Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.584
Filtrar
2.
Mol Cell Proteomics ; : 100812, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39004188

RESUMEN

Data-dependent liquid chromatography tandem mass spectrometry (LC-MS/MS) is challenged by the large concentration range of proteins in plasma and related fluids. We adapted the SCoPE method from single-cell proteomics to pericardial fluid, where a myocardial tissue carrier was used to aid protein quantification. The carrier proteome and patient samples were labeled with distinct isobaric labels, which allowed separate quantification. Undepleted pericardial fluid from patients with type 2 diabetes mellitus and/or heart failure undergoing heart surgery was analyzed with either a traditional LC-MS/MS method or with the carrier proteome. In total, 1398 proteins were quantified with a carrier, compared to 265 without, and a higher proportion of these proteins were of myocardial origin. The number of differentially expressed proteins also increased nearly four-fold. For patients with both heart failure and type 2 diabetes mellitus, pathway analysis of upregulated proteins demonstrated enrichment of immune activation, blood coagulation, and stress pathways. Overall, our work demonstrates the applicability of a carrier for enhanced protein quantification in challenging biological matrices such as pericardial fluid, with potential applications for biomarker discovery. Mass spectrometry data are available via ProteomeXchange with identifier PXD053450.

3.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000117

RESUMEN

Diabetic cardiomyopathy (DCM) is a major determinant of mortality in diabetic populations, and the potential strategies are insufficient. Canagliflozin has emerged as a potential cardioprotective agent in diabetes, yet its underlying molecular mechanisms remain unclear. We employed a high-glucose challenge (60 mM for 48 h) in vitro to rat cardiomyocytes (H9C2), with or without canagliflozin treatment (20 µM). In vivo, male C57BL/6J mice were subjected to streptozotocin and a high-fat diet to induce diabetes, followed by canagliflozin administration (10, 30 mg·kg-1·d-1) for 12 weeks. Proteomics and echocardiography were used to assess the heart. Histopathological alterations were assessed by the use of Oil Red O and Masson's trichrome staining. Additionally, mitochondrial morphology and mitophagy were analyzed through biochemical and imaging techniques. A proteomic analysis highlighted alterations in mitochondrial and autophagy-related proteins after the treatment with canagliflozin. Diabetic conditions impaired mitochondrial respiration and ATP production, alongside decreasing the related expression of the PINK1-Parkin pathway. High-glucose conditions also reduced PGC-1α-TFAM signaling, which is responsible for mitochondrial biogenesis. Canagliflozin significantly alleviated cardiac dysfunction and improved mitochondrial function both in vitro and in vivo. Specifically, canagliflozin suppressed mitochondrial oxidative stress, enhancing ATP levels and sustaining mitochondrial respiratory capacity. It activated PINK1-Parkin-dependent mitophagy and improved mitochondrial function via increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Notably, PINK1 knockdown negated the beneficial effects of canagliflozin on mitochondrial integrity, underscoring the critical role of PINK1 in mediating these protective effects. Canagliflozin fosters PINK1-Parkin mitophagy and mitochondrial function, highlighting its potential as an effective treatment for DCM.


Asunto(s)
Canagliflozina , Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Ratones Endogámicos C57BL , Mitofagia , Proteínas Quinasas , Ubiquitina-Proteína Ligasas , Animales , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Mitofagia/efectos de los fármacos , Masculino , Ratones , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Ratas , Canagliflozina/farmacología , Canagliflozina/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular , Transducción de Señal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos
4.
World J Diabetes ; 15(6): 1070-1073, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38983803

RESUMEN

In this editorial, we commented on the article published in the recent issue of the World Journal of Diabetes. Diabetic cardiomyopathy (DCM) is characterized by myocardial fibrosis, ventricular hypertrophy and diastolic dysfunction in diabetic patients, which can cause heart failure and threaten the life of patients. The pathogenesis of DCM has not been fully clarified, and it may involve oxidative stress, inflammatory stimulation, apoptosis, and autophagy. There is lack of effective therapies for DCM in the clinical practice. Statins have been widely used in the clinical practice for years mainly to reduce cholesterol and stabilize arterial plaques, and exhibit definite cardiovascular protective effects. Studies have shown that statins also have anti-inflammatory and antioxidant effects. We were particularly concerned about the recent findings that atorvastatin alleviated myocardial fibrosis in db/db mice by regulating the antioxidant stress and anti-inflammatory effects of macrophage polarization on diabetic myocardium, and thereby improving DCM.

5.
J Am Coll Cardiol ; 84(3): 233-243, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38986667

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DbCM) increases risk of overt heart failure in individuals with diabetes mellitus. Racial and ethnic differences in DbCM remain unexplored. OBJECTIVES: The authors sought to identify racial and ethnic differences among individuals with type 2 diabetes mellitus, structural heart disease, and impaired exercise capacity. METHODS: The ARISE-HF (Aldolase Reductase Inhibitor for Stabilization of Exercise Capacity in Heart Failure) trial is assessing the efficacy of an aldose reductase inhibitor for exercise capacity preservation in 691 persons with DbCM. Baseline characteristics, echocardiographic parameters, and functional capacity were analyzed and stratified by race and ethnicity. RESULTS: The mean age of the study participants was 67.4 years; 50% were women. Black and Hispanic patients had lower use of diabetes mellitus treatments. Black patients had poorer baseline ventricular function and more impaired global longitudinal strain. Overall, health status was preserved, based on Kansas City Cardiomyopathy Questionnaire scores, but reduced exercise capacity was present as evidenced by reduced Physical Activity Scale for the Elderly (PASE) scores. When stratified by race and ethnicity and compared with the entire cohort, Black patients had poorer health status, more reduced physical activity, and a greater impairment in exercise capacity during cardiopulmonary exercise testing, whereas Hispanic patients also displayed compromised cardiopulmonary exercise testing functional capacity. White patients demonstrated higher physical activity and functional capacity. CONCLUSIONS: Racial and ethnic differences exist in baseline characteristics of persons affected by DbCM, with Black and Hispanic study participants demonstrating higher risk features. These insights inform the need to address differences in the population with DbCM. (Safety and Efficacy of AT-001 in Patients With Diabetic Cardiomyopathy [ARISE-HF]; NCT04083339).


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Humanos , Femenino , Masculino , Cardiomiopatías Diabéticas/etnología , Cardiomiopatías Diabéticas/epidemiología , Anciano , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/etnología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Tolerancia al Ejercicio/fisiología , Hispánicos o Latinos/estadística & datos numéricos , Negro o Afroamericano , Ecocardiografía , Prueba de Esfuerzo , Insuficiencia Cardíaca/etnología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/tratamiento farmacológico
7.
Curr Diabetes Rev ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38994615

RESUMEN

Diabetes is a chronic medical condition that causes high glycaemic levels, leading to damage to vital organs over time. It is a common disease worldwide, affecting around 422 million individuals living in middle- and low-income countries, which make up most of the population. Unfortunately, diabetes results in 1.5 million deaths annually. Diabetic patients are at a higher risk for developing cardiovascular conditions. Diabetic heart disease constitutes multiple genres, including diabetic cardiomyopathy, coronary artery disease, and heart failure. Hypoglycaemic agents aim to prevent these metabolic issues however some of these are cardiotoxic in nature. In contrast, other hypoglycaemic agents work beyond controlling glycaemic levels with their cardioprotective properties. Given that there is an alarming increase in diabetic heart disease cases universally, we have attempted to review the existing data on the topic and the effects of hypoglycaemic drugs on heart diseases.

8.
BMC Cardiovasc Disord ; 24(1): 351, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987672

RESUMEN

Diabetic cardiomyopathy (DCM) is a chronic disease caused by diabetes mellitus, which is recognized as a worldwide challenging disease. This study aimed to investigate the role and the potential mechanism of knocking down the NACHT-, LRR- and PYD domains-containing protein 3 (NLRP3), an inflammasome associated with onset and progression of various diseases, on high glucose or diabetes -induced cardiac cells pyroptosis and ferroptosis, two regulated non-necrosis cell death modalities discovered recent years. In the present study, both in vivo and in vitro studies were conducted simultaneously. Diabetic rats were induced by 55 mg/kg intraperitoneal injection of streptozotocin (STZ). Following the intraperitoneal injection of MCC950 (10 mg/kg), On the other hand, the DCM model in H9C2 cardiac cells was simulated with 35 mmol/L glucose and a short hairpin RNA vector of NLRP3 were transfected to cells. The results showed that in vivo study, myocardial fibers were loosely arranged and showed inflammatory cell infiltration, mitochondrial cristae were broken and the GSDMD-NT expression was found notably increased in the DM group, while the protein expressions of xCT and GPX4 was significantly decreased, both of which were reversed by MCC950. High glucose reduced the cell viability and ATP level in vitro, accompanied by an increase in LDH release. All of the above indicators were reversed after NLRP3 knockdown compared with the HG treated alone. Moreover, the protein expressions of pyroptosis- and ferroptosis-related fators were significantly decreased or increased, consistent with the results shown by immunofluorescence. Furthermore, the protective effects of NLRP3 knockdown against HG were reversed following the mtROS agonist rotenone (ROT) treatment. In conclusion, inhibition of NLRP3 suppressed DM-induced myocardial injury. Promotion of mitochondrial ROS abolished the protective effect of knockdown NLRP3, and induced the happening of pyroptosis and ferroptosis. These findings may present a novel therapeutic underlying mechanism for clinical diabetes-induced myocardial injury treatment.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Ferroptosis , Técnicas de Silenciamiento del Gen , Miocitos Cardíacos , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Ferroptosis/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Masculino , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Línea Celular , Ratas Sprague-Dawley , Ratas , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Inflamasomas/metabolismo , Sulfonamidas/farmacología , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Gasderminas
9.
Diabetol Metab Syndr ; 16(1): 146, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956716

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) stands as the primary cause of heart failure and mortality among patients with diabetes. Nevertheless, conventional treatment approaches are limited in their ability to effectively prevent myocardial tissue damage itself. Mesenchymal stem cell (MSC) therapy exhibits immense potential for treating DCM; however, the precise mechanisms involved in regulating inflammatory responses and pyroptosis processes, an emerging form of cellular death, within myocardial cells remain elusive. Hence, it is imperative to further elucidate the precise underlying mechanisms to facilitate the clinical implementation of MSC therapy. METHODS: In vivo, we established a DCM mouse model by administering streptozotocin and fed the mice a high-glucose and high-fat diet, followed by MSC therapy. Cardiac function and myocardial injury were evaluated through echocardiography and histological analysis. Furthermore, the levels of inflammation and pyroptosis were assessed using ELISA, Western blotting, and qRT-PCR. In vitro experiments involved inducing H9C2 myocardial cell damage with high glucose treatment, followed by coculture with MSCs to investigate their role in modulating inflammation and pyroptosis mechanisms. RESULTS: MSCs can maintain cardiac function and alleviate myocardial injury in mice with DCM. Moreover, they effectively suppress the activation of NLRP3 and reduce the release of inflammatory factors (such as IL-1ß and ROS), thereby further downregulating the expression of pyroptosis-related proteins including NLRP3, Caspase-1, and GSDMD. Additionally, we experimentally validated that MSCs exert their therapeutic effects by promoting the expression of miR-223-3p in cardiac myocytes; however, this effect can be reversed by an miR-223-3p inhibitor. CONCLUSION: MSCs effectively mitigate the release of inflammatory factors and cell lysis caused by pyroptosis through the regulation of the miR-223-3p/NLRP3 pathway, thereby safeguarding cardiomyocytes against damage in DCM. This mechanism establishes a novel theoretical foundation for the clinical treatment of cardiac conditions utilizing MSCs.

10.
Cardiovasc Diabetol ; 23(1): 227, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951895

RESUMEN

In recent years, the incidence of diabetes has been increasing rapidly, posing a serious threat to human health. Diabetic cardiomyopathy (DCM) is characterized by cardiomyocyte hypertrophy, myocardial fibrosis, apoptosis, ventricular remodeling, and cardiac dysfunction in individuals with diabetes, ultimately leading to heart failure and mortality. However, the underlying mechanisms contributing to DCM remain incompletely understood. With advancements in molecular biology technology, accumulating evidence has shown that numerous non-coding RNAs (ncRNAs) crucial roles in the development and progression of DCM. This review aims to summarize recent studies on the involvement of three types of ncRNAs (micro RNA, long ncRNA and circular RNA) in the pathophysiology of DCM, with the goal of providing innovative strategies for the prevention and treatment of DCM.


Asunto(s)
Cardiomiopatías Diabéticas , ARN Circular , ARN Largo no Codificante , Humanos , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/metabolismo , Animales , ARN Circular/genética , ARN Circular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica , ARN no Traducido/genética , ARN no Traducido/metabolismo , Transducción de Señal , Miocardio/patología , Miocardio/metabolismo
11.
Tissue Cell ; 90: 102478, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053131

RESUMEN

Nimbolide has been demonstrated to possess protective properties against gestational diabetes mellitus and diabetic retinopathy. However, the role and molecular mechanism of nimbolide in diabetic cardiomyopathy (DCM) remain unknown. Diabetes was induced in rats via a single injection of streptozotocin (STZ) and then the diabetic rats were administered nimbolide (5 mg/kg and 20 mg/kg) or dimethyl sulfoxide daily for 12 weeks. H9c2 cardiomyocytes were exposed to high glucose (25 mM glucose) to mimic DCM in vitro. The protective effects of nimbolide against DCM were evaluated in vivo and in vitro. The potential molecular mechanism of nimbolide in DCM was further explored. We found that nimbolide dose-dependently decreased blood glucose and improved body weight of diabetic rats. Additionally, nimbolide dose-dependently improved cardiac function, alleviated myocardial injury/fibrosis, and inhibited endoplasmic reticulum (ER) stress and apoptosis in diabetic rats. Moreover, nimbolide dose-dependently improved mitochondrial function and activated the Akt/mTOR signaling. We consistently demonstrated the cardioprotective effects of nimbolide in an in vitro model of DCM. The involvement of ER stress and mitochondrial pathways were further confirmed by using inhibitors of ER stress and mitochondrial division. By applying a specific Akt inhibitor SC66, the cardioprotective effects of nimbolide were partially blocked. Our study indicated that nimbolide alleviated DCM by activating Akt/mTOR pathway. Nimbolide may be a novel therapeutic agent for DCM treatment.

12.
Cells ; 13(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39056777

RESUMEN

The incidence of cardiovascular disorders is continuously rising, and there are no effective drugs to treat diabetes-associated heart failure. Thus, there is an urgent need to explore alternate approaches, including natural plant extracts, which have been successfully exploited for therapeutic purposes. The current study aimed to explore the cardioprotective potential of Phoenix dactylifera (PD) extract in experimental diabetic cardiomyopathy (DCM). Following in vitro phytochemical analyses, Wistar albino rats (N = 16, male; age 2-3 weeks) were fed with a high-fat or standard diet prior to injection of streptozotocin (35 mg/kg i.p.) after 2 months and separation into the following four treatment groups: healthy control, DCM control, DCM metformin (200 mg/kg/day, as the reference control), and DCM PD treatment (5 mg/kg/day). After 25 days, glucolipid and myocardial blood and serum markers were assessed along with histopathology and gene expression of both heart and pancreatic tissues. The PD treatment improved glucolipid balance (FBG 110 ± 5.5 mg/dL; insulin 17 ± 3.4 ng/mL; total cholesterol 75 ± 8.5 mg/dL) and oxidative stress (TOS 50 ± 7.8 H2O2equiv./L) in the DCM rats, which was associated with preserved structural integrity of both the pancreas and heart compared to the DCM control (FBG 301 ± 10 mg/dL; insulin 27 ± 3.4 ng/mL; total cholesterol 126 ± 10 mg/dL; TOS 165 ± 12 H2O2equiv./L). Gene expression analyses revealed that PD treatment upregulated the expression of insulin signaling genes in pancreatic tissue (INS-I 1.69 ± 0.02; INS-II 1.3 ± 0.02) and downregulated profibrotic gene expression in ventricular tissue (TGF-ß 1.49 ± 0.04) compared to the DCM control (INS-I 0.6 ± 0.02; INS-II 0.49 ± 0.03; TGF-ß 5.7 ± 0.34). Taken together, these data indicate that Phoenix dactylifera may offer cardioprotection in DCM by regulating glucolipid balance and metabolic signaling.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Metabolismo de los Lípidos , Phoeniceae , Extractos Vegetales , Ratas Wistar , Animales , Phoeniceae/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Masculino , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/prevención & control , Ratas , Metabolismo de los Lípidos/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Metanol/química , Estrés Oxidativo/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Miocardio/metabolismo , Miocardio/patología
13.
J Cardiovasc Dev Dis ; 11(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39057635

RESUMEN

In order to investigate the subcellular mechanisms underlying the beneficial effects of sarpogrelate-a 5-HT2A receptor antagonist-on diabetic cardiomyopathy, diabetes was induced in rats by injecting streptozotocin (65 mg/kg). Diabetic animals were treated with or without sarpogrelate (5 mg/kg daily) for 6 weeks; diabetic animals were also treated with insulin (10 units/kg daily) for comparison. Elevated plasma levels of glucose and lipids, depressed insulin levels, hemodynamic alterations and cardiac dysfunction in diabetic animals were partially or fully attenuated by sarpogrelate or insulin treatment. Diabetes-induced changes in myocardial high-energy phosphate stores, as well as depressed mitochondrial oxidative phosphorylation and Ca2+-uptake activities, were significantly prevented by these treatments. Reductions in sarcolemma Na+-K+ ATPase, Na+-Ca2+ exchange, Ca2+-channel density and Ca2+-uptake activities were also attenuated by treatments with sarpogrelate and insulin. In addition, decreases in diabetes-induced sarcoplasmic reticulum Ca2+-uptake, Ca2+-release and Ca2+-stimulated ATPase activities, myofibrillar Mg2+-ATPase and Ca2+-stimulated ATPase activities, and myosin Mg2+-ATPase and Ca2+-ATPase activities were fully or partially prevented by sarpogrelate and insulin treatments. Marked alterations in different biomarkers of oxidative stress, such as malondialdehyde, superoxide dismutase and glutathione peroxidase, in diabetic hearts were also attenuated by treating the animals with sarpogrelate or insulin. These observations suggest that therapy with sarpogrelate, like that with insulin, may improve cardiac function by preventing subcellular and metabolic defects as a consequence of a reduction in oxidative stress.

14.
Metabolism ; 158: 155977, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053690

RESUMEN

BACKGROUND: Although metabolic disturbance is a characteristic of diabetic cardiomyopathy (DbCM), the detailed pathogenesis of DbCM remains unknown. METHODS: We used a heart transplantation (HTx) cohort to explore the effect of diabetes mellitus on heart failure (HF) progression dependent of myocardium. Microscopic and ultramicroscopic pathology were used to depict the pathological features of human myocardium of DbCM. We performed targeted metabolomics to characterize the metabolic phenotype of human DbCM. Transcriptomics data were analyzed and weighted gene co-expression network analysis was performed to explore the potential upstream regulator for metabolic remodeling of DbCM. In vivo and in vitro experiments were further conducted to demonstrate the therapeutic effects and molecular mechanisms. RESULTS: DbCM promoted the progression of HF and increased death or HF-rehospitalization after HTx. Lipid accumulation and mitochondrial fission were the obvious pathological features of DbCM myocardium. The concentrations of C14:0-CoA and C16:1-CoA were significantly increased in the myocardium, and they were positively correlated with the accelerated HF progression and RCAN1 expression in DbCM patients. Knockdown of RCAN1 improved cardiac dysfunction, lipid accumulation, and mitochondrial fission in db/db mice. In vitro studies showed that RCAN1 knockdown improved mitochondrial dysfunction in DbCM cardiomyocytes via the RCAN1-p-Drp1 Ser616 axis. CONCLUSIONS: Diabetes is associated with faster progression of HF and causes poor prognosis after HTx, accompanied by metabolic remodeling in the myocardium. Accumulation of long chain acyl-CoA in the myocardium is the metabolic hallmark of human DbCM and is associated with more rapid disease progression for DbCM patients. Upregulation of RCAN1 in the myocardium is associated with the metabolic signatures of DbCM and RCAN1 is a potential therapeutic target for DbCM.

15.
Front Pharmacol ; 15: 1401961, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045049

RESUMEN

Diabetic cardiomyopathy (DCM) is a specific heart condition in diabetic patients, which is a major cause of heart failure and significantly affects quality of life. DCM is manifested as abnormal cardiac structure and function in the absence of ischaemic or hypertensive heart disease in individuals with diabetes. Although the development of DCM involves multiple pathological mechanisms, mitochondrial dysfunction is considered to play a crucial role. The regulatory mechanisms of mitochondrial dysfunction mainly include mitochondrial dynamics, oxidative stress, calcium handling, uncoupling, biogenesis, mitophagy, and insulin signaling. Targeting mitochondrial function in the treatment of DCM has attracted increasing attention. Studies have shown that plant secondary metabolites contribute to improving mitochondrial function and alleviating the development of DCM. This review outlines the role of mitochondrial dysfunction in the pathogenesis of DCM and discusses the regulatory mechanism for mitochondrial dysfunction. In addition, it also summarizes treatment strategies based on plant secondary metabolites. These strategies targeting the treatment of mitochondrial dysfunction may help prevent and treat DCM.

16.
Front Pharmacol ; 15: 1416403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021834

RESUMEN

Diabetic cardiomyopathy (DCM) is a myocardial-specific microvascular disease caused by diabetes that affects the structure and function of the heart and is considered to be the leading cause of morbidity and death in patients with diabetes. Currently, there is no specific treatment or preventive drug for DCM, and there is an urgent need to develop new drugs to treat DCM. Traditional Chinese medicine (TCM) has rich experience in the treatment of DCM, and its characteristics of multi-target, multi-pathway, multi-component, and few side effects can effectively deal with the complexity and long-term nature of DCM. Growing evidence suggests that myocardial fibrosis, inflammation, oxidative stress, apoptosis, cardiac hypertrophy, and advanced glycation end product deposition were the main pathologic mechanisms of DCM. According to the pathological mechanism of DCM, this study revealed the potential of metabolites and prescriptions in TCM against DCM from the perspective of signaling pathways. The results showed that TGF-ß/Smad, NF-κB, PI3K/AKT, Nrf2, AMPK, NLRP3, and Wnt/ß-catenin signaling pathways were the key signaling pathways for TCM treatment of DCM. The aim of this study was to summarize and update the signaling pathways for TCM treatment of DCM, to screen potential targets for drug candidates against DCM, and to provide new ideas and more experimental evidence for the clinical use of TCM treatment of DCM.

17.
Noncoding RNA Res ; 9(4): 1080-1097, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39022683

RESUMEN

Diabetes mellitus has surged in prevalence, emerging as a prominent epidemic and assuming a foremost position among prevalent medical disorders. Diabetes constitutes a pivotal risk element for cardiovascular maladies, with diabetic cardiomyopathy (DCM) standing out as a substantial complication encountered by individuals with diabetes. Apoptosis represents a physiological phenomenon observed throughout the aging and developmental stages, giving rise to the programmed cell death, which is implicated in DCM. Non-coding RNAs assume significant functions in modulation of gene expression. Their deviant expression of ncRNAs is implicated in overseeing diverse cellular attributes such as proliferation, apoptosis, and has been postulated to play a role in the progression of DCM. Notably, ncRNAs and the process of apoptosis can mutually influence and cooperate in shaping the destiny of human cardiac tissues. Therefore, the exploration of the interplay between apoptosis and non-coding RNAs holds paramount importance in the formulation of efficacious therapeutic and preventive approaches for managing DCM. In this review, we provide a comprehensive overview of the apoptotic signaling pathways relevant to DCM and subsequently delve into the reciprocal regulation between apoptosis and ncRNAs in DCM. These insights contribute to an enhanced comprehension of DCM and the development of therapeutic strategies.

18.
Heliyon ; 10(13): e33601, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040275

RESUMEN

Background: Diabetic cardiomyopathy (DC), a frequent complication of type 2 diabetes mellitus (T2DM), is mainly associated with severe adverse outcomes. Previous research has highlighted the role of Lysophosphatidylcholine (LPC) in inducing myocardial injury; however, the specific mechanisms through which LPC mediate such injury in DC remain elusive. The existing knowledge gap underscores the need for additional clarification. Consequently, this study aimed to explore the impact and underlying mechanisms of LPC on myocardial injury in DC. Methods: A total of 55 patients diagnosed with T2DM and 62 healthy controls were involved. A combination of 16s rRNA sequencing, metabolomic analysis, transcriptomic RNA-sequencing (RNA-seq), and whole exome sequencing (WES) was performed on fecal and peripheral blood samples collected from the participants. Following this, correlation analysis was carried out, and the results were further validated through the mouse model of T2DM. Results: Four LPC variants distinguishing T2DM patients from healthy controls were identified, all of which were upregulated in T2DM patients. Specifically, Lysopc (16:0, 2 N isoform) and LPC (16:0) exhibited a positive correlation with nuclear factor kappa B subunit 2 (NFKB2) and a negative correlation with Zinc finger protein 480 (ZNF480) Furthermore, the expression levels of Toll-like receptor 4 (TLR4), c-Jun, c-Fos, and NFKB2 were upregulated in the peripheral blood of T2DM patients and in the myocardial tissue of T2DM mice, whereas ZNF480 expression level was downregulated. Lastly, myocardial injury was identified in T2DM mice. Conclusions: The results indicated that LPC could induce myocardial injury in DC through the TLR4/ZNF480/AP-1/NF-kB pathway, providing a precise target for the clinical diagnosis and treatment of DC.

19.
Front Pharmacol ; 15: 1407883, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040468

RESUMEN

Introduction: Diabetic cardiomyopathy (DCM) is predominantly distinguished by impairment in ventricular function and myocardial fibrosis. Previous studies revealed the cardioprotective properties of C1q/tumor necrosis factor-related protein 9 (CTRP9). However, whether CTRP9 affects diabetic myocardial fibrosis and its underlying mechanisms remains unclear. Methods: We developed a type 1 diabetes (T1DM) model in CTRP9-KO mice via streptozotocin (STZ) induction to examine cardiac function, histopathology, fibrosis extent, Yes-associated protein (YAP) expression, and the expression of markers for autophagy such LC3-II and p62. Additionally, we analyzed the direct impact of CTRP9 on high glucose (HG)-induced transdifferentiation, autophagic activity, and YAP protein levels in cardiac fibroblasts. Results: In diabetic mice, CTRP9 expression was decreased in the heart. The absence of CTRP9 aggravated cardiac dysfunction and fibrosis in mice with diabetes, alongside increased YAP expression and impaired autophagy. In vitro, HG induced the activation of myocardial fibroblasts, which demonstrated elevated cell proliferation, collagen production, and α-smooth muscle actin (α-SMA) expression. CTRP9 countered these adverse effects by restoring autophagy and reducing YAP protein levels in cardiac fibroblasts. Notably, the protective effects of CTRP9 were negated by the inhibition of autophagy with chloroquine (CQ) or by YAP overexpression through plasmid intervention. Notably, the protective effect of CTRP9 was negated by inhibition of autophagy caused by chloroquine (CQ) or plasmid intervention with YAP overexpression. Discussion: Our findings suggest that CTRP9 can enhance cardiac function and mitigate cardiac remodeling in DCM through the regulation of YAP-mediated autophagy. CTRP9 holds promise as a potential candidate for pharmacotherapy in managing diabetic cardiac fibrosis.

20.
Circ Res ; 135(3): 416-433, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38946541

RESUMEN

BACKGROUND: Exercise intolerance is an independent predictor of poor prognosis in diabetes. The underlying mechanism of the association between hyperglycemia and exercise intolerance remains undefined. We recently demonstrated that the interaction between ARRDC4 (arrestin domain-containing protein 4) and GLUT1 (glucose transporter 1) regulates cardiac metabolism. METHODS: To determine whether this mechanism broadly impacts diabetic complications, we investigated the role of ARRDC4 in the pathogenesis of diabetic cardiac/skeletal myopathy using cellular and animal models. RESULTS: High glucose promoted translocation of MondoA into the nucleus, which upregulated Arrdc4 transcriptional expression, increased lysosomal GLUT1 trafficking, and blocked glucose transport in cardiomyocytes, forming a feedback mechanism. This role of ARRDC4 was confirmed in human muscular cells from type 2 diabetic patients. Prolonged hyperglycemia upregulated myocardial Arrdc4 expression in multiple types of mouse models of diabetes. We analyzed hyperglycemia-induced cardiac and skeletal muscle abnormalities in insulin-deficient mice. Hyperglycemia increased advanced glycation end-products and elicited oxidative and endoplasmic reticulum stress leading to apoptosis in the heart and peripheral muscle. Deletion of Arrdc4 augmented tissue glucose transport and mitochondrial respiration, protecting the heart and muscle from tissue damage. Stress hemodynamic analysis and treadmill exhaustion test uncovered that Arrdc4-knockout mice had greater cardiac inotropic/chronotropic reserve with higher exercise endurance than wild-type animals under diabetes. While multiple organs were involved in the mechanism, cardiac-specific overexpression using an adenoassociated virus suggests that high levels of myocardial ARRDC4 have the potential to contribute to exercise intolerance by interfering with cardiac metabolism through its interaction with GLUT1 in diabetes. Importantly, the ARRDC4 mutation mouse line exhibited greater exercise tolerance, showing the potential therapeutic impact on diabetic cardiomyopathy by disrupting the interaction between ARRDC4 and GLUT1. CONCLUSIONS: ARRDC4 regulates hyperglycemia-induced toxicities toward cardiac and skeletal muscle, revealing a new molecular framework that connects hyperglycemia to cardiac/skeletal myopathy to exercise intolerance.


Asunto(s)
Tolerancia al Ejercicio , Transportador de Glucosa de Tipo 1 , Ratones Noqueados , Animales , Ratones , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Masculino , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/etiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Músculo Esquelético/metabolismo , Hiperglucemia/metabolismo , Hiperglucemia/genética , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA