Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Development ; 151(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39284714

RESUMEN

The number of neural stem cells reflects the total number of neurons in the mature brain. As neural stem cells arise from neuroepithelial cells, the neuroepithelial cell population must be expanded to secure a sufficient number of neural stem cells. However, molecular mechanisms that regulate timely differentiation from neuroepithelial to neural stem cells are largely unclear. Here, we show that TCF4/Daughterless is a key factor that determines the timing of the differentiation in Drosophila. The neuroepithelial cells initiated but never completed the differentiation in the absence of TCF4/Daughterless. We also found that TCF4/Daughterless binds to the Notch locus, suggesting that Notch is one of its downstream candidate genes. Consistently, Notch expression was ectopically induced in the absence of TCF4/Daughterless. Furthermore, ectopic activation of Notch signaling phenocopied loss of TCF4/Daughterless. Our findings demonstrate that TCF4/Daughterless directly inactivates Notch signaling pathway, resulting in completion of the differentiation from neuroepithelial cells into neural stem cells with optimal timing. Thus, the present results suggest that TCF4/Daughterless is essential for determining whether to move to the next state or stay in the current state in differentiating neuroepithelial cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular , Proteínas de Drosophila , Células-Madre Neurales , Células Neuroepiteliales , Receptores Notch , Transducción de Señal , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Receptores Notch/metabolismo , Receptores Notch/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Células Neuroepiteliales/metabolismo , Células Neuroepiteliales/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/citología , Factores de Tiempo , Drosophila/metabolismo
2.
Dev Cell ; 59(1): 91-107.e6, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38091997

RESUMEN

Genomic regulation of cardiomyocyte differentiation is central to heart development and function. This study uses genetic loss-of-function human-induced pluripotent stem cell-derived cardiomyocytes to evaluate the genomic regulatory basis of the non-DNA-binding homeodomain protein HOPX. We show that HOPX interacts with and controls cardiac genes and enhancer networks associated with diverse aspects of heart development. Using perturbation studies in vitro, we define how upstream cell growth and proliferation control HOPX transcription to regulate cardiac gene programs. We then use cell, organoid, and zebrafish regeneration models to demonstrate that HOPX-regulated gene programs control cardiomyocyte function in development and disease. Collectively, this study mechanistically links cell signaling pathways as upstream regulators of HOPX transcription to control gene programs underpinning cardiomyocyte identity and function.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Animales , Humanos , Miocitos Cardíacos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Pez Cebra/metabolismo , Diferenciación Celular/genética , Proliferación Celular
3.
Methods Mol Biol ; 2698: 87-107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37682471

RESUMEN

Capturing the dynamic and transient interactions of a transcription factor (TF) with its genome-wide targets whose regulation leads to plants' adaptation to their changing environment is a major technical challenge. This is a widespread problem with biochemical methods such as chromatin immunoprecipitation-sequencing (ChIP-seq) which are biased towards capturing stable TF-target gene interactions. Herein, we describe how DNA adenine methyltransferase identification and sequencing (DamID-seq) can be used to capture both transient and stable TF-target interactions by DNA methylation. The DamID technique uses a TF protein fused to a DNA adenine methyltransferase (Dam) from E. coli. When expressed in a plant cell, the Dam-TF fusion protein will methylate adenine (A) bases near the sites of TF-DNA interactions. In this way, DamID results in a permanent, stable DNA methylation mark on TF-target gene promoters, even if the target gene is only transiently "touched" by the Dam-TF fusion protein. Here we provide a step-by-step protocol to perform DamID-seq experiments in isolated plant cells for any Dam-TF fusion protein of interest. We also provide information that will enable researchers to analyze DamID-seq data to identify TF-binding sites in the genome. Our protocol includes instructions for vector cloning of the Dam-TF fusion proteins, plant cell protoplast transfections, DamID preps, library preparation, and sequencing data analysis. The protocol outlined in this chapter is performed in Arabidopsis thaliana, however, the DamID-seq workflow developed in this guide is broadly applicable to other plants and organisms.


Asunto(s)
Arabidopsis , Metilación de ADN , Células Vegetales , Escherichia coli , ADN , Factores de Transcripción , Adenina , Arabidopsis/genética , Factor VII , Metiltransferasas
4.
Stem Cell Reports ; 18(10): 1940-1953, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37683644

RESUMEN

The maintenance of germline stem cells (GSCs) is essential for tissue homeostasis. JAK/STAT signaling maintains GSC fate in Drosophila testis. However, how JAK/STAT signaling maintains male GSC fate through its downstream targets remains poorly understood. Here, we identify p115, a tER/cis-Golgi golgin protein, as a putative downstream target of JAK/STAT signaling. p115 maintains GSC fate independent of GM130 and GRASP65. p115 localizes in cytosol, the ER and Golgi apparatus in germline cells and is required for the morphology of the ER and Golgi apparatus. Furthermore, depletion of p115 in GSCs results in aberrant spindle orientation. Mechanistically, p115 associates with and stabilizes STAT. Finally, ectopic expression of STAT completely restores GSC loss caused by p115 depletion. Collectively, JAK/STAT signaling and p115 form a feedforward loop to maintain male GSC fate. Our work provides new insights into the regulatory mechanism of how stem cell maintenance is properly controlled by JAK/STAT signaling.


Asunto(s)
Proteínas de Drosophila , Células Germinativas , Células Madre , Animales , Masculino , Drosophila melanogaster , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores de Transcripción STAT/metabolismo , Células Madre/metabolismo , Transducción de Señal , Quinasas Janus/metabolismo
5.
Genetics ; 224(3)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37119802

RESUMEN

Heterochromatin is characterized by an enrichment of repetitive elements and low gene density and is often maintained in a repressed state across cell division and differentiation. The silencing is mainly regulated by repressive histone marks such as H3K9 and H3K27 methylated forms and the heterochromatin protein 1 (HP1) family. Here, we analyzed in a tissue-specific manner the binding profile of the two HP1 homologs in Caenorhabditis elegans, HPL-1 and HPL-2, at the L4 developmental stage. We identified the genome-wide binding profile of intestinal and hypodermal HPL-2 and intestinal HPL-1 and compared them with heterochromatin marks and other features. HPL-2 associated preferentially to the distal arms of autosomes and correlated positively with the methylated forms of H3K9 and H3K27. HPL-1 was also enriched in regions containing H3K9me3 and H3K27me3 but exhibited a more even distribution between autosome arms and centers. HPL-2 showed a differential tissue-specific enrichment for repetitive elements conversely with HPL-1, which exhibited a poor association. Finally, we found a significant intersection of genomic regions bound by the BLMP-1/PRDM1 transcription factor and intestinal HPL-1, suggesting a corepressive role during cell differentiation. Our study uncovers both shared and singular properties of conserved HP1 proteins, providing information about genomic binding preferences in relation to their role as heterochromatic markers.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Homólogo de la Proteína Chromobox 5 , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica
6.
Genetics ; 223(1)2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36321973

RESUMEN

Control of gene expression in specific tissues and/or at certain stages of development allows the study and manipulation of gene function with high precision. Site-specific genome recombination by the flippase (FLP) and cyclization recombination (Cre) enzymes has proved particularly relevant. Joint efforts of many research groups have led to the creation of efficient FLP and Cre drivers to regulate gene expression in a variety of tissues in Caenorhabditis elegans. Here, we extend this toolkit by the addition of FLP lines that drive recombination specifically in distal tip cells, the somatic gonad, coelomocytes, and the epithelial P lineage. In some cases, recombination-mediated gene knockouts do not completely deplete protein levels due to persistence of long-lived proteins. To overcome this, we developed a spatiotemporally regulated degradation system for green fluorescent fusion proteins based on FLP-mediated recombination. Using 2 stable nuclear pore proteins, MEL-28/ELYS and NPP-2/NUP85 as examples, we report the benefit of combining tissue-specific gene knockout and protein degradation to achieve complete protein depletion. We also demonstrate that FLP-mediated recombination can be utilized to identify transcriptomes in a C. elegans tissue of interest. We have adapted RNA polymerase DamID for the FLP toolbox and by focusing on a well-characterized tissue, the hypodermis, we show that the vast majority of genes identified by RNA polymerase DamID are known to be expressed in this tissue. These tools allow combining FLP activity for simultaneous gene inactivation and transcriptomic profiling, thus enabling the inquiry of gene function in various complex biological processes.


Asunto(s)
Caenorhabditis elegans , ADN Nucleotidiltransferasas , Animales , ADN Nucleotidiltransferasas/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteolisis , Transcriptoma , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo
7.
EMBO Rep ; 23(12): e55782, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36245428

RESUMEN

Ki-67 is a chromatin-associated protein with a dynamic distribution pattern throughout the cell cycle and is thought to be involved in chromatin organization. The lack of genomic interaction maps has hampered a detailed understanding of its roles, particularly during interphase. By pA-DamID mapping in human cell lines, we find that Ki-67 associates with large genomic domains that overlap mostly with late-replicating regions. Early in interphase, when Ki-67 is present in pre-nucleolar bodies, it interacts with these domains on all chromosomes. However, later in interphase, when Ki-67 is confined to nucleoli, it shows a striking shift toward small chromosomes. Nucleolar perturbations indicate that these cell cycle dynamics correspond to nucleolar maturation during interphase, and suggest that nucleolar sequestration of Ki-67 limits its interactions with larger chromosomes. Furthermore, we demonstrate that Ki-67 does not detectably control chromatin-chromatin interactions during interphase, but it competes with the nuclear lamina for interaction with late-replicating DNA, and it controls replication timing of (peri)centromeric regions. Together, these results reveal a highly dynamic choreography of genome interactions and roles for Ki-67 in heterochromatin organization.


Asunto(s)
Genómica , Heterocromatina , Humanos , Heterocromatina/genética , Antígeno Ki-67/genética
8.
EMBO J ; 41(21): e111338, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36121125

RESUMEN

The balance between self-renewal and differentiation in human foetal lung epithelial progenitors controls the size and function of the adult organ. Moreover, progenitor cell gene regulation networks are employed by both regenerating and malignant lung cells, where modulators of their effects could potentially be of therapeutic value. Details of the molecular networks controlling human lung progenitor self-renewal remain unknown. We performed the first CRISPRi screen in primary human lung organoids to identify transcription factors controlling progenitor self-renewal. We show that SOX9 promotes proliferation of lung progenitors and inhibits precocious airway differentiation. Moreover, by identifying direct transcriptional targets using Targeted DamID, we place SOX9 at the centre of a transcriptional network, which amplifies WNT and RTK signalling to stabilise the progenitor cell state. In addition, the proof-of-principle CRISPRi screen and Targeted DamID tools establish a new workflow for using primary human organoids to elucidate detailed functional mechanisms underlying normal development and disease.


Asunto(s)
Pulmón , Factor de Transcripción SOX9 , Células Madre , Humanos , Diferenciación Celular/fisiología , Pulmón/embriología , Transducción de Señal , Factor de Transcripción SOX9/metabolismo , Células Madre/metabolismo
9.
Genome Biol ; 23(1): 185, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050765

RESUMEN

BACKGROUND: Lamina-associated domains (LADs) are large genomic regions that are positioned at the nuclear lamina. It has remained largely unclear what drives the positioning and demarcation of LADs. Because the insulator protein CTCF is enriched at LAD borders, it was postulated that CTCF binding could position some LAD boundaries, possibly through its function in stalling cohesin and hence preventing cohesin invading into the LAD. To test this, we mapped genome-nuclear lamina interactions in mouse embryonic stem cells after rapid depletion of CTCF and other perturbations of cohesin dynamics. RESULTS: CTCF and cohesin contribute to a sharp transition in lamina interactions at LAD borders, while LADs are maintained after depletion of these proteins, also at borders marked by CTCF. CTCF and cohesin may thus reinforce LAD borders, but do not position these. CTCF binding sites within LADs are locally detached from the lamina and enriched for accessible DNA and active histone modifications. Remarkably, despite lamina positioning being strongly correlated with genome inactivity, this DNA remains accessible after the local detachment is lost following CTCF depletion. At a chromosomal scale, cohesin depletion and cohesin stabilization by depletion of the unloading factor WAPL quantitatively affect lamina interactions, indicative of perturbed chromosomal positioning in the nucleus. Finally, while H3K27me3 is locally enriched at CTCF-marked LAD borders, we find no evidence for an interplay between CTCF and H3K27me3 on lamina interactions. CONCLUSIONS: These findings illustrate that CTCF and cohesin are not primary determinants of LAD patterns. Rather, these proteins locally modulate NL interactions.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Histonas , Lámina Nuclear , Animales , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , ADN/metabolismo , Histonas/metabolismo , Ratones , Lámina Nuclear/química , Cohesinas
10.
Methods Mol Biol ; 2532: 215-241, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35867252

RESUMEN

Spatial genome organization is considered to play an important role in mammalian cells, by guiding gene expression programs and supporting lineage specification. Yet it is still an outstanding question in the field what the direct impact of spatial genome organization on gene expression is. To elucidate this relationship further, we have recently developed scDam&T-seq, a method that simultaneously quantifies protein-DNA interactions and transcriptomes in single cells. This method efficiently combines two preexisting methods: DamID for measuring protein-DNA contacts and CEL-Seq2 for quantification of the transcriptome in single cells. scDam&T-seq has been successfully applied to measure DNA contacts with the nuclear lamina, while at the same time revealing the effect of these contacts on gene expression. This method is applicable to many different proteins of interest and can thereby aid in studying the relationship between protein-DNA interactions and gene expression in single cells.


Asunto(s)
Genoma , Transcriptoma , Animales , ADN/genética , Mamíferos/genética , Proteínas/genética , Análisis de la Célula Individual/métodos
11.
Methods Mol Biol ; 2502: 161-182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412238

RESUMEN

Nuclear pore complexes (NPCs) are essential to communication of macromolecules between the cell nucleus and the surrounding cytoplasm. RNA synthesized in the nucleus is exported through NPCs to function in the cytoplasm, whereas transcription factors and other proteins are selectively and actively imported. In addition, many NPC constituents, known as nuclear pore proteins (nucleoporins or nups), also play critical roles in other processes, such as genome organization, gene expression, and kinetochore function. Thanks to its genetic amenability and transparent body, the nematode Caenorhabditis elegans is an attractive model to study NPC dynamics. We provide here an overview of available genome engineered strains and FLP/Frt-based tools to study tissue-specific functions of individual nucleoporins. We also present protocols for live imaging of fluorescently tagged nucleoporins in intact tissues of embryos, larvae, and adult and for analysis of interactions between nucleoporins and chromatin by DamID.


Asunto(s)
Caenorhabditis elegans , Poro Nuclear , Transporte Activo de Núcleo Celular , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genómica , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo
12.
Mol Cell ; 82(10): 1956-1970.e14, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35366395

RESUMEN

Recent advances in single-cell sequencing technologies have enabled simultaneous measurement of multiple cellular modalities, but the combined detection of histone post-translational modifications and transcription at single-cell resolution has remained limited. Here, we introduce EpiDamID, an experimental approach to target a diverse set of chromatin types by leveraging the binding specificities of single-chain variable fragment antibodies, engineered chromatin reader domains, and endogenous chromatin-binding proteins. Using these, we render the DamID technology compatible with the genome-wide identification of histone post-translational modifications. Importantly, this includes the possibility to jointly measure chromatin marks and transcription at the single-cell level. We use EpiDamID to profile single-cell Polycomb occupancy in mouse embryoid bodies and provide evidence for hierarchical gene regulatory networks. In addition, we map H3K9me3 in early zebrafish embryogenesis, and detect striking heterochromatic regions specific to notochord. Overall, EpiDamID is a new addition to a vast toolbox to study chromatin states during dynamic cellular processes.


Asunto(s)
Código de Histonas , Histonas , Animales , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Ratones , Procesamiento Proteico-Postraduccional , Transcriptoma , Pez Cebra/genética , Pez Cebra/metabolismo
13.
Methods Mol Biol ; 2458: 215-229, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35103970

RESUMEN

Several methods have been developed to map protein-DNA interactions genome-wide in the last decades. Protein A-DamID (pA-DamID) is a recent addition to this list with distinct advantages. pA-DamID relies on antibody-based targeting of the bacterial Dam enzyme, resulting in adenine methylation of DNA in contact with the protein of interest. This m6A can then be visualized by microscopy, or mapped genome-wide. The main advantages of pA-DamID are an easy and direct visualization of DNA that is in contact with the protein of interest, unbiased mapping of protein-DNA interactions, and the possibility to select specific subpopulations of cells by flow cytometry before further sample processing. pA-DamID is particularly suited to study proteins that form large chromatin domains or that are part of distinct nuclear structures such as the nuclear lamina. This chapter describes the pA-DamID procedure from cell harvesting to the preparation of microscopy slides and high-throughput sequencing libraries.


Asunto(s)
Microscopía , Proteína Estafilocócica A , Cromatina/genética , ADN/química , Metilación de ADN , Proteína Estafilocócica A/genética
14.
Methods Mol Biol ; 2458: 195-213, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35103969

RESUMEN

Targeted DamID (TaDa) is a means of profiling the binding of any DNA-associated protein cell-type specifically, including transcription factors, RNA polymerase, and chromatin-modifying proteins. The technique is highly sensitive, highly reproducible, requires no mechanical disruption, cell isolation or antibody purification, and can be performed by anyone with basic molecular biology knowledge. Here, we describe the TaDa method and downstream bioinformatics data processing.


Asunto(s)
Cromatina , Metilación de ADN , Cromatina/genética , ADN/metabolismo , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/metabolismo
15.
Chem Asian J ; 17(2): e202101240, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34850572

RESUMEN

Proximity labeling techniques are emerging high-throughput methods for studying protein-protein, protein-RNA, and protein-DNA interactions with temporal and spatial precision. Proximity labeling methods take advantage of enzymes that can covalently label biomolecules with reactive substrates. These labeled biomolecules can be identified using mass spectrometry or next-generation sequencing. The main advantage of these methods is their ability to capture weak or transient interactions between biomolecules. Proximity labeling is indispensable for studying organelle interactomes. Additionally, it can be used to resolve spatial composition of macromolecular complexes. Many of these methods have only recently been introduced; nonetheless, they have already provided new and deep insights into the biological processes at the cellular, organ, and organism levels. In this paper, we review a broad range of proximity labeling techniques, their development, drawbacks and advantages, and implementations in recent studies.


Asunto(s)
Proteínas , ARN , Biotinilación , Espectrometría de Masas , Coloración y Etiquetado
16.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34397094

RESUMEN

The epidermis of Caenorhabditis elegans is an essential tissue for survival because it contributes to the formation of the cuticle barrier as well as facilitating developmental progression and animal growth. Most of the epidermis consists of the hyp7 hypodermal syncytium, the nuclei of which are largely generated by the seam cells, which exhibit stem cell-like behaviour during development. How seam cell progenitors differ transcriptionally from the differentiated hypodermis is poorly understood. Here, we introduce Targeted DamID (TaDa) in C. elegans as a method for identifying genes expressed within a tissue of interest without cell isolation. We show that TaDa signal enrichment profiles can be used to identify genes transcribed in the epidermis and use this method to resolve differences in gene expression between the seam cells and the hypodermis. Finally, we predict and functionally validate new transcription and chromatin factors acting in seam cell development. These findings provide insights into cell type-specific gene expression profiles likely associated with epidermal cell fate patterning.


Asunto(s)
Células Epidérmicas/citología , Células Epidérmicas/metabolismo , Perfilación de la Expresión Génica/métodos , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular , Linaje de la Célula , Cromatina/genética , Cromatina/metabolismo , Epidermis/crecimiento & desarrollo , Epidermis/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
G3 (Bethesda) ; 11(1)2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33561239

RESUMEN

Targeted DamID (TaDa) is an increasingly popular method of generating cell-type-specific DNA-binding profiles in vivo. Although sensitive and versatile, TaDa requires the generation of new transgenic fly lines for every protein that is profiled, which is both time-consuming and costly. Here, we describe the FlyORF-TaDa system for converting an existing FlyORF library of inducible open reading frames (ORFs) to TaDa lines via a genetic cross, with recombinant progeny easily identifiable by eye color. Profiling the binding of the H3K36me3-associated chromatin protein MRG15 in larval neural stem cells using both FlyORF-TaDa and conventional TaDa demonstrates that new lines generated using this system provide accurate and highly reproducible DamID-binding profiles. Our data further show that MRG15 binds to a subset of active chromatin domains in vivo. Courtesy of the large coverage of the FlyORF library, the FlyORF-TaDa system enables the easy creation of TaDa lines for 74% of all transcription factors and chromatin-modifying proteins within the Drosophila genome.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Cromatina , Proteínas Cromosómicas no Histona , ADN , Metilación de ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Unión Proteica
18.
G3 (Bethesda) ; 11(2)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33609367

RESUMEN

Small noncoding RNA pathways have been implicated in diverse mechanisms of gene regulation. In Drosophila ovaries, Piwi binds to Piwi-interacting RNAs (piRNAs) of mostly 24-28 nucleotides (nt) and plays an important role in germline stem cell maintenance, transposon repression, and epigenetic regulation. To understand the mechanism underlying these functions, we report the application of the DamID-seq method to identify genome-wide binding sites of Piwi in Drosophila ovaries. Piwi localizes to at least 4535 euchromatic regions that are enriched with piRNA target sites. Surprisingly, the density of Piwi binding to euchromatin is much higher than in heterochromatin. Disrupting the piRNA binding of Piwi results in an overall change of the genomic binding profile, which indicates the role of piRNAs in directing Piwi to specific genomic sites. Most Piwi binding sites were either within or in the vicinity of protein-coding genes, particularly enriched near the transcriptional start and termination sites. The methylation signal near the transcriptional termination sites is significantly reduced when Piwi was mutated to become defective in piRNA binding. These observations indicate that Piwi might directly regulate the expression of many protein-coding genes, especially through regulating the 3' ends of targeted transcripts.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Proteínas Argonautas/metabolismo , Elementos Transponibles de ADN , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epigénesis Genética , Femenino , Ovario/metabolismo , ARN Interferente Pequeño
19.
Methods Mol Biol ; 2214: 265-282, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32944916

RESUMEN

Investigating the chromatin landscape of the early mammalian embryo is essential to understand how epigenetic mechanisms may direct reprogramming and cell fate allocation. Genome-wide analyses of the epigenome in preimplantation mouse embryos have recently become available, thanks to the development of low-input protocols. DNA adenine methyltransferase identification (DamID) enables the investigation of genome-wide protein-DNA interactions without the requirement of specific antibodies. Most importantly, DamID can be robustly applied to single cells. Here we describe the protocol for performing DamID in single oocytes and mouse preimplantation embryos, as well as single blastomeres, using a Dam-LaminB1 fusion to generate high-resolution lamina-associated domain (LAD) maps. This low-input method can be adapted for other proteins of interest to faithfully profile their genomic interaction, allowing us to interrogate the chromatin dynamics and nuclear organization during the early mammalian development.


Asunto(s)
Blastocisto/metabolismo , Genómica/métodos , Ratones/embriología , Ratones/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Animales , Blastocisto/citología , Células Cultivadas , Técnicas de Cultivo de Embriones/métodos , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ratones/metabolismo , Ratones Endogámicos C57BL , Oocitos/citología , Oocitos/metabolismo , Análisis de la Célula Individual/métodos
20.
Methods Mol Biol ; 2157: 159-172, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32820403

RESUMEN

The organization of DNA within the eukaryotic nucleus is important for cellular processes such as regulation of gene expression and repair of DNA damage. To comprehend cell-to-cell variation within a complex system, systematic analysis of individual cells is necessary. While many tools exist to capture DNA conformation and chromatin context, these methods generally require large populations of cells for sufficient output. Here we describe single-cell DamID, a technique to capture contacts between DNA and a given protein of interest. By fusing the bacterial methyltransferase Dam to nuclear lamina protein lamin B1, genomic regions in contact with the nuclear periphery can be mapped. Single-cell DamID generates contact maps with sufficient throughput and resolution to reliably identify patterns of similarity as well as variation in nuclear organization of interphase chromosomes.


Asunto(s)
Cromatina/metabolismo , Genómica/métodos , Lámina Nuclear/metabolismo , Animales , Cromatina/química , ADN/química , ADN/metabolismo , Humanos , Lamina Tipo B/química , Lamina Tipo B/metabolismo , Lámina Nuclear/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA