Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adipocyte ; 13(1): 2376571, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38989805

RESUMEN

Dedifferentiated adipose tissue (DFAT) has been proposed as a promising source of patient-specific multipotent progenitor cells (MPPs). During induced dedifferentiation, adipocytes exhibit profound gene expression and cell morphology changes. However, dedifferentiation of post-mitotic cells is expected to enable proliferation, which is critical if enough MPPs are to be obtained. Here, lineage tracing was employed to quantify cell proliferation in mouse adipocytes subjected to a dedifferentiation-inducing protocol commonly used to obtain DFAT cells. No evidence of cell proliferation in adipocyte-derived cells was observed, in contrast to the robust proliferation of non-adipocyte cells present in adipose tissue. We conclude that proliferative MPPs derived using the ceiling culture method most likely arise from non-adipocyte cells in adipose tissue.


Asunto(s)
Adipocitos , Ciclo Celular , Desdiferenciación Celular , Proliferación Celular , Animales , Adipocitos/citología , Adipocitos/metabolismo , Ratones , Células Cultivadas , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Diferenciación Celular , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo
2.
Genes Cells ; 27(1): 5-13, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34695306

RESUMEN

Here, we established dedifferentiated fat (DFAT) cells from mature bovine adipocytes and then examined the effects of volatile fatty acids on the differentiation of these DFAT cells into adipocytes in vitro. When mature adipocytes were isolated from bovine adipose tissue and cultured using the ceiling culture method, they were dedifferentiated into fibroblast-like cells without lipid droplets. These fibroblast-like cells, termed bovine DFAT (b-DFAT) cells, actively proliferated. After adipogenic induction, increased expression of adipocyte-specific genes occurred in b-DFAT cells and they redifferentiated into adipocytes with an accumulation of lipid droplets in their cytoplasm. The effects of volatile fatty acids on adipocyte differentiation in b-DFAT cells were also examined. Specifically, acetate, butyrate, and propionate added to adipogenic induction medium significantly enhanced the adipogenesis of b-DFAT cells compared with that observed in control cells; the addition of 10-3  mol of acetate enhanced adipogenesis of b-DFAT cells to the greatest extent. These results suggest that b-DFAT cells derived from bovine mature adipocytes are appropriate for the study of bovine adipocyte differentiation and that the optimum concentration treatment of acetate, a major energy source for ruminants, promotes adipogenesis of b-DFAT cells in vitro.


Asunto(s)
Tejido Adiposo , Desdiferenciación Celular , Adipocitos , Animales , Bovinos , Diferenciación Celular , Ácidos Grasos Volátiles
3.
F1000Res ; 11: 851, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-39055381

RESUMEN

Background: There is an essential need for cardiomyocyte regeneration among patients with heart failure. Transplantation of dedifferentiated fat (DFAT) cells may lead to an improvement of cardiomyocyte regeneration among heart failure patients. We believe that DFAT cells are promising candidate cell sources for cardiac regeneration. However, the pathway underlying how DFAT cells of the adipose lineage differentiate into mature cardiomyocytes isn't fully understood. Methods: We conducted an experimental laboratory study on isolated DFAT cells from adipose tissue of healthy adults. Then, we treated cells with different concentrations of reversine (10, 20 and 40 nM), and performed RNA extraction and cDNA synthesis. Next, we used a ceiling culture method based on the buoyancy properties of mature lipid-filled adipocytes. Stemness expression (Octamer-binding transcription factor 4 [Oct4], brachyury, Fetal liver kinase 1 [Flk-1]) was quantified by reverse transcription-quantitative (RT-q)PCR, while cardiomyocyte expression (Transcription factor GATA-4 [GATA4] and cardiac troponin T [cTnT]) was quantified by immunocytochemistry. Results: ANOVA with Tukey's post-hoc found that 10 nM reversine increased greater Flk-1 expression compared to the control group (MD: 5.037 + 0.998; p < 0.001), but there were no significant changes among Oct4 (MD: 0.013 + 1.244; p = 0.99) and brachyury expression (MD: 0.157 + 0.084; p = 0.252). Kruskal-Wallis revealed that the expression of GATA4 (1.65 [0.41-1.98] to 0.015 [0.007-0.034]; p =0.017) reduced significantly from day 7 until day 21 and cTnT (5.07 [6.62-8.91] to 8.22 [6.81-9.40]; p= 0 .001) increased significantly from day 7 until day 21. Conclusions: Reversine could increase the expression of Flk-1, but it was unable to stimulate the expression of Oct4 and brachyury related to cell stemness. An optimal concentration of 10 nM reversine may have the greatest effect on enhancing the differentiation of DFAT cells into mature cardiomyocytes, as indicated by higher cTnT expression between cells.


Asunto(s)
Adipocitos , Desdiferenciación Celular , Diferenciación Celular , Morfolinas , Miocitos Cardíacos , Purinas , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Humanos , Purinas/farmacología , Adipocitos/efectos de los fármacos , Adipocitos/citología , Adipocitos/metabolismo , Diferenciación Celular/efectos de los fármacos , Desdiferenciación Celular/efectos de los fármacos , Morfolinas/farmacología , Células Cultivadas , Adulto , Femenino , Masculino
4.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34830277

RESUMEN

BACKGROUND: We investigated and compared the osteogenic potential and bone regeneration capacities of dedifferentiated fat cells (DFAT cells) and adipose-derived stem cells (ASCs). METHOD: We isolated DFAT cells and ASCs from GFP mice. DFAT cells were established by a new culture method using a mesh culture instead of a ceiling culture. The isolated DFAT cells and ASCs were incubated in osteogenic medium, then alizarin red staining, alkaline phosphatase (ALP) assays, and RT-PCR (for RUNX2, osteopontin, DLX5, osterix, and osteocalcin) were performed to evaluate the osteoblastic differentiation ability of both cell types in vitro. In vivo, the DFAT cells and ASCs were incubated in osteogenic medium for four weeks and seeded on collagen composite scaffolds, then implanted subcutaneously into the backs of mice. We then performed hematoxylin and eosin staining and immunostaining for GFP and osteocalcin. RESULTS: The alizarin red-stained areas in DFAT cells showed weak calcification ability at two weeks, but high calcification ability at three weeks, similar to ASCs. The ALP levels of ASCs increased earlier than in DFAT cells and showed a significant difference (p < 0.05) at 6 and 9 days. The ALP levels of DFATs were higher than those of ASCs after 12 days. The expression levels of osteoblast marker genes (osterix and osteocalcin) of DFAT cells and ASCs were higher after osteogenic differentiation culture. CONCLUSION: DFAT cells are easily isolated from a small amount of adipose tissue and are readily expanded with high purity; thus, DFAT cells are applicable to many tissue-engineering strategies and cell-based therapies.


Asunto(s)
Adipocitos/citología , Adipocitos/trasplante , Tejido Adiposo/citología , Regeneración Ósea/genética , Técnicas de Cultivo de Célula/métodos , Desdiferenciación Celular/genética , Osteogénesis/genética , Trasplante de Células Madre/métodos , Células Madre/metabolismo , Adipocitos/metabolismo , Animales , Calcificación Fisiológica/genética , Diferenciación Celular/genética , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos , Osteoblastos/citología , Osteoblastos/metabolismo , Ingeniería de Tejidos/métodos , Trasplante Autólogo/métodos
5.
Cells ; 10(6)2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208414

RESUMEN

Currently, the number of stem-cell based experimental therapies in neurological injuries and neurodegenerative disorders has been massively increasing. Despite the fact that we still have not obtained strong evidence of mesenchymal stem/stromal cells' neurogenic effectiveness in vivo, research may need to focus on more appropriate sources that result in more therapeutically promising cell populations. In this study, we used dedifferentiated fat cells (DFAT) that are proven to demonstrate more pluripotent abilities in comparison with standard adipose stromal cells (ASCs). We used the ceiling culture method to establish DFAT cells and to optimize culture conditions with the use of a physioxic environment (5% O2). We also performed neural differentiation tests and assessed the neurogenic and neuroprotective capability of both DFAT cells and ASCs. Our results show that DFAT cells may have a better ability to differentiate into oligodendrocytes, astrocytes, and neuron-like cells, both in culture supplemented with N21 and in co-culture with oxygen-glucose-deprived (OGD) hippocampal organotypic slice culture (OHC) in comparison with ASCs. Results also show that DFAT cells have a different secretory profile than ASCs after contact with injured tissue. In conclusion, DFAT cells constitute a distinct subpopulation and may be an alternative source in cell therapy for the treatment of nervous system disorders.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/citología , Diferenciación Celular , Linaje de la Célula , Células Madre Mesenquimatosas/citología , Neurogénesis , Fármacos Neuroprotectores/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Células Cultivadas , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo
6.
Antioxidants (Basel) ; 10(6)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205039

RESUMEN

Heat stress (HS) induces oxidative stress by increasing reactive oxygen species (ROS), and the polyphenol resveratrol (RSV) has been shown to have antioxidant properties by reducing ROS. Hence, we aimed to examine the effects of RSV, HS and their interaction on bovine adipocytes. We generated bovine dedifferentiated adipocyte-derived progeny (DFAT) cells from subcutaneous adipose tissue and examined the effects of RSV (100 µM), heat conditions: isothermal (ISO-37 °C), short heat (SH-41.2 °C for 1 h) and long HS (LH-41.2 °C for 16 h), and their interaction on gene expression in DFAT-cells. In medium of DFAT-cells treated with RSV, malondialdehyde levels were reduced and oxygen-radical absorbance-capacity levels were increased compared to control. Treating DFAT-cells with RSV increased the relative mRNA expression of stress-induced-phosphoprotein-1 (STIP1) and the expression of hormone-sensitive-lipase (LIPE) and perilipin-1 (PLIN1), whereas it reduced the expressions of fatty-acid-synthase (FASN) and of pro-inflammatory chemotactic-C-C-motif-chemokine-ligand-2 (CCL2) also under HS. Moreover, reduced protein abundance of FASN was found in RSV-treated DFAT-cells compared to controls. Molecular docking of RSV with FASN confirmed its possible binding to FASN active site. This work demonstrates that RSV has an antioxidant effect on bovine DFAT cells and may induce adipose lipolysis and reduce lipogenesis also under in vitro HS conditions.

8.
Hum Cell ; 33(4): 974-989, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32495194

RESUMEN

Adipose-derived stem cells (ASCs) and dedifferentiated fat (DFAT) cells are alternative cell sources in tissue engineering and regeneration because they are easily obtained and exhibit multilineage differentiation. However, aging may attenuate their regenerative potential and metabolic functions. Reports characterizing DFAT cells derived from aging donors are rare, and comparisons of DNA methylation profiles between aging ASCs and DFAT cells are poorly understood. Therefore, this study aimed to characterize DFAT cells relative to ASCs derived from aging subjects and compare the DNA methylation profiles of four adipogenic genes in these cells. ASCs and DFAT cells from aging donors exhibited characteristics similar to those of stem cells, including colony formation, proliferation, and multilineage differentiation abilities. However, compared with ASCs, DFAT cells exhibited increased proliferation, smooth muscle actin alpha (SMA-α) expression and decreased cellular senescence. DNA methylation profiling of ASCs and DFAT cells by combined bisulfite restriction analysis (COBRA) demonstrated hypermethylation patterns in three potent adipogenic genes-peroxisome proliferator-activated receptor gamma 2 (PPARγ2), fatty acid-binding protein 4 (FABP4), and lipoprotein lipase (LPL)-but hypomethylation of CCAAT/enhancer binding protein alpha (C/EBPα) in the aging group. Statistically significant differences were observed between the aging group and the young group. Epigenetic regulation maintains the stability of ASCs and DFAT cells in an age-dependent manner. Our findings suggested that although the DNA methylation patterns of three adipogenic genes correlated with hypermethylation and aging, ASCs and DFAT cells exhibited cellular stability and several stem cell characteristics, offering further opportunities for personalized regeneration and energy maintenance by adipogenesis during aging.


Asunto(s)
Adipocitos/fisiología , Adipogénesis/genética , Tejido Adiposo/citología , Diferenciación Celular/genética , Metilación de ADN/genética , Células Madre/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento , Células Cultivadas , Epigénesis Genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ingeniería de Tejidos , Adulto Joven
9.
Regen Ther ; 11: 240-248, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31534987

RESUMEN

INTRODUCTION: Polyglycolic acid (PGA) nerve conduits, an artificial biodegradable nerve regeneration-inducing tube currently used in clinical practice, are effective in regenerating peripheral nerves. Dedifferentiated fat (DFAT) cells differentiate into various cells including adipocytes, osteoblasts, chondrocytes, skeletal muscle cells, and myofibroblasts, when cultured in appropriate differentiation-inducing conditioned culture medium. This study made a hybrid artificial nerve conduit by filling a PGA conduit with DFAT cells, applied the conduit to a rat facial nerve defect model, and investigated the facial nerve regenerative ability of the conduit. METHODS: Under inhalational anesthesia, the buccal branch of the facial nerve in Lewis rats was exposed, and a 7-mm nerve defect was created. PGA nerve conduits were filled with DFAT cells, which were prepared from rat subcutaneous adipose tissue with type I collagen as a scaffold, and then grafted into the nerve defect sites in rats with a microscope (DFAT group) (n = 10). In other rats, PGA artificial nerve conduits alone were similarly grafted into the nerve defect sites (the control group) (n = 10). Reinnervation was confirmed at 13 weeks postoperatively by a retrograde tracer, followed by histological and physiological comparative studies. RESULTS: The mean number of myelinated fibers was significantly higher in DFAT group (1605 ± 806.23) than in the control group (543.6 ± 478.66). Myelin thickness was also significantly lager in DFAT group (0.57 ± 0.17 µm) than in the control group.(0.46 ± 0.14 µm). Although no significant difference was found in the amplitude of compound muscle action potential (CMAP) between DFAT group (2.84 ± 2.47 mV) and the control group (0.88 ± 0.56 mV), whisker motion was lager in DFAT group (9.22° ± 0.65°) than in the control group (1.9° ± 0.84°). CONCLUSIONS: DFAT cell-filled PGA conduits were found to promote nerve regeneration in an experimental rat facial nerve defect model.

10.
J Oral Sci ; 60(1): 14-23, 2018 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-29479028

RESUMEN

Dedifferentiated fat (DFAT) cells were isolated from mature adipocytes using the ceiling culture method. Recently, we successfully isolated DFAT cells from adipocytes with a relatively small size (<40 µm). DFAT cells have a higher osteogenic potential than that of medium adipocytes. Therefore, the objective of this study was to determine the optimal concentration of collagenase solution for isolating small adipocytes from human buccal fat pads (BFPs). Four concentrations of collagenase solution (0.01%, 0.02%, 0.1%, and 0.5%) were used, and their effectiveness was assessed by the number of small adipocytes and DFAT cells isolated. The total number of floating adipocytes that dissociated with 0.02% collagenase was 2.5 times of that dissociated with 0.1% collagenase. The number of floating adipocytes with a diameter of ≤29 µm that dissociated with 0.02% collagenase was thrice of those dissociated with 0.1% and 0.5% collagenase. The number of DFAT cells that dissociated with 0.02% collagenase was 1.5 times of that dissociated with 0.1% collagenase. In addition, DFAT cells that dissociated with 0.02% collagenase had a higher osteogenic differentiation potential than those that dissociated with 0.1% collagenase. These results suggest that 0.02% is the optimal collagenase concentration for isolating small adipocytes from BFPs.


Asunto(s)
Adipocitos/citología , Mejilla , Colagenasas/metabolismo , Adipocitos/enzimología , Medios de Cultivo , Humanos
11.
Front Physiol ; 7: 50, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26941649

RESUMEN

Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT) cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs) on mesenchymal stem cells. We obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid) on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA) and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3, and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.

12.
Adipocyte ; 2(3): 122-7, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23991357

RESUMEN

Analyses of mature adipocytes have shown that they possess a reprogramming ability in vitro, which is associated with dedifferentiation. The subsequent dedifferentiated fat cells (DFAT cells) are multipotent and can differentiate into adipocytes and other cell types as well. Mature adipocytes can be easily obtained by biopsy, and the cloned progeny cells are homogeneous in vitro. Therefore, DFAT cells (a new type of stem cell) may provide an excellent source of cells for tissue regeneration, engineering and disease treatment. The dedifferentiation of mature adipocytes, the multipotent capacity of DFAT cells and comparisons and contrasts with mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPS) are discussed in this review.

13.
Adipocyte ; 2(3): 148-59, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23991361

RESUMEN

Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid-assimilating adipocytes in the DMI media, with distinct lipid-droplets in the cytoplasm and with no observable lipid-free vesicles inside. Moreover, a high confluence level promoted the redifferentiation efficiency of DFAT cells. Wagyu IMF dedifferentiated DFAT cells exhibited unique adipogenesis modes in vitro, revealing a useful cell model for studying adipogenesis and lipid metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA