Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Alcohol Depend ; 256: 111116, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364647

RESUMEN

BACKGROUND: Alcohol use disorders are prevalent mental disorders with significant health implications. Epigenetic alterations may play a role in their pathogenesis, as DNA methylation at several genes has been associated with these disorders. We have previously shown that methylation in the DLGAP2 gene, coding for a synaptic density protein, is associated with alcohol dependence. In this study, we aimed to examine the association between DLGAP2 methylation and treatment response among patients undergoing acamprosate treatment. METHODS: 102 patients under acamprosate treatment were included. DNA methylation analysis at DLGAP2 was performed by bisulfite pyrosequencing at the start and after 3-month treatment. Treatment outcomes were having a relapse during the treatment and severity of craving at the end of three months. Cox proportional hazard and linear regression models were performed. RESULTS: Patients whose methylation levels were decreased during the treatment showed an increased risk for relapse within three months in comparison to the ones without methylation change (hazard ratio [HR]=2.44; 95% confidence interval [CI]=1.04, 5.73; p=0.04). For the same group, a positive association for the severity of craving was observed, yet statistical significance was not reached (ß=2.97; 95% CI=-0.41, 6.34; p=0.08). CONCLUSION: We demonstrate that patients whose DLGAP2 methylation levels decrease during acamprosate treatment are more likely to relapse compared to the ones without changes. This is in line with our previous findings showing that DLGAP2 methylation is lower in alcohol dependent subjects compared to controls, and might suggest a role for changes in DLGAP2 methylation in treatment response.


Asunto(s)
Alcoholismo , Humanos , Alcoholismo/tratamiento farmacológico , Alcoholismo/genética , Acamprosato , Metilación de ADN , Enfermedad Crónica , Recurrencia , Proteínas del Tejido Nervioso
2.
Genome Med ; 16(1): 4, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178268

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) has significantly transformed the landscape of identifying disease-causing genes associated with genetic disorders. However, a substantial portion of sequenced patients remains undiagnosed. This may be attributed not only to the challenges posed by harder-to-detect variants, such as non-coding and structural variations but also to the existence of variants in genes not previously associated with the patient's clinical phenotype. This study introduces EvORanker, an algorithm that integrates unbiased data from 1,028 eukaryotic genomes to link mutated genes to clinical phenotypes. METHODS: EvORanker utilizes clinical data, multi-scale phylogenetic profiling, and other omics data to prioritize disease-associated genes. It was evaluated on solved exomes and simulated genomes, compared with existing methods, and applied to 6260 knockout genes with mouse phenotypes lacking human associations. Additionally, EvORanker was made accessible as a user-friendly web tool. RESULTS: In the analyzed exomic cohort, EvORanker accurately identified the "true" disease gene as the top candidate in 69% of cases and within the top 5 candidates in 95% of cases, consistent with results from the simulated dataset. Notably, EvORanker outperformed existing methods, particularly for poorly annotated genes. In the case of the 6260 knockout genes with mouse phenotypes, EvORanker linked 41% of these genes to observed human disease phenotypes. Furthermore, in two unsolved cases, EvORanker successfully identified DLGAP2 and LPCAT3 as disease candidates for previously uncharacterized genetic syndromes. CONCLUSIONS: We highlight clade-based phylogenetic profiling as a powerful systematic approach for prioritizing potential disease genes. Our study showcases the efficacy of EvORanker in associating poorly annotated genes to disease phenotypes observed in patients. The EvORanker server is freely available at https://ccanavati.shinyapps.io/EvORanker/ .


Asunto(s)
Genómica , Enfermedades Raras , Humanos , Animales , Ratones , Enfermedades Raras/genética , Filogenia , Genómica/métodos , Fenotipo , Exoma , 1-Acilglicerofosfocolina O-Aciltransferasa/genética
3.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37628841

RESUMEN

The DNA methylation profile of breast cancer differs from that in healthy tissues and can be used as a diagnostic and prognostic biomarker. Aim of this study: To compare the levels of gene methylation in small malignant breast cancer tumors (<2 cm), in healthy tissue, and in fibroadenoma, and to evaluate the effectiveness of the modified Methylation Sensitive-High Resolution Melting (MS-HRM) method for this analysis. Analysis was performed using the modified MS-HRM method. For validation, the methylation levels of five genes were confirmed by pyrosequencing. The main study group included 96 breast cancer samples and the control group included 24 fibroadenoma samples and 24 healthy tissue samples obtained from patients with fibroadenoma. Breast cancer samples were divided into two subgroups (test set and validation set). The methylation of the following 15 genes was studied: MAST1, PRDM14, ZNF177, DNM2, SSH1, AP2M1, CACNA1E, CPEB4, DLGAP2, CCDC181, GCM2, ITPRIPL1, POM121L2, KCNQ1, and TIMP3. Significant differences in the validation set of samples were found for seven genes; the combination of the four genes GCM2, ITPRIPL1, CACNA1E, DLGAP2 (AUC = 0.99) showed the highest diagnostic value based on logistic regression for all breast cancer samples. Our modified MS-HRM method demonstrated that small breast cancer tumors have a specific DNA methylation profile that distinguishes them from healthy tissues and benign proliferative lesions.


Asunto(s)
Neoplasias de la Mama , Fibroadenoma , Fibroma , Humanos , Femenino , Neoplasias de la Mama/genética , Metilación de ADN , Estado de Salud , Proteínas de Unión al ARN
4.
Genes (Basel) ; 12(5)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925474

RESUMEN

To date only five patients with 8p23.2-pter microdeletions manifesting a mild-to-moderate cognitive impairment and/or developmental delay, dysmorphisms and neurobehavioral issues were reported. The smallest microdeletion described by Wu in 2010 suggested a critical region (CR) of 2.1 Mb including several genes, out of which FBXO25, DLGAP2, CLN8, ARHGEF10 and MYOM2 are the main candidates. Here we present seven additional patients with 8p23.2-pter microdeletions, ranging from 71.79 kb to 4.55 Mb. The review of five previously reported and nine Decipher patients confirmed the association of the CR with a variable clinical phenotype characterized by intellectual disability/developmental delay, including language and speech delay and/or motor impairment, behavioral anomalies, autism spectrum disorder, dysmorphisms, microcephaly, fingers/toes anomalies and epilepsy. Genotype analysis allowed to narrow down the 8p23.3 candidate region which includes only DLGAP2, CLN8 and ARHGEF10 genes, accounting for the main signs of the broad clinical phenotype associated to 8p23.2-pter microdeletions. This region is more restricted compared to the previously proposed CR. Overall, our data favor the hypothesis that DLGAP2 is the actual strongest candidate for neurodevelopmental/behavioral phenotypes. Additional patients will be necessary to validate the pathogenic role of DLGAP2 and better define how the two contiguous genes, ARHGEF10 and CLN8, might contribute to the clinical phenotype.


Asunto(s)
Cromosomas Humanos Par 8/genética , Eliminación de Secuencia/genética , Adolescente , Adulto , Trastorno del Espectro Autista/genética , Niño , Preescolar , Deleción Cromosómica , Disfunción Cognitiva/genética , Discapacidades del Desarrollo/genética , Femenino , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Fenotipo
5.
Genes Brain Behav ; 20(1): e12723, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33347690

RESUMEN

The postsynaptic terminal of vertebrate excitatory synapses contains a highly conserved multiprotein complex that comprises neurotransmitter receptors, cell-adhesion molecules, scaffold proteins and enzymes, which are essential for brain signalling and plasticity underlying behaviour. Increasingly, mutations in genes that encode postsynaptic proteins belonging to the PSD-95 protein complex, continue to be identified in neurodevelopmental disorders (NDDs) such as autism spectrum disorder, intellectual disability and epilepsy. These disorders are highly heterogeneous, sharing genetic aetiology and comorbid cognitive and behavioural symptoms. Here, by using genetically engineered mice and innovative touchscreen-based cognitive testing, we sought to investigate whether loss-of-function mutations in genes encoding key interactors of the PSD-95 protein complex display shared phenotypes in associative learning, updating of learned associations and reaction times. Our genetic dissection of mice with loss-of-function mutations in Syngap1, Nlgn3, Dlgap1, Dlgap2 and Shank2 showed that distinct components of the PSD-95 protein complex differentially regulate learning, cognitive flexibility and reaction times in cognitive processing. These data provide insights for understanding how human mutations in these genes lead to the manifestation of diverse and complex phenotypes in NDDs.


Asunto(s)
Aprendizaje , Mutación con Pérdida de Función , Proteínas del Tejido Nervioso/genética , Animales , Moléculas de Adhesión Celular Neuronal/genética , Femenino , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Tiempo de Reacción , Proteínas Asociadas a SAP90-PSD95/genética , Proteínas Activadoras de ras GTPasa/genética
6.
Cell Rep ; 32(9): 108091, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877673

RESUMEN

Genetic mechanisms underlying age-related cognitive decline and dementia remain poorly understood. Here, we take advantage of the Diversity Outbred mouse population to utilize quantitative trait loci mapping and identify Dlgap2 as a positional candidate responsible for modifying working memory decline. To evaluate the translational relevance of this finding, we utilize longitudinal cognitive measures from human patients, RNA expression from post-mortem brain tissue, data from a genome-wide association study (GWAS) of Alzheimer's dementia (AD), and GWAS results in African Americans. We find an association between Dlgap2 and AD phenotypes at the variant, gene and protein expression, and methylation levels. Lower cortical DLGAP2 expression is observed in AD and is associated with more plaques and tangles at autopsy and faster cognitive decline. Results will inform future studies aimed at investigating the cross-species role of Dlgap2 in regulating cognitive decline and highlight the benefit of using genetically diverse mice to prioritize novel candidates.


Asunto(s)
Enfermedad de Alzheimer/genética , Disfunción Cognitiva/genética , Demencia/genética , Proteínas del Tejido Nervioso/metabolismo , Negro o Afroamericano/genética , Factores de Edad , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Especificidad de la Especie
7.
Mol Brain ; 10(1): 43, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28870203

RESUMEN

The neurotransmitter glutamate facilitates neuronal signalling at excitatory synapses. Glutamate is released from the presynaptic membrane into the synaptic cleft. Across the synaptic cleft glutamate binds to both ion channels and metabotropic glutamate receptors at the postsynapse, which expedite downstream signalling in the neuron. The postsynaptic density, a highly specialized matrix, which is attached to the postsynaptic membrane, controls this downstream signalling. The postsynaptic density also resets the synapse after each synaptic firing. It is composed of numerous proteins including a family of Discs large associated protein 1, 2, 3 and 4 (DLGAP1-4) that act as scaffold proteins in the postsynaptic density. They link the glutamate receptors in the postsynaptic membrane to other glutamate receptors, to signalling proteins and to components of the cytoskeleton. With the central localisation in the postsynapse, the DLGAP family seems to play a vital role in synaptic scaling by regulating the turnover of both ionotropic and metabotropic glutamate receptors in response to synaptic activity. DLGAP family has been directly linked to a variety of psychological and neurological disorders. In this review we focus on the direct and indirect role of DLGAP family on schizophrenia as well as other brain diseases.


Asunto(s)
Encefalopatías/metabolismo , Neuronas/metabolismo , Proteínas Asociadas a SAP90-PSD95/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Modelos Biológicos , Mapeo de Interacción de Proteínas , Proteínas Asociadas a SAP90-PSD95/química
8.
Mol Autism ; 5: 32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25071926

RESUMEN

BACKGROUND: As elegant structures designed for neural communication, synapses are the building bricks of our mental functions. Recently, many studies have pointed out that synaptic protein-associated mutations may lead to dysfunctions of social cognition. Dlgap2, which encodes one of the main components of scaffold proteins in postsynaptic density (PSD), has been addressed as a candidate gene in autism spectrum disorders. To elucidate the disturbance of synaptic balance arising from Dlgap2 loss-of-function in vivo, we thus generated Dlgap2 (-/-) mice to investigate their phenotypes of synaptic function and social behaviors. METHODS: The creation of Dlgap2 (-/-) mice was facilitated by the recombineering-based method, Cre-loxP system and serial backcross. Reversal learning in a water T-maze was used to determine repetitive behaviors. The three-chamber approach task, resident-intruder test and tube task were performed to characterize the social behaviors of mutant mice. Cortical synaptosomal fraction, Golgi-Cox staining, whole-cell patch electrophysiology and transmission electron microscopy were all applied to investigate the function and structure of synapses in the orbitofrontal cortex (OFC) of Dlgap2 (-/-) mice. RESULTS: Dlgap2 (-/-) mice displayed exacerbated aggressive behaviors in the resident-intruder task, and elevated social dominance in the tube test. In addition, Dlgap2 (-/-) mice exhibited a clear reduction of receptors and scaffold proteins in cortical synapses. Dlgap2 (-/-) mice also demonstrated lower spine density, decreased peak amplitude of miniature excitatory postsynaptic current and ultra-structural deficits of PSD in the OFC. CONCLUSIONS: Our findings clearly demonstrate that Dlgap2 plays a vital role in social behaviors and proper synaptic functions of the OFC. Moreover, these results may provide valuable insights into the neuropathology of autism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA