable targets for therapy modulation in the ocCRC group.

19.
Front Pharmacol ; 15: 1407891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040475

RESUMEN

Pulmonary fibrosis (PF) is a fatal interstitial lung disease associated with declining pulmonary function but currently with few effective drugs. Cellular senescence has been implicated in the pathogenesis of PF and could be a potential therapeutic target. Emerging evidence suggests wogonin, the bioactive compound isolated from Scutellaria baicalensis, owns the anti-senescence properties, however, the possible impact of wogonin on PF and the potential mechanisms remain unclear. In this study, a well-established mouse model of PF was utilized which mice were administrated with bleomycin (BLM). Strikingly, wogonin treatment significantly reduced fibrosis deposition in the lung induced by BLM. In vitro, wogonin also suppressed fibrotic markers of cultured epithelial cells stimulated by BLM or hydrogen peroxide. Mechanistic investigation revealed that wogonin attenuated the expressions of DNA damage marker γ-H2AX and senescence-related markers including phosphorylated p53, p21, retinoblastoma protein (pRB), and senescence-associated ß-galactosidase (SA-ß-gal). Moreover, wogonin, as a direct and selective inhibitor of cyclin-dependent kinase 9 (CDK9), exhibited anti-fibrotic capacity by inhibiting CDK9 and p53/p21 signalling. In conclusion, wogonin protects against BLM-induced PF in mice through the inhibition of cell senescence via the regulation of CDK9/p53 and DNA damage pathway. This is the first study to demonstrate the beneficial effect of wogonin on PF, and its implication as a novel candidate for PF therapy.

20.
Bioanalysis ; : 1-12, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016209

RESUMEN

Background: The study investigated pharmacokinetic interactions between palbociclib and ribociclib with proton pump inhibitors (PPIs) using the reverse-phase high-performance liquid chromatography (RP-HPLC) method. Methods: Developed RP-HPLC method quantified palbociclib and ribociclib in biological matrices. In vitro metabolic stability assays and in vivo studies in rats evaluated effect of omeprazole and esomeprazole on pharmacokinetics of palbociclib and ribociclib. Results: The RP-HPLC method was sensitive, accurate and linear. Esomeprazole and omeprazole decreased metabolic clearance of palbociclib and ribociclib by several folds. In vivo, esomeprazole elevated Cmax of palbociclib and ribociclib by 90.1% and 86.4%, whereas omeprazole reduced it by 32.0% and 16.8%, respectively. Conclusion: The RP-HPLC method was used to analyze in vitro and in vivo samples. Long-term treatment with PPIs affects pharmacokinetics of palbociclib and ribociclib, necessitating optimal chemotherapy regimen.


[Box: see text].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA