Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros











Intervalo de año de publicación
1.
Anim Cogn ; 27(1): 21, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441671

RESUMEN

Several studies have investigated habituation in a defensive context, but few have addressed responses to dangerous stimuli. In such cases, animals should not habituate since this could cost their lives. Here we have stimulated individuals of the harvester Mischonyx squalidus with a predatory stimulus (squeezing with tweezers) in repeated trials within and between days, and measured the occurrence and magnitude of nipping, a defensive behavior. Contrary to our expectations, they did habituate to this stimulus. The probability and magnitude of response declined over trials during each of three days of testing in a typical habituation pattern. During the trials we also observed other defensive behaviors. We discuss our results mainly considering alternative defensive responses. Our data show that we lack information on (1) the role played by the ambiguity of stimuli, (2) the role played by subsequent stimuli and (3) the importance of the array of defensive behaviors of a species in understanding habituation. Although ubiquitous across animals and therefore expected, habituation is described for the first time in the order Opiliones.


Asunto(s)
Arácnidos , Humanos , Animales , Habituación Psicofisiológica , Conducta Predatoria , Probabilidad
2.
Ann N Y Acad Sci ; 1530(1): 138-151, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37818796

RESUMEN

Previous studies showed that the dorsal premammillary nucleus of the hypothalamus (PMD) is involved in social passive defensive behaviors likely to be meditated by descending projections to the periaqueductal gray (PAG). We focused on the rostral dorsomedial PAG (rPAGdm) to reveal its putative neural mechanisms involved in mediating social defensive responses. By combining retrograde tracing and FOS expression analysis, we showed that in addition to the PMD, the rPAGdm is influenced by several brain sites active during social defeat. Next, we found that cytotoxic lesions of the rPAGdm drastically reduced passive defense and did not affect active defensive responses. We then examined the rPAGdm's projection pattern and found that the PAGdm projections are mostly restricted to midbrain sites, including the precommissural nucleus, different columns of the PAG, and the cuneiform nucleus (CUN). Also, we found decreased FOS expression in the caudal PAGdm, CUN, and PMD after the rPAGdm was lesioned. The results support that the rPAGdm mediates passive social defensive responses through ascending paths to prosencephalic circuits likely mediated by the CUN. This study provides further support for the role of the PAG in the modulation of behavioral responses by working as a unique hub for influencing prosencephalic sites during the mediation of aversive responses.


Asunto(s)
Sustancia Gris Periacueductal , Derrota Social , Ratas , Animales , Sustancia Gris Periacueductal/fisiología , Hipotálamo/fisiología
3.
Motor Control ; 27(4): 736-750, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37156543

RESUMEN

Manual Reaction Time measures have been widely used to study interactions between perceptual, cognitive, and motor functions. The Stimulus-Response Compatibility is a phenomenon characterized through faster Manual Reaction Times when stimuli and response locations coincide (correspondent condition) than when they are on different sides (noncorrespondent condition). The present study adapted a protocol to study if the Stimulus-Response Compatibility effect can be detected during a virtual combat simulation. Twenty-seven participants were instructed to defend themselves by clicking a key in order to block the presented punch. Videos of two fighters were used, granting two types of basic strokes: the back fist, a punch performed with the dorsal part of the fighter's hand, starting at the opposite side to which it is directed; and the hook punch, performed with a clenched fist starting and finishing ipsilaterally. The Manual Reaction Times were different between the correspondent and noncorrespondent conditions, F(1, 26) = 9.925; p < .004; η2 = .276, with an Stimulus-Response Compatibility effect of 72 ms. Errors were also different, F(1, 26) = 23.199; p < .001; η2 = .472, between the correspondent (13%) and the noncorrespondent conditions (23%). The study concluded that spatial codes presented at the beginning of the punch movement perception substantially influenced the response execution.


Asunto(s)
Desempeño Psicomotor , Accidente Cerebrovascular , Humanos , Tiempo de Reacción/fisiología , Desempeño Psicomotor/fisiología , Mano
4.
Ann N Y Acad Sci ; 1521(1): 79-95, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36606723

RESUMEN

The cuneiform nucleus (CUN) is a midbrain structure located lateral to the caudal part of the periaqueductal gray. In the present investigation, we first performed a systematic analysis of the afferent and efferent projections of the CUN using FluoroGold and Phaseolus vulgaris leucoagglutinin as retrograde and anterograde neuronal tracers, respectively. Next, we examined the behavioral responses to optogenetic activation of the CUN and evaluated the impact of pharmacological inactivation of the CUN in both innate and contextual fear responses to a predatory threat (i.e., a live cat). The present hodologic evidence indicates that the CUN might be viewed as a caudal component of the periaqueductal gray. The CUN has strong bidirectional links with the dorsolateral periaqueductal gray (PAGdl). Our hodological findings revealed that the CUN and PAGdl share a similar source of inputs involved in integrating information related to life-threatening events and that the CUN provides particularly strong projections to brain sites influencing antipredatory defensive behaviors. Our functional studies revealed that the CUN mediates innate freezing and flight antipredatory responses but does not seem to influence the acquisition and expression of learned fear responses.


Asunto(s)
Formación Reticular Mesencefálica , Sustancia Gris Periacueductal , Sustancia Gris Periacueductal/fisiología , Neuronas
5.
J Psychopharmacol ; 36(12): 1371-1383, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36239039

RESUMEN

RATIONALE: Cannabidiol (CBD), the major non-psychoactive constituent of cannabis, has therapeutic potential for the treatment of anxiety. Most preclinical studies investigate only acute effects of CBD and only in males, yet the drug is most likely to be used over a sustained period in clinical practice. OBJECTIVES: The objectives of this study were to investigate the anxiolytic-like effect of CBD in female rats compared to males and to determine whether the responsiveness of females was influenced by the stage of the estrous cycle. METHODS: We carried out experiments to compare the effect of CBD in male and female rats in the elevated plus maze (EPM) in response to acute and short-term (4 days) administration through a complete cycle in females. RESULTS: Male and female rats behaved in a similar manner in the EPM, but females in the late diestrus (LD) phase exhibited more anxiety-like behavior than at other stages, the difference reaching statistical significance compared to proestrus stages. CBD produced anxiolytic-like effects in both sexes, but female rats were responsive only in LD and 10-fold lower dose than males. After sub-chronic (4 days) treatment, responsiveness to CBD was maintained in females in LD, but females in proestrus remained unresponsive to CBD treatment. CONCLUSIONS: We suggest that there are sex differences in the anxiolytic-like effects of CBD in rats that reflect different underlying mechanisms: based on literature data, gonadal hormone status linked to GABAA receptor expression in females, and 5-HT1A receptor activation in males.


Asunto(s)
Ansiolíticos , Cannabidiol , Femenino , Masculino , Ratas , Animales , Ansiolíticos/farmacología , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Prueba de Laberinto Elevado , Caracteres Sexuales , Ratas Wistar , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Receptores de GABA-A
6.
Elife ; 112022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34984975

RESUMEN

Predator exposure is a life-threatening experience and elicits learned fear responses to the context in which the predator was encountered. The anterior cingulate area (ACA) occupies a pivotal position in a cortical network responsive to predatory threats, and it exerts a critical role in processing fear memory. The experiments were made in mice and revealed that the ACA is involved in both the acquisition and expression of contextual fear to predatory threat. Overall, the ACA can provide predictive relationships between the context and the predator threat and influences fear memory acquisition through projections to the basolateral amygdala and perirhinal region and the expression of contextual fear through projections to the dorsolateral periaqueductal gray. Our results expand previous studies based on classical fear conditioning and open interesting perspectives for understanding how the ACA is involved in processing contextual fear memory to ethologic threatening conditions that entrain specific medial hypothalamic fear circuits.


Asunto(s)
Conducta Animal , Miedo , Giro del Cíngulo/fisiología , Memoria , Conducta Predatoria , Animales , Gatos , Corteza Cerebral/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología
7.
Zootaxa ; 4952(2): zootaxa.4952.2.2, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33903366

RESUMEN

The genus Thamnodynastes is the most diverse within the tribe Tachymenini, with an extensive and complex taxonomic history. The brief descriptions and lack of robust diagnostic characters are the main sources for identification errors and for the difficulty to assess the diversity estimates of the genus. The Thamnodynastes pallidus group was briefly designated to encompass the most arboreal species of the genus, with thinner bodies and longer tails: T. pallidus, T. longicaudus, T. sertanejo, and a fourth undescribed species. After its designation, no other paper addressed this group and its morphological variation, especially for the hemipenis, is still undetermined. After the analysis of all species of Thamnodynastes we were able to corroborate the distinctiveness of the T. pallidus group and to accurately diagnose its fourth species from the western portion of the Amazonia lowlands. The new species is distinguishable from all congeners, except T. sertanejo, by the absence of ventral longitudinal stripes, 17/17/11 dorsal scale rows, and dorsal dark brown blotches on the anterior third of the body. The new species is distinguished from T. sertanejo by the higher number of subcaudals, lower number of ventrals, and smaller body and head sizes. We also provide additional diagnostic features for the Thamnodynastes pallidus group, including new data on hemipenial variation. Finally, we briefly discuss the defensive behavior and morphological characters associated with arboreality in members of the T. pallidus species group.


Asunto(s)
Serpientes , Animales , Brasil , Piel , Serpientes/clasificación , Cola (estructura animal) , Árboles
8.
Elife ; 102021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33463524

RESUMEN

The neuropeptide PACAP, acting as a co-transmitter, increases neuronal excitability, which may enhance anxiety and arousal associated with threat conveyed by multiple sensory modalities. The distribution of neurons expressing PACAP and its receptor, PAC1, throughout the mouse nervous system was determined, in register with expression of glutamatergic and GABAergic neuronal markers, to develop a coherent chemoanatomical picture of PACAP role in brain motor responses to sensory input. A circuit role for PACAP was tested by observing Fos activation of brain neurons after olfactory threat cue in wild-type and PACAP knockout mice. Neuronal activation and behavioral response, were blunted in PACAP knock-out mice, accompanied by sharply downregulated vesicular transporter expression in both GABAergic and glutamatergic neurons expressing PACAP and its receptor. This report signals a new perspective on the role of neuropeptide signaling in supporting excitatory and inhibitory neurotransmission in the nervous system within functionally coherent polysynaptic circuits.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Transducción de Señal , Animales , Femenino , Masculino , Ratones , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo
9.
Zootaxa, v. 4952, n. 2, p. 235-256, abr. 2021
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3690

RESUMEN

The genus Thamnodynastes is the most diverse within the tribe Tachymenini, with an extensive and complex taxonomic history. The brief descriptions and lack of robust diagnostic characters are the main sources for identification errors and for the difficulty to assess the diversity estimates of the genus. The Thamnodynastes pallidus group was briefly designated to encompass the most arboreal species of the genus, with thinner bodies and longer tails: T. pallidus, T. longicaudus, T. sertanejo, and a fourth undescribed species. After its designation, no other paper addressed this group and its morphological variation, especially for the hemipenis, is still undetermined. After the analysis of all species of Thamnodynastes we were able to corroborate the distinctiveness of the T. pallidus group and to accurately diagnose its fourth species from the western portion of the Amazonia lowlands. The new species is distinguishable from all congeners, except T. sertanejo, by the absence of ventral longitudinal stripes, 17/17/11 dorsal scale rows, and dorsal dark brown blotches on the anterior third of the body. The new species is distinguished from T. sertanejo by the higher number of subcaudals, lower number of ventrals, and smaller body and head sizes. We also provide additional diagnostic features for the Thamnodynastes pallidus group, including new data on hemipenial variation. Finally, we briefly discuss the defensive behavior and morphological characters associated with arboreality in members of the T. pallidus species group.

10.
Chem Biodivers ; 17(10): e2000483, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32882104

RESUMEN

Aleochara pseudochrysorrhoa has a glandular complex known as the tergal gland. Generally, the tergal gland secretion (TGS) has been described to have defensive function, but some reports point to a possible secondary function of this complex. For example, the TGS of the related species A. curtula has been demonstrated to possess an important role in intraspecies communication. In this work, we describe the chemical composition of the TGS of A. pseudochrysorrhoa males and females. Eleven compounds were identified based on GC/MS and GC-FT-IR analyses, retention indexes and derivatization products. Furthermore, a brief study regarding the biological function of the TGS in mating behavior is provided, in which the stimulation of male grasping response reaction by female TGS proved to be dependent on concentration.


Asunto(s)
Secreciones Corporales/química , Animales , Secreciones Corporales/metabolismo , Cromatografía de Gases , Escarabajos , Femenino , Cromatografía de Gases y Espectrometría de Masas , Masculino , Estructura Molecular , Espectroscopía Infrarroja por Transformada de Fourier
11.
Front Neural Circuits ; 14: 23, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547371

RESUMEN

Animal survival relies on environmental information gathered by their sensory systems. We found that contrast information of a looming stimulus biases the type of defensive behavior that goldfish (Carassius auratus) perform. Low-contrast looms only evoke subtle alarm reactions whose probability is independent of contrast. As looming contrast increases, the probability of eliciting a fast escape maneuver, the C-start response, increases dramatically. Contrast information also modulates the decision of when to escape. Although response latency is known to depend on looming retinal size, we found that contrast acts as an additional parameter influencing this decision. When presenting progressively higher contrast stimuli, animals need shorter periods of stimulus processing to initiate the response. Our results comply with the notion that the decision to escape is a flexible process initiated with stimulus detection and followed by assessment of the perceived risk posed by the stimulus. Highly disruptive behaviors as the C-start are only observed when a multifactorial threshold that includes stimulus contrast is surpassed.


Asunto(s)
Sensibilidad de Contraste/fisiología , Toma de Decisiones/fisiología , Reacción de Fuga/fisiología , Carpa Dorada/fisiología , Estimulación Luminosa/métodos , Desempeño Psicomotor/fisiología , Animales , Femenino , Masculino
12.
South Am J Herpetol, v. 18, p. 24-32, 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3508

RESUMEN

Pseudoautotomy is presumably a derived character within Lepidosauria and occurs in taxa that have lost the ability to perform autotomy. In general, species capable of employing pseudoautotomy as a defensive strategy against predators present a high frequency of damaged tails in series deposited in herpetological collections. We assessed data from three largely sympatric Echinanthera species in the Brazilian Atlantic Rainforest (E. cephalostriata, E. cyanopleura, and E. undulata) to test previous assumptions that species of Echinanthera use their tails defensively. This hypothesis derives from anecdotal observations during fieldwork and is reinforced by the number of specimens presenting tail breakage in scientific collections. In general, the frequency of damaged tails in these species resembles that of others in which pseudoautotomy has been demonstrated. Statistical analyses revealed no differences in tail breakage frequencies between sexes for the analyzed species or between the two geographical groups defined for E. cyanopleura. In contrast, we detected a significant difference between snout-vent length and sex regarding pseudoautotomy probability for E. cyanopleura, with a positive relationship between tail breakage frequency and snout-vent length.

13.
Biotropica, p. 1-13, jul. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3124

RESUMEN

Based on color patterns and behavioral similarities, venomous coral snake Micrurus corallinus (Elapidae) may act as a model for two polymorphic species, Erythrolamprus aesculapii (Dipsadidae) and Micrurus decoratus (Elapidae). Plasticine replicas were used to investigate the aposematism of these coloration patterns and whether these species may be part of mimetic complexes in two Atlantic Forest localities in Southeast Brazil. Coral replicas were more avoided when set upon a white background, evincing that the pattern may act aposematically in contrast with light substrates. Birds attacked all four patterns equally during the mimicry experiments. Birds of prey, known to be effective in predating snakes, are quite abundant in the study areas, which may have led to this lack of avoidance. Accordingly, they predated more adult‐sized replicas, which could be more dangerous. Interestingly, opossum avoided the Micrurus corallinus and Erythrolamprus aesculapii replicas that resembled the model. This suggests that opportunistic predators, as the opossum may be important selective agents in mimicry complexes.

14.
Brain Struct Funct ; 224(4): 1537-1551, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30847642

RESUMEN

A few studies have evaluated the behavioral roles of the periaqueductal gray (PAG) in animals facing ethologically relevant threats. Exposure to a live cat induces striking activation in the rostrodorsal and caudal ventral PAG. In the present investigation, we first showed that cytotoxic lesions of the rostrodorsal and caudal ventral PAG had similar effects on innate fear responses during cat exposure, practically abolishing freezing and increasing risk assessment responses. Conversely, rostrodorsal PAG lesions but not caudal ventral lesions disrupted learned contextual fear responses to cat exposure. Next, we examined how muscimol inactivation of the rostrodorsal PAG at different times (i.e., during, immediately after and 20 min after cat exposure) influences learned contextual fear responses, and we found that inactivation of the rostrodorsal PAG during or immediately after cat exposure but not 20 min later impaired contextual fear learning. Thus, suggesting that the rostrodorsal PAG is involved in the acquisition, but not the consolidation, of contextual fear memory to predatory threat. Notably, the dosolateral PAG contains a distinct population of neurons containing the neuronal nitric oxide synthase (nNOS) enzyme, and in the last experiment, we investigated how nitric oxide released in rostrodorsal PAG influences contextual fear memory processing. Accordingly, injection of a selective nNOS inhibitor into the rostrodorsal PAG immediately after cat exposure disrupted learned contextual responses. Overall, the present findings suggest that the acquisition of contextual fear learning is influenced by an optimum level of dorsal PAG activation, which extends from during to shortly after predator exposure and depends on local NO release.


Asunto(s)
Miedo/fisiología , Memoria/fisiología , Sustancia Gris Periacueductal/fisiología , Animales , Conducta Animal , Gatos , Masculino , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/fisiología , Conducta Predatoria , Ratas Wistar
15.
Neurosci Lett ; 699: 189-194, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30753913

RESUMEN

Tonic immobility (TI) is a temporary state of profound motor inhibition associated with great danger as the attack of a predator. Previous studies carried out in our laboratory evidenced high Fos-IR in the posteroventral region of the medial nucleus of the amygdala (MEA) after induction of the TI response. Here, we investigated the effects of GABAA and GABAB of the MEA on TI duration. Intra-MEA injections of the GABAA agonist muscimol and GABAB agonist baclofen reduced TI response, while intra-MEA injections of the GABAA antagonist bicuculline and GABAB antagonist phaclofen increased the TI response. Moreover, the effects observed with muscimol and baclofen administrations into MEA were blocked by pretreatment with bicuculline and phaclofen (at ineffective doses per se). Finally, the activation of GABAA and GABAB receptors in the MEA did not alter the spontaneous motor activity in the open field test. These data support the role of the GABAergic system of the MEA in the modulation of innate fear.


Asunto(s)
Complejo Nuclear Corticomedial/fisiología , Agonistas de Receptores de GABA-A/fisiología , Agonistas de Receptores GABA-B/fisiología , Pérdida de Tono Postural/fisiología , Animales , Baclofeno/administración & dosificación , Baclofeno/análogos & derivados , Baclofeno/antagonistas & inhibidores , Baclofeno/farmacología , Bicuculina/administración & dosificación , Bicuculina/farmacología , Complejo Nuclear Corticomedial/efectos de los fármacos , Agonistas de Receptores de GABA-A/administración & dosificación , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/administración & dosificación , Antagonistas de Receptores de GABA-A/farmacología , Agonistas de Receptores GABA-B/administración & dosificación , Agonistas de Receptores GABA-B/farmacología , Antagonistas de Receptores de GABA-B/administración & dosificación , Antagonistas de Receptores de GABA-B/farmacología , Cobayas , Pérdida de Tono Postural/efectos de los fármacos , Masculino , Microinyecciones , Actividad Motora/efectos de los fármacos , Muscimol/administración & dosificación , Muscimol/antagonistas & inhibidores , Muscimol/farmacología
16.
Psychopharmacology (Berl) ; 236(6): 1863-1874, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30694375

RESUMEN

RATIONALE: The endocannabinoid system plays an important role in the organization of panic-like defensive behavior. Threatening situations stimulate brain areas, such as the dorsomedial hypothalamus (DMH). However, there is a lack of studies addressing the role of the DMH endocannabinoid system in panic-like responses. OBJECTIVES: We aimed to verify which mechanisms underlie anandamide-mediated responses in the DMH. METHODS: To test the hypothesis that the anandamide produces panicolytic-like effects, we treated mice with intra-DMH microinjections of vehicle or increasing doses of anandamide (0.5, 5, or 50 pmol) and then performed confrontation with the South American snake Epicrates cenchria assisi. RESULTS: Intra-DMH anandamide treatment yielded a U-shaped dose-response curve with no effect of the lowest (0.5 pmol) or the highest (50 pmol) dose and significant inhibition of panic-like responses at the intermediate (5 pmol) dose. In addition, this panicolytic-like effect was prevented by pretreatment of the DMH with the CB1 receptor antagonist AM251 (100 pmol). However, pretreatment of the DMH with the TRPV1 receptor antagonist 6-iodo-nordihydrocapsaicin (3 nmol) restored the panicolytic-like effect of the highest dose of anandamide. Immunohistochemistry revealed that CB1 receptors were present primarily on axonal fibers, while TRPV1 receptors were found almost exclusively surrounding the perikarya in DMH. CONCLUSIONS: The present results suggest that anandamide exerts a panicolytic-like effect in the DMH by activation of CB1 receptors and that TRPV1 receptors are related to the lack of effect of the highest dose of anandamide.


Asunto(s)
Ácidos Araquidónicos/administración & dosificación , Agonistas de Receptores de Cannabinoides/administración & dosificación , Núcleo Hipotalámico Dorsomedial/metabolismo , Endocannabinoides/administración & dosificación , Pánico/fisiología , Alcamidas Poliinsaturadas/administración & dosificación , Receptor Cannabinoide CB1/biosíntesis , Canales Catiónicos TRPV/biosíntesis , Animales , Boidae , Brasil , Núcleo Hipotalámico Dorsomedial/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Pánico/efectos de los fármacos , Piperidinas/administración & dosificación , Pirazoles/administración & dosificación , Ratas , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Canales Catiónicos TRPV/antagonistas & inhibidores
17.
Cereb Cortex ; 29(7): 3074-3090, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30085040

RESUMEN

The ventral part of the anteromedial thalamic nucleus (AMv) receives substantial inputs from hypothalamic sites that are highly responsive to a live predator or its odor trace and represents an important thalamic hub for conveying predatory threat information to the cerebral cortex. In the present study, we begin by examining the cortico-amygdalar-hippocampal projections of the main AMv cortical targets, namely, the caudal prelimbic, rostral anterior cingulate, and medial visual areas, as well as the rostral part of the ventral retrosplenial area, one of the main targets of the anterior cingulate area. We observed that these areas form a clear cortical network. Next, we revealed that in animals exposed to a live cat, all of the elements of this circuit presented a differential increase in Fos, supporting the idea of a predator threat-responsive cortical network. Finally, we showed that bilateral cytotoxic lesions in each element of this cortical network did not change innate fear responses but drastically reduced contextual conditioning to the predator-associated environment. Overall, the present findings suggest that predator threat has an extensive representation in the cerebral cortex and revealed a cortical network that is responsive to predatory threats and exerts a critical role in processing fear memory.


Asunto(s)
Conducta Animal/fisiología , Corteza Cerebral/fisiología , Miedo/fisiología , Memoria/fisiología , Vías Nerviosas/fisiología , Animales , Masculino , Ratas , Ratas Wistar
18.
Front Behav Neurosci ; 13: 283, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998093

RESUMEN

The insular cortex (IC), among other brain regions, becomes active when humans experience fear or anxiety. However, few experimental studies in rats have implicated the IC in threat responses. We have recently reported that inactivation of the primary interoceptive cortex (pIC) during pre-training, or the intra-pIC blockade of protein synthesis immediately after training, impaired the consolidation of auditory fear conditioning. The present study was designed to investigate the role of the pIC in innate and learned defensive responses to predator odor. Freezing behavior was elicited by single or repetitive exposures to a collar that had been worn by a domestic cat. Sessions were video-recorded and later scored by video observation. We found that muscimol inactivation of the pIC reduced the expression of freezing reaction in response to a single or repeated exposure to cat odor. We also found that pIC inactivation with muscimol impaired conditioning of fear to the context in which rats were exposed to cat odor. Furthermore, neosaxitoxin inactivation of the pIC resulted in a prolonged and robust reduction in freezing response in subsequent re-exposures to cat odor. In addition, freezing behavior significantly correlated with the neural activity of the IC. The present results suggest that the IC is involved in the expression of both innate and learned fear responses to predator odor.

19.
Behav Brain Res ; 338: 159-165, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29080676

RESUMEN

Previous studies have shown that the exposure to an open elevated plus maze (oEPM, an EPM with all four open arms) elicits fear/anxiety-related responses in laboratory rodents. However, very little is known about the underlying neural substrates of these defensive behaviors. Accordingly, the present study investigated the effects of chemical inactivation of the amygdala [through local injection of cobalt chloride (CoCl2: a nonspecific synaptic blocker)] on the behavior of oEPM-exposed mice. In a second experiment, the pattern of activation of the basolateral (BLA) and central (CeA) nuclei of the amygdala was assessed through quantification of Fos protein expression in mice subjected to one of several behavioral manipulations. To avoid the confound of acute handling stress, 4 independent groups of mice were habituated daily for 10days to an enclosed EPM (eEPM) and, on day 11 prior to immunohistochemistry, were either taken directly from their home cage (control) or individually exposed for 10min to a new clean holding cage (novelty), an eEPM, or the oEPM. An additional group of mice (maze-naïve) was not subjected to either the habituation or exposure phase but were simply chosen at random from their home cages to undergo an identical immunohistochemistry procedure. Results showed that amygdala inactivation produced an anxiolytic-like profile comprising reductions in time spent in the proximal portions of the open arms and total stretched attend postures (SAP) as well as increases in time spent in the distal portions of the open arms and total head-dipping. Moreover, Fos-positive labeled cells were bilaterally increased in the amygdaloid complex, particularly in the BLA, of oEPM-exposed animals compared to all other groups. These results suggest that the amygdala (in particular, its BLA nucleus) plays a key role in the modulation of defensive behaviors in oEPM-exposed mice.


Asunto(s)
Amígdala del Cerebelo/fisiología , Conducta Animal/fisiología , Miedo/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Animales , Ansiolíticos/farmacología , Conducta Animal/efectos de los fármacos , Cobalto/farmacología , Miedo/efectos de los fármacos , Masculino , Ratones
20.
Brain Res Bull ; 137: 187-196, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29246866

RESUMEN

Studies have used paradigms based on animal models to understand human emotional behavior because they appear to be correlated with fear- and anxiety-related defensive patterns in non-human mammals. In this context, tonic immobility (TI) behavior is an innate response associated with extreme threat situations, such as predator attack. Some reports have demonstrated the involvement of corticotropin-releasing factor (CRF) in regulation of the endocrine system, defensive behaviors and behavioral responses to stress. Particularly, a previous study showed that the activation of CRF receptors in the basolateral (BLA) or central (CeA) nuclei of the amygdala increased TI responses, whereas treatment with a non-selective CRF antagonist, alpha-helical-CRF9-41, decreased this innate fear response. However, while CRF1 receptors have pronounced effects in stress-induced anxiety, CRF2 receptors appear be involved in the expression of both stress-induced anxiety and spontaneous anxiety behavior. In this study, we investigated the effects of specific CRF receptors, CRF1 and CRF2, in the BLA and CeA on the duration of TI in guinea pigs. The results show that blockade of CRF1 and CRF2 receptors in the BLA and CeA produces a decrease in fear and/or anxiety, as suggested by a decrease in TI duration in the guinea pigs. Additionally, the specific antagonists for CRF1 and CRF2 receptors were able to prevent the increase in TI duration induced by CRF administration at the same sites. These results suggest that the modulation of fear and anxiety by the CRF system in the BLA and CeA occurs through concomitant effects on CRF1 and CRF2 receptors.


Asunto(s)
Complejo Nuclear Basolateral/metabolismo , Núcleo Amigdalino Central/metabolismo , Miedo/fisiología , Reacción Cataléptica de Congelación/fisiología , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Fármacos del Sistema Nervioso Central/farmacología , Miedo/efectos de los fármacos , Reacción Cataléptica de Congelación/efectos de los fármacos , Cobayas , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Receptores de Hormona Liberadora de Corticotropina/agonistas , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA