Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38673926

RESUMEN

Acute myeloid leukemia (AML) is a hematological malignancy that is characterized by an expansion of immature myeloid precursors. Despite therapeutic advances, the prognosis of AML patients remains poor and there is a need for the evaluation of promising therapeutic candidates to treat the disease. The objective of this study was to evaluate the efficacy of duocarmycin Stable A (DSA) in AML cells in vitro. We hypothesized that DSA would induce DNA damage in the form of DNA double-strand breaks (DSBs) and exert cytotoxic effects on AML cells within the picomolar range. Human AML cell lines Molm-14 and HL-60 were used to perform 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT), DNA DSBs, cell cycle, 5-ethynyl-2-deoxyuridine (EdU), colony formation unit (CFU), Annexin V, RNA sequencing and other assays described in this study. Our results showed that DSA induced DNA DSBs, induced cell cycle arrest at the G2M phase, reduced proliferation and increased apoptosis in AML cells. Additionally, RNA sequencing results showed that DSA regulates genes that are associated with cellular processes such as DNA repair, G2M checkpoint and apoptosis. These results suggest that DSA is efficacious in AML cells and is therefore a promising potential therapeutic candidate that can be further evaluated for the treatment of AML.


Asunto(s)
Apoptosis , Proliferación Celular , Duocarmicinas , Leucemia Mieloide Aguda , Humanos , Apoptosis/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Proliferación Celular/efectos de los fármacos , Duocarmicinas/farmacología , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Células HL-60 , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos
2.
ChemMedChem ; 18(19): e202300273, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37440359

RESUMEN

Three compounds with arylboronate esters conjugated with two equivalent nitrogen mustards [bis(2-chloroethyl)methylamine, HN2] have been synthesized and characterized. These inactive small molecules selectively react with H2 O2 to produce multiple DNA cross-linkers, such as two HN2 molecules alongside a bisquinone methide (bisQM), leading to efficient DNA ICL formation. In comparison to other amine functional groups, using HN2 as a leaving group greatly improves the DNA cross-linking efficiency of these arylboronate esters as well as cellular activity. The introduction of HN2 in these arylboronate ester analogues favored the generation of bisQM that can directly cross-link DNA. Two equivalents of HN2 are also generated from these compounds upon treatment with H2 O2 , which directly produces DNA ICL products. The cumulative effects of HN2 and bisQM on DNA cross-linking makes these molecules highly effective H2 O2 -inducible DNA ICL agents. The three compounds with HN2 as a leaving group showed greatly enhanced cytotoxicity towards cancer cells in comparison to those containing trimethyl amine as a leaving group. This provides an effective strategy for further design of novel potential ROS-activated anticancer prodrugs.


Asunto(s)
Compuestos de Mostaza Nitrogenada , Profármacos , Alquilantes , Profármacos/farmacología , Compuestos de Mostaza Nitrogenada/farmacología , ADN/genética , Aminas/farmacología , Reactivos de Enlaces Cruzados/farmacología
3.
Appl Microbiol Biotechnol ; 107(10): 3131-3142, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37036526

RESUMEN

Alkylated bases in DNA created in the presence of endogenous and exogenous alkylating agents are either cytotoxic or mutagenic, or both to a cell. Currently, cells have evolved several strategies for repairing alkylated base. One strategy is a base excision repair process triggered by a specific DNA glycosylase that is used for the repair of the cytotoxic 3-methyladenine. Additionally, the cytotoxic and mutagenic O6-methylguanine (O6-meG) is corrected by O6-methylguanine methyltransferase (MGMT) via directly transferring the methyl group in the lesion to a specific cysteine in this protein. Furthermore, oxidative DNA demethylation catalyzed by DNA dioxygenase is utilized for repairing the cytotoxic 3-methylcytosine (3-meC) and 1-methyladenine (1-meA) in a direct reversal manner. As the third domain of life, Archaea possess 3-methyladenine DNA glycosylase II (AlkA) and MGMT, but no DNA dioxygenase homologue responsible for oxidative demethylation. Herein, we summarize recent progress in structural and biochemical properties of archaeal AlkA and MGMT to gain a better understanding of archaeal DNA alkylation repair, focusing on similarities and differences between the proteins from different archaeal species and between these archaeal proteins and their bacterial and eukaryotic relatives. To our knowledge, it is the first review on archaeal DNA alkylation repair conducted by DNA glycosylase and methyltransferase. KEY POINTS: • Archaeal MGMT plays an essential role in the repair of O 6 -meG • Archaeal AlkA can repair 3-meC and 1-meA.


Asunto(s)
ADN Glicosilasas , Dioxigenasas , Metiltransferasas/genética , ADN de Archaea/genética , Alquilación , ADN Glicosilasas/metabolismo , ADN/metabolismo , Dioxigenasas/metabolismo
4.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36902118

RESUMEN

Nitrosamines occur widespread in food, drinking water, cosmetics, as well as tobacco smoke and can arise endogenously. More recently, nitrosamines have been detected as impurities in various drugs. This is of particular concern as nitrosamines are alkylating agents that are genotoxic and carcinogenic. We first summarize the current knowledge on the different sources and chemical nature of alkylating agents with a focus on relevant nitrosamines. Subsequently, we present the major DNA alkylation adducts induced by nitrosamines upon their metabolic activation by CYP450 monooxygenases. We then describe the DNA repair pathways engaged by the various DNA alkylation adducts, which include base excision repair, direct damage reversal by MGMT and ALKBH, as well as nucleotide excision repair. Their roles in the protection against the genotoxic and carcinogenic effects of nitrosamines are highlighted. Finally, we address DNA translesion synthesis as a DNA damage tolerance mechanism relevant to DNA alkylation adducts.


Asunto(s)
Nitrosaminas , Daño del ADN , Alquilación , Reparación del ADN , Alquilantes/farmacología , Aductos de ADN
5.
Cancers (Basel) ; 14(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36551551

RESUMEN

Many patients with acute myeloid leukemia (AML) are still dying from this disease. In the past, the alkylating agent temozolomide (TMZ) has been investigated for AML and found to be partially effective; however, the presence of O6-methylguanine DNA methyltransferase (MGMT; a DNA repair enzyme) in tumor cells confers profound treatment resistance against TMZ. We are developing a novel anticancer compound, called NEO212, where TMZ was covalently conjugated to perillyl alcohol (a naturally occurring monoterpene). NEO212 has revealed robust therapeutic activity in a variety of preclinical cancer models, including AML. In the current study, we investigated its impact on a panel of human AML cell lines and found that it exerted cytotoxic potency even against MGMT-positive cells that were highly resistant to TMZ. Furthermore, NEO212 strongly stimulated the expression of a large number of macrophage-associated marker genes, including CD11b/ITGAM. This latter effect could not be mimicked when cells were treated with TMZ or an equimolar mix of individual agents, TMZ plus perillyl alcohol. The superior cytotoxic impact of NEO212 appeared to involve down-regulation of MGMT protein levels. In a mouse model implanted with TMZ-resistant, MGMT-positive AML cells, two 5-day cycles of 25 mg/kg NEO212 achieved an apparent cure, as mice survived >300 days without any signs of disease. In parallel toxicity studies with rats, a 5-day cycle of 200 mg/kg NEO212 was well tolerated by these animals, whereas animals that were given 200 mg/kg TMZ all died due to severe leukopenia. Together, our results show that NEO212 exerts pleiotropic effects on AML cells that include differentiation, proliferation arrest, and eventual cell death. In vivo, NEO212 was well tolerated even at dosages that far exceed the therapeutic need, indicating a large therapeutic window. These results present NEO212 as an agent that should be considered for development as a therapeutic agent for AML.

6.
DNA (Basel) ; 2(4): 221-230, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36911626

RESUMEN

Environmental, endogenous and therapeutic alkylating agents can react with internucleotide phosphate groups in DNA to yield alkyl phosphotriester (PTE) adducts. Alkyl-PTEs are induced at relatively high frequencies and are persistent in mammalian tissues; however, their biological consequences in mammalian cells have not been examined. Herein, we assessed how alkyl-PTEs with different alkyl group sizes and stereochemical configurations (S P and R P diastereomers of Me and nPr) affect the efficiency and fidelity of transcription in mammalian cells. We found that, while the R P diastereomer of Me- and nPr-PTEs constituted moderate and strong blockages to transcription, respectively, the S P diastereomer of the two lesions did not appreciably perturb transcription efficiency. In addition, none of the four alkyl-PTEs induced mutant transcripts. Furthermore, polymerase η assumed an important role in promoting transcription across the S P-Me-PTE, but not any of other three lesions. Loss of other translesion synthesis (TLS) polymerases tested, including Pol κ, Pol ι, Pol ξ and REV1, did not alter the transcription bypass efficiency or mutation frequency for any of the alkyl-PTE lesions. Together, our study provided important new knowledge about the impact of alkyl-PTE lesions on transcription and expanded the substrate pool of Pol η in transcriptional bypass.

7.
J Biomol Struct Dyn ; 40(16): 7598-7611, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-33719845

RESUMEN

Methyl methanesulfonate (MMS) is a highly toxic DNA-alkylating agent that has a potential to damage the structural integrity of DNA. This work employed multiple biophysical and computational methods to report the MMS mediated structural alterations in the DNA (MMS-DNA). Spectroscopic techniques and gel electrophoresis studies revealed MMS induced exposure of chromophoric groups of DNA; methylation mediated anti→syn conformational change, DNA fragmentation and reduced nucleic acid stability. MMS induced single-stranded regions in the DNA were observed in nuclease S1 assay. FT-IR results indicated MMS mediated loss of the assigned peaks for DNA, partial loss of C-O ribose, loss of deoxyribose region, C-O stretching and bending of the C-OH groups of hexose sugar, a progressive shift in the assigned guanine and adenine peaks, loss of thymine peak, base stacking and presence of C-O-H vibrations of glucose and fructose, indicating direct strand breaks in DNA due to backbone loss. Isothermal titration calorimetry showed MMS-DNA interaction as exothermic with moderate affinity. Dynamic light scattering studies pointed towards methylation followed by the generation of single-stranded regions. Electron microscopy pictured the loss of alignment in parallel base pairs and showed the formation of fibrous aggregates in MMS-DNA. Molecular docking found MMS in close contact with the ribose sugar of DNA backbone having non-bonded interactions. Molecular dynamic simulations confirmed that MMS is capable of interacting with DNA at two levels, one at the level of nitrogenous bases and another at the DNA backbone. The study offers insights into the molecular interaction of MMS and DNA.Communicated by Ramaswamy H. Sarma.


Asunto(s)
ADN , Ribosa , Daño del ADN , Reparación del ADN , Metilmetanosulfonato/toxicidad , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier
8.
Cell Chem Biol ; 29(4): 690-695.e5, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-34450110

RESUMEN

Mutations in mitochondrial DNA (mtDNA) cause mitochondrial diseases, characterized by abnormal mitochondrial function. Although eliminating mutated mtDNA has potential to cure mitochondrial diseases, no chemical-based drugs in clinical trials are capable of selective modulation of mtDNA mutations. Here, we construct a class of compounds encompassing pyrrole-imidazole polyamides (PIPs), mitochondria-penetrating peptide, and chlorambucil, an adenine-specific DNA-alkylating reagent. The sequence-selective DNA binding of PIPs allows chlorambucil to alkylate mutant adenine more efficiently than other sites in mtDNA. In vitro DNA alkylation assay shows that our compound 8950A-Chb(Cl/OH) targeting a nonpathogenic point mutation in HeLa S3 cells (m.8950G>A) can specifically alkylate the mutant adenine. Furthermore, the compound reduces the mtDNA possessing the target mutation in cultured HeLa S3 cells. The programmability of PIPs to target different sequences could allow this class of compounds to be developed as designer drugs targeting pathogenic mutations associated with mitochondrial diseases in future studies.


Asunto(s)
Adenina , ADN Mitocondrial , Alquilación , Clorambucilo/química , ADN Mitocondrial/genética , Humanos , Mitocondrias , Mutación , Nylons/química
9.
Cancers (Basel) ; 13(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298603

RESUMEN

Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed. We are developing a novel anticancer compound, NEO212, that was created by covalent conjugation of two different molecules with already established anticancer activity, the alkylating agent temozolomide (TMZ) and the natural monoterpene perillyl alcohol (POH). We investigated the anticancer activity of NEO212 in several in vitro and in vivo models of AML. Human HL60 and U937 AML cell lines, as well as different AraC-resistant AML cell lines, were treated with NEO212 and effects on cell proliferation, cell cycle, and cell death were investigated. Mice with implanted AraC-sensitive or AraC-resistant AML cells were dosed with oral NEO212, and animal survival was monitored. Our in vitro experiments show that treatment of cells with NEO212 results in growth inhibition via potent G2 arrest, which is followed by apoptotic cell death. Intriguingly, NEO212 was equally potent in highly AraC-resistant cells. In vivo, NEO212 treatment strikingly extended survival of AML mice and the majority of treated mice continued to thrive and survive without any signs of illness. At the same time, we were unable to detect toxic side effects of NEO212 treatment. All in all, the absence of side effects, combined with striking therapeutic activity even in an AraC-resistant context, suggests that NEO212 should be developed further toward clinical testing.

10.
Chem Biol Drug Des ; 97(6): 1170-1184, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33764683

RESUMEN

DNA alkylation damage, emanating from the exposure to environmental alkylating agents or produced by certain endogenous metabolic processes, affects cell viability and genomic stability. Fe(II)/2-oxoglutarate-dependent dioxygenase enzymes, such as Escherichia coli AlkB, are involved in protecting DNA from alkylation damage. Inspired by the natural product indenone derivatives reported to inhibit this class of enzymes, and a set of 2-chloro-3-amino indenone derivatives was synthesized and screened for their inhibitory properties against AlkB. The synthesis of 2-chloro-3-amino indenone derivatives was achieved from 2,3-dichloro indenones through addition-elimination method using alkyl/aryl amines under catalyst-free conditions. Using an in vitro reconstituted DNA repair assay, we have identified a 2-chloro-3-amino indenone compound 3o to be an inhibitor of AlkB. We have determined the binding affinity, mode of interaction, and kinetic parameters of inhibition of 3o and tested its ability to sensitize cells to methyl methanesulfonate that mainly produce DNA alkylation damage. This study established the potential of indenone-derived compounds as inhibitors of Fe(II)/2-oxoglutarate-dependent dioxygenase AlkB.


Asunto(s)
Alquilantes/síntesis química , Reparación del ADN , Indenos/química , Alquilantes/farmacología , Sitios de Unión , Daño del ADN , Desmetilación del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Humanos , Indenos/metabolismo , Indenos/farmacología , Cinética , Oxigenasas de Función Mixta/antagonistas & inhibidores , Oxigenasas de Función Mixta/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica
11.
J Biol Chem ; 296: 100444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33617883

RESUMEN

Unrepaired DNA-protein cross-links, due to their bulky nature, can stall replication forks and result in genome instability. Large DNA-protein cross-links can be cleaved into DNA-peptide cross-links, but the extent to which these smaller fragments disrupt normal replication is not clear. Ethylene dibromide (1,2-dibromoethane) is a known carcinogen that can cross-link the repair protein O6-alkylguanine-DNA alkyltransferase (AGT) to the N6 position of deoxyadenosine (dA) in DNA, as well as four other positions in DNA. We investigated the effect of a 15-mer peptide from the active site of AGT, cross-linked to the N6 position of dA, on DNA replication by human translesion synthesis DNA polymerases (Pols) η, ⍳, and κ. The peptide-DNA cross-link was bypassed by the three polymerases at different rates. In steady-state kinetics, the specificity constant (kcat/Km) for incorporation of the correct nucleotide opposite to the adduct decreased by 220-fold with Pol κ, tenfold with pol η, and not at all with Pol ⍳. Pol η incorporated all four nucleotides across from the lesion, with the preference dT > dC > dA > dG, while Pol ⍳ and κ only incorporated the correct nucleotide. However, LC-MS/MS analysis of the primer-template extension product revealed error-free bypass of the cross-linked 15-mer peptide by Pol η. We conclude that a bulky 15-mer peptide cross-linked to the N6 position of dA can retard polymerization and cause miscoding but that overall fidelity is not compromised because only correct pairs are extended.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/metabolismo , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/farmacología , Cromatografía Liquida/métodos , ADN/química , Reparación del ADN/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/fisiología , ADN Polimerasa Dirigida por ADN/fisiología , Desoxiadenosinas/química , Desoxiadenosinas/metabolismo , Desoxiguanosina/metabolismo , Dibromuro de Etileno/química , Humanos , Cinética , Estructura Molecular , Mutación , Nucleótidos/genética , Péptidos/genética , Espectrometría de Masas en Tándem/métodos
12.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-33498964

RESUMEN

Sulfur mustard (SM) is a chemical warfare agent that can damage DNA via alkylation and oxidative stress. Because of its genotoxicity, SM is cancerogenic and the progenitor of many chemotherapeutics. Previously, we developed an SM-resistant cell line via chronic exposure of the popular keratinocyte cell line HaCaT to increasing doses of SM over a period of 40 months. In this study, we compared the genomic landscape of the SM-resistant cell line HaCaT/SM to its sensitive parental line HaCaT in order to gain insights into genetic changes associated with continuous alkylation and oxidative stress. We established chromosome numbers by cytogenetics, analyzed DNA copy number changes by means of array Comparative Genomic Hybridization (array CGH), employed the genome-wide chromosome conformation capture technique Hi-C to detect chromosomal translocations, and derived mutational signatures by whole-genome sequencing. We observed that chronic SM exposure eliminated the initially prevailing hypotetraploid cell population in favor of a hyperdiploid one, which contrasts with previous observations that link polyploidization to increased tolerance and adaptability toward genotoxic stress. Furthermore, we observed an accumulation of chromosomal translocations, frequently flanked by DNA copy number changes, which indicates a high rate of DNA double-strand breaks and their misrepair. HaCaT/SM-specific single-nucleotide variants showed enrichment of C > A and T > A transversions and a lower rate of deaminated cytosines in the CpG dinucleotide context. Given the frequent use of HaCaT in toxicology, this study provides a valuable data source with respect to the original genotype of HaCaT and the mutational signatures associated with chronic alkylation and oxidative stress.


Asunto(s)
Aberraciones Cromosómicas/inducido químicamente , Daño del ADN , Queratinocitos/efectos de los fármacos , Gas Mostaza/toxicidad , Mutación , Radiación Ionizante , Alquilantes/farmacología , Alquilantes/toxicidad , Línea Celular , Aberraciones Cromosómicas/efectos de la radiación , Hibridación Genómica Comparativa , ADN/efectos de los fármacos , ADN/metabolismo , ADN/efectos de la radiación , Aductos de ADN , Roturas del ADN de Doble Cadena , Humanos , Gas Mostaza/farmacología , Estrés Oxidativo
13.
Chemistry ; 27(16): 5215-5224, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33440025

RESUMEN

Two series of 1,1'-biphenyl analogues with various leaving groups (L=OAc, OCH3 , OCHCH=CH2 , OCH2 Ph, SPh, SePh, and Ph3 P+ ) were synthesized. Their reactivity towards DNA and the reaction mechanism were investigated by determining DNA interstrand cross-link (ICL) efficiency, radical and carbocation formation, and the cross-linking reaction sites. All compounds induced DNA ICL formation upon 350 nm irradiation via a carbocation that was generated from oxidation of the corresponding free radicals. The ICL efficiency and the reaction rate strongly depended on the combined effect of the leaving group and the substituent. Among all compounds tested, the high ICL efficiency (30-43 %) and fast reaction rate were observed with compounds carrying a nitrophenyl group and acetate (2 a), ether (2 b and 2 c), or triphenylphosphonium salt (2 g) as leaving groups. Most compounds with a 4-methoxybenzene group showed similar DNA ICL efficiency (≈30 %) with a slow DNA cross-linking reaction rate. Both cation trapping and free radical trapping adducts were detected in the photo activation process of these compounds, which provided direct evidence for the proposed mechanism. Heat stability study in combination with sequence study suggested that these photo-generated benzyl cations alkylate DNA at dG, dA, and dC sites.


Asunto(s)
Compuestos de Bifenilo , ADN , Cationes , Reactivos de Enlaces Cruzados
14.
Chembiochem ; 22(9): 1538-1545, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33453075

RESUMEN

Pyrrole-imidazole (PI) polyamides, which target specific DNA sequences, have been studied as a class of DNA minor-groove-binding molecules. To investigate the potential of compounds for cancer treatment, PI polyamides were conjugated with DNA-alkylating agents, such as seco-CBI and chlorambucil. DNA-alkylating PI polyamides have attracted attention because of their sequence-specific alkylating activities, which contribute to reducing the severe side effects of current DNA-damaging drugs. Many of these types of conjugates have been developed as new candidates for anticancer drugs. Herein, we review recent progress into research on DNA-alkylating PI polyamides and their sequence-specific action on targets associated with cancer development.


Asunto(s)
Antineoplásicos Alquilantes/química , Imidazoles/química , Nylons/química , Pirroles/química , Animales , Antineoplásicos Alquilantes/uso terapéutico , ADN/química , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Telómero/química
15.
ALTEX ; 38(1): 63-72, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32663874

RESUMEN

The assessment of genotoxicity upon exposure to chemical and environmental agents plays an important role in basic research as well as in pharmaceutical, chemical, cosmetic and food industry. Low sensitivity and lack of inter-laboratory comparability are considered problematic issues in genotoxicity testing. Moreover, commonly used mutagenicity assays lack information about early and specific genotoxic events. Previously, we developed an automated version of the "Fluorimetric detection of Alkaline DNA Unwinding" (FADU) assay as a high-throughput screening method for the detection of DNA strand breaks in living cells. Here, we report an enzyme-modified version of the cell-based FADU assay (emFADU) for the determination of oxidative and methylation lesions in cellular DNA. Our method is based on the use of formamidopyrimidine DNA glycosylase or human alkylad­enine DNA glycosylase for the detection of chemically-induced nucleobase modifications in lysates of immortalized cell lines, growing in suspension or as adherent cells, and in peripheral blood mononuclear cells. We could show that upon treatment with sub-cytotoxic doses of known genotoxins, oxidative and methylation lesions are readily detectable. This fast, inexpensive, and convenient method could be useful as a high-content screening approach for the sensitive and specific assessment of genotoxicity in human cells. Thus, when implemented in the early compound development in an industrial setting, the emFADU assay could help reduce the number of animals used for toxicity testing. Furthermore, as we established the method for different cell types, this new assay may provide an opportunity for population studies and/or mechanistic research into DNA repair pathways.


Asunto(s)
Automatización , Daño del ADN , Metilación de ADN , Pruebas de Mutagenicidad/métodos , Estrés Oxidativo , Alternativas a las Pruebas en Animales/métodos , Supervivencia Celular , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Citometría de Flujo/métodos , Humanos , Células THP-1
16.
Biochem Biophys Res Commun ; 534: 114-120, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33321288

RESUMEN

DNA integrity is challenged by both exogenous and endogenous alkylating agents. DNA repair proteins such as Escherichia coli AlkB family of enzymes can repair 1-methyladenine and 3-methylcytosine adducts by oxidative demethylation. Human AlkB homologue 5 (ALKBH5) is RNA N6-methyladenine demethylase and not known to be involved in DNA repair. Herein we show that ALKBH5 also has weak DNA repair activity and it can demethylate DNA 3-methylcytosine. The mutation of the amino acid residues involved in demethylation also abolishes the DNA repair activity of ALKBH5. Overexpression of ALKBH5 decreases the 3-methylcytosine level in genomic DNA and reduces the cytotoxic effects of the DNA damaging alkylating agent methyl methanesulfonate. Thus, demethylation by ALKBH5 might play a supporting role in maintaining genome integrity.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Alquilantes/toxicidad , Daño del ADN , Reparación del ADN/fisiología , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Citosina/análogos & derivados , Citosina/metabolismo , Aductos de ADN , Metilación de ADN , Desmetilación , Células HEK293 , Humanos , Mesilatos/toxicidad
17.
ChemMedChem ; 16(5): 860-868, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33200541

RESUMEN

Nitrogen mustards (NMs) are an old but still largely diffused class of anticancer drugs. However, spreading mechanisms of resistance undermine their efficacy and therapeutic applicability. To expand their antitumour value, we developed bis-3-chloropiperidines (B-CePs), a new class of mustard-based alkylating agent, and we recently reported the striking selectivity for BxPC-3 pancreatic tumour cells of B-CePs bearing aromatic moieties embedded in the linker. In this study, we demonstrate that such tropism is shared by bis-3-chloropiperidines bearing appended aromatic groups in flexible linkers, whereas esters substituted by aliphatic groups or by efficient DNA-interacting groups are potent but nonselective cytotoxic agents. Besides, we describe how the critical balance between water stability and DNA reactivity can affect the properties of bis-3-chloropiperidines. Together, these findings support the exploitation of B-CePs as potential antitumour clinical candidates.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Piperidinas/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Piperidinas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
18.
J Pharm Anal ; 10(3): 247-252, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32612871

RESUMEN

Accurate DNA quantitation is a prerequisite in many biomedical and pharmaceutical studies. Here we established a new DNA quantitation method by nuclease P1 digestion and UPLC-MS/MS analysis. DNA fragments can be efficiently hydrolyzed to single deoxyribonucleotides by nuclease P1 in a short time. The decent stabilities of all the four deoxyribonucleotides were confirmed under different conditions. Deoxyadenosine monophosphate (dAMP) was selected as the surrogate for DNA quantitation because dAMP showed the highest sensitivity among the four deoxyribonucleotides in the UPLC-MS/MS analysis. The linear range in DNA quantitation by this method is 1.2-5000 ng/mL. In the validation, the inter-day and intra-day accuracies were within 90%-110%, and the inter-day and intra-day precision were acceptable (RSD < 10%). The validated method was successfully applied to quantitate DNA isolated from tumors and organs of a mouse xenograft model. Compared to the quantitation methods using UV absorbance, the reported method provides an enhanced sensitivity, and it allows for the accurate quantitation of isolated DNA with contamination of RNA and ribonucleotide.

19.
J Biol Chem ; 295(26): 8775-8783, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32381504

RESUMEN

Alkyl phosphotriester (alkyl-PTE) lesions are frequently induced in DNA and are resistant to repair. Here, we synthesized and characterized methyl (Me)- and n-butyl (nBu)-PTEs in two diastereomeric configurations (Sp and Rp) at six different flanking dinucleotide sites, i.e. XT and TX (X = A, C, or G), and assessed how these lesions impact DNA replication in Escherichia coli cells. When single-stranded vectors contained an Sp-Me-PTE in the sequence contexts of 5'-AT-3', 5'-CT-3', or 5'-GT-3', DNA replication was highly efficient and the replication products for all three sequence contexts contained 85-90% AT and 5-10% TG. Thus, the replication outcome was largely independent of the identity of the 5' nucleotide adjacent to an Sp-Me-PTE. Furthermore, replication across these lesions was not dependent on the activities of DNA polymerases II, IV, or V; Ada, a protein involved in adaptive response and repair of Sp-Me-PTE in E. coli, however, was essential for the generation of the mutagenic products. Additionally, the Rp diastereomer of Me-PTEs at XT sites and both diastereomers of Me-PTEs at TX sites exhibited error-free replication bypass. Moreover, Sp-nBu-PTEs at XT sites did not strongly impede DNA replication, and other nBu-PTEs displayed moderate blockage effects, with none of them being mutagenic. Taken together, these findings provide in-depth understanding of how alkyl-PTE lesions are recognized by the DNA replication machinery in prokaryotic cells and reveal that Ada contributes to mutagenesis of Sp-Me-PTEs in E. coli.


Asunto(s)
Daño del ADN , Replicación del ADN , ADN Bacteriano/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Factores de Transcripción/metabolismo , Alquilación , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Eliminación de Gen , Mutagénesis , O(6)-Metilguanina-ADN Metiltransferasa/genética , Factores de Transcripción/genética
20.
Proc Natl Acad Sci U S A ; 117(17): 9318-9328, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32273391

RESUMEN

Alkylation of guanine bases in DNA is detrimental to cells due to its high mutagenic and cytotoxic potential and is repaired by the alkyltransferase AGT. Additionally, alkyltransferase-like proteins (ATLs), which are structurally similar to AGTs, have been identified in many organisms. While ATLs are per se catalytically inactive, strong evidence has suggested that ATLs target alkyl lesions to the nucleotide excision repair system (NER). Using a combination of single-molecule and ensemble approaches, we show here recruitment of UvrA, the initiating enzyme of prokaryotic NER, to an alkyl lesion by ATL. We further characterize lesion recognition by ATL and directly visualize DNA lesion search by highly motile ATL and ATL-UvrA complexes on DNA at the molecular level. Based on the high similarity of ATLs and the DNA-interacting domain of AGTs, our results provide important insight in the lesion search mechanism, not only by ATL but also by AGT, thus opening opportunities for controlling the action of AGT for therapeutic benefit during chemotherapy.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Transferasas Alquil y Aril/metabolismo , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/fisiología , Alquilación/fisiología , ADN/metabolismo , Daño del ADN , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Guanina/metabolismo , Microscopía de Fuerza Atómica/métodos , Mutagénesis , O(6)-Metilguanina-ADN Metiltransferasa/genética , Pinzas Ópticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA