Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 8(12): 2540-2551, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36332135

RESUMEN

Tuberculosis is recognized as one of the major public health threats worldwide. The DevR-DevS (DosR/DosS) two-component system is considered a novel drug target in Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, owing to its central role in bacterial adaptation and long-term persistence. An increase in DevR levels and the decreased permeability of the mycobacterial cell wall during hypoxia-associated dormancy pose formidable challenges to the development of anti-DevR compounds. Using an in vitro evolution approach of Systematic Evolution of Ligands by EXponential enrichment (SELEX), we developed a panel of single-stranded DNA aptamers that interacted with Mtb DevR protein in solid-phase binding assays. The best-performing aptamer, APT-6, forms a G-quadruplex structure and inhibits DevR-dependent transcription in Mycobacterium smegmatis. Mechanistic studies indicate that APT-6 functions by inhibiting the dimerization and DNA binding activity of DevR protein. In silico studies reveal that APT-6 interacts majorly with C-terminal domain residues that participate in DNA binding and formation of active dimer species of DevR. To the best of our knowledge, this is the first report of a DNA aptamer that inhibits the function of a cytosolic bacterial response regulator. By inhibiting the dimerization of DevR, APT-6 targets an essential step in the DevR activation mechanism, and therefore, it has the potential to universally block the expression of DevR-regulated genes for intercepting dormancy pathways in mycobacteria. These findings also pave the way for exploring aptamer-based approaches to design and develop potent inhibitors against intracellular proteins of various bacterial pathogens of global concern.


Asunto(s)
Aptámeros de Nucleótidos , Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Aptámeros de Nucleótidos/farmacología , ADN
2.
Biochem J ; 478(16): 3079-3098, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34350952

RESUMEN

DevR/DosR response regulator is believed to participate in virulence, dormancy adaptation and antibiotic tolerance mechanisms of Mycobacterium tuberculosis by regulating the expression of the dormancy regulon. We have previously shown that the interaction of DevR with RNA polymerase is essential for the expression of DevR-regulated genes. Here, we developed a M. tuberculosis-specific in vivo transcription system to enrich our understanding of DevR-RNA polymerase interaction. This in vivo assay involves co-transforming E. coli with two plasmids that express α, ß, ß' and σA subunits of M. tuberculosis RNA polymerase and a third plasmid that harbors a DevR expression cassette and a GFP reporter gene under the DevR-regulated fdxA promoter. We show that DevR-dependent transcription is sponsored exclusively by M. tuberculosis RNA polymerase and regulated by α and σA subunits of M. tuberculosis RNA polymerase. Using this E. coli triple plasmid system to express mutant variants of M. tuberculosis RNA polymerase, we identified E280 residue in C-terminal domain of α and K513 and R515 residues of σA to participate in DevR-dependent transcription. In silico modeling of a ternary complex of DevR, σA domain 4 and fdxA promoter suggest an interaction of Q505, R515 and K513 residues of σA with E178 and D172 residues of DevR and E471 of σA, respectively. These findings provide us with new insights into the interactions between DevR and RNA polymerase of M. tuberculosis which can be targeted for intercepting DevR function. Finally, we demonstrate the utility of this system for screening of anti-DevR compounds.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/genética , Regiones Promotoras Genéticas/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN/química , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Conformación de Ácido Nucleico , Plásmidos/genética , Unión Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido , Tuberculosis/microbiología , Virulencia/genética
3.
J Biol Chem ; 293(42): 16413-16425, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30181216

RESUMEN

The DevR response regulator of Mycobacterium tuberculosis is an established regulator of the dormancy response in mycobacteria and can also be activated during aerobic growth conditions in avirulent strains, suggesting a complex regulatory system. Previously, we reported culture medium-specific aerobic induction of the DevR regulon genes in avirulent M. tuberculosis H37Ra that was absent in the virulent H37Rv strain. To understand the underlying basis of this differential response, we have investigated aerobic expression of the Rv3134c-devR-devS operon using M. tuberculosis H37Ra and H37Rv devR overexpression strains, designated as LIX48 and LIX50, respectively. Overexpression of DevR led to the up-regulation of a large number of DevR regulon genes in aerobic cultures of LIX48, but not in LIX50. To ascertain the involvement of PhoP response regulator, also known to co-regulate a subset of DevR regulon genes, we complemented the naturally occurring mutant phoPRa gene of LIX48 with the WT phoPRv gene. PhoPRv dampened the induced expression of the DevR regulon by >70-80%, implicating PhoP in the negative regulation of devR expression. Electrophoretic mobility shift assays confirmed phosphorylation-independent binding of PhoPRv to the Rv3134c promoter and further revealed that DevR and PhoPRv proteins exhibit differential DNA binding properties to the target DNA. Through co-incubations with DNA, ELISA, and protein complementation assays, we demonstrate that DevR forms a heterodimer with PhoPRv but not with the mutant PhoPRa protein. The study puts forward a new possible mechanism for coordinated expression of the dormancy regulon, having implications in growth adaptations critical for development of latency.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/genética , Proteínas Quinasas/genética , Regulón/fisiología , Aerobiosis , Proteínas de Unión al ADN , Período de Latencia Psicosexual , Mycobacterium tuberculosis/patogenicidad , Multimerización de Proteína , Regulón/genética
4.
FEBS J ; 283(15): 2949-62, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27327040

RESUMEN

Two-component systems, comprising histidine kinases and response regulators, empower bacteria to sense and adapt to diverse environmental stresses. Some histidine kinases are bifunctional; their phosphorylation (kinase) and dephosphorylation (phosphatase) activities toward their cognate response regulators permit the rapid reversal of genetic responses to an environmental stimulus. DevR-DevS/DosR-DosS is one of the best-characterized two-component systems of Mycobacterium tuberculosis. The kinase function of DevS is activated by gaseous stress signals, including hypoxia, resulting in the induction of ~ 48-genes DevR dormancy regulon. Regulon expression is tightly controlled and lack of expression in aerobic Mtb cultures is ascribed to the absence of phosphorylated DevR. Here we show that DevS is a bifunctional sensor and possesses a robust phosphatase activity toward DevR. We used site-specific mutagenesis to generate substitutions in conserved residues in the dimerization and histidine phosphotransfer domain of DevS and determined their role in kinase/phosphatase functions. In vitro and in vivo experiments, including a novel in vivo phosphatase assay, collectively establish that these conserved residues are critical for regulating kinase/phosphatase functions. Our findings establish DevS phosphatase function as an effective control mechanism to block aerobic expression of the DevR dormancy regulon. Asp-396 is essential for both kinase and phosphatase functions, whereas Gln-400 is critical for phosphatase function. The positive and negative functions perform opposing roles in DevS: the kinase function triggers regulon induction under hypoxia, whereas its phosphatase function prevents expression under aerobic conditions. A finely tuned balance in these opposing activities calibrates the dormancy regulon response output.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Protamina Quinasa/química , Protamina Quinasa/metabolismo , Proteínas Quinasas/metabolismo , Aerobiosis , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia Conservada , ADN/metabolismo , Proteínas de Unión al ADN , Regulación Bacteriana de la Expresión Génica , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fosfoproteínas Fosfatasas/genética , Protamina Quinasa/genética , Unión Proteica , Dominios Proteicos , Regulón
5.
FEBS J ; 283(7): 1286-99, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26799615

RESUMEN

The crystal structures of several bacterial response regulators provide insight into the various interdomain molecular interactions potentially involved in maintaining their 'active' or 'inactive' states. However, the requirement of high concentrations of protein, an optimal pH and ionic strength buffers during crystallization may result in a structure somewhat different from that observed in solution. Therefore, functional assessment of the physiological relevance of the crystal structure data is imperative. DevR/DosR dormancy regulator of Mycobacterium tuberculosis (Mtb) belongs to the NarL subfamily of response regulators. The crystal structure of unphosphorylated DevR revealed that it forms a dimer through the α5/α6 interface. It was proposed that phosphorylation may trigger extensive structural rearrangements in DevR that culminate in the formation of a DNA-binding competent dimeric species via α10-α10 helix interactions. The α10 helix-deleted DevR protein (DevR∆α10 ) was hyperphosphorylated but defective with respect to in vitro DNA binding. Biophysical characterization reveals that DevR∆α10 has an open but less stable conformation. The combined cross-linking and DNA-binding data demonstrate that the α10 helix is essential for the formation and stabilization of the DNA-binding proficient DevR structure in both the phosphorylated and unphosphorylated states. Genetic studies establish that Mtb strains expressing DevR∆α10 are defective with respect to dormancy regulon expression under hypoxia. The present study highlights the indispensable role of the α10 helix in DevR activation and function under hypoxia and establishes the α10-α10 helix interface as a novel target for developing inhibitors against DevR, a key regulator of hypoxia-triggered dormancy.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Quinasas/metabolismo , Anaerobiosis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Western Blotting , Dicroismo Circular , ADN Bacteriano/genética , Proteínas de Unión al ADN , Regulación Bacteriana de la Expresión Génica , Mutación , Mycobacterium tuberculosis/genética , Fosforilación , Unión Proteica , Pliegue de Proteína , Proteínas Quinasas/química , Proteínas Quinasas/genética , Estructura Secundaria de Proteína , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA