Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030961

RESUMEN

BACKGROUND: Milk somatic cell count (SCC) is an international standard for identifying mastitis in dairy cows and measuring raw milk quality. Milk SCC can be predicted based on dielectric relaxation parameters (DRPs). We noted a high correlation between DRPs and the milk composition content (MCC), and so we hypothesized that combining DRPs with MCC could improve the prediction accuracy of milk SCC. The present study aimed to analyze the relationship between milk SCC, DRPs and MCC, as well as to investigate the potential of combining DRPs with MCC to improve the prediction accuracy of milk SCC. RESULTS: The dielectric spectra (20-4500 MHz) of 276 milk samples were measured, and their DRPs (εl, εh, Δε, τ and σ) were solved by the modified Debye equation. The SCC prediction models were developed using dielectric full spectra, DRPs and DRPs combined with MCC. The results showed the correlations between DRPs (εl, εh, Δε and σ) and MCC (fat, protein, lactose and total solids) were high, and SCC exhibited a non-linear relationship with DRPs and MCC. The 5DRPs + MCC-generalized regression neural network model had the best prediction, with a standard error of prediction for prediction of 0.143 log SCC mL-1 and residual of the prediction bias of 2.870, which was superior to the models based on full spectra, DRPs and near-infrared or visible/near-infrared. CONCLUSION: The present study has improved the prediction accuracy of milk SCC based on the DRPs combing MCC and provides a new method for dairy farming and milk quality assessment. © 2024 Society of Chemical Industry.

2.
Philos Trans A Math Phys Eng Sci ; 379(2205): 20200316, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34275367

RESUMEN

Experiments demonstrate that magnetic nanoparticles, embedded in a tissue, very often form heterogeneous structures of various shapes and topologies. These structures (clusters) can significantly affect macroscopical properties of the composite system, in part its ability to generate heat under an alternating magnetic field (so-called magnetic hyperthermia). If the energy of magnetic interaction between the particles significantly exceeds the thermal energy of the system, the particles can form the closed ring-shaped clusters. In this work, we propose a relatively simple model of the heat production by the particles united in the 'ring' and immobilized in a host medium. Mathematically, this model is based on the phenomenological Debye equation of kinetics of the particles remagnetization. Magnetic interaction between all particles in the cluster is taken into account. Our results show that the appearance of the clusters can significantly decrease the thermal effect. This article is part of the theme issue 'Transport phenomena in complex systems (part 1)'.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Humanos , Hipertermia , Fenómenos Magnéticos , Magnetismo
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 222: 117244, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31203054

RESUMEN

Excited-state deactivation dynamics of Thioflavin-T (ThT) in gradual viscosity solvents were investigated. Femtosecond transient absorption spectra and dynamic decay curves both present significant distinction of ThT in different volume ratios binary mixtures solvents. Dynamics fitting lifetime of twisted intramolecular charge transfer (TICT) state is strongly dependent on solvents viscosity. Compared to rotation corresponding time of ThT in low viscosity solvent (0.6 cp) experimentally coincident well with Stokes-Einstein-Debye (SED) equation, the relation between rotation corresponding time and relatively high viscosity (5.9 cp to 1091.2 cp) is more consistent with fractional SED equation. Combined with optimized geometric structures of ThT by density functional theory and time-dependent density functional theory, further understand TICT state lifetime increases with increasing solvents viscosity. Our work provides a comprehensive understanding of fluorescence molecular rotor (FMR) deactivation process in different viscosity solvents and is helpful to design new FMR.


Asunto(s)
Benzotiazoles/química , Colorantes Fluorescentes/química , Teoría Funcional de la Densidad , Fluorescencia , Modelos Moleculares , Solventes/química , Espectrometría de Fluorescencia , Factores de Tiempo , Viscosidad
4.
IUCrJ ; 6(Pt 1): 116-127, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30713709

RESUMEN

The defect structure of γ-Al2O3 derived from boehmite was investigated using a combination of selected-area electron diffraction (SAED) and powder X-ray diffraction (XRD). Both methods confirmed a strong dependence of the diffraction line broadening on the diffraction indices known from literature. The analysis of the SAED patterns revealed that the dominant structure defects in the spinel-type γ-Al2O3 are antiphase boundaries located on the lattice planes , which produce the sublattice shifts . Quantitative information about the defect structure of γ-Al2O3 was obtained from the powder XRD patterns. This includes mainly the size of γ-Al2O3 crystallites and the density of planar defects. The correlation between the density of the planar defects and the presence of structural vacancies, which maintain the stoichiometry of the spinel-type γ-Al2O3, is discussed. A computer routine running on a fast graphical processing unit was written for simulation of the XRD patterns. This routine calculates the atomic positions for a given kind and density of planar defect, and simulates the diffracted intensities with the aid of the Debye scattering equation.

5.
J Phys Chem Lett ; 4(3): 508-513, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23493516

RESUMEN

Using a precise method of least-squares nonlinear electron paramagnetic resonance (EPR) line fitting, we have obtained experimental evidence of a decoupling of the rotational motion of four nitroxide spin probes from the viscosity of bulk water at 277 K. This decoupling is about 50 K higher than another such phenomenon observed in interstitial supercooled water of polycrystalline ice by Banerjee et al. (Proc Natl Acad Sci USA 106 (2009) 11448-11453). Above 277 K the activation energies of the rotation of the probes and water viscosity are very close, while in the supercooled region the activation energies of the probes' rotation are greater than that of the viscosity of water. The rotational correlation times of the probes can be fit well to a power law functionality with a singular temperature. The temperature dependence of the hydrodynamic radii of the probes indicates two distinct dynamical regions, which cross at 277 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA