Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Int J Biol Macromol ; 277(Pt 4): 134547, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116974

RESUMEN

Jelly candies could be considered promising food matrices for the delivery of bioactive compounds such as anthocyanins (ACNs). In this study, gelatin-based jelly candies were fortified with free ACNs-rich purple basil leaf extract (PBLE) and PBLE-loaded emulgel beads. The interaction between free ACNs and gelatin in the jelly matrix resulted in a lower release of ACNs in the mouth (8.27 %) and gastric stage (74.44 %) compared to those of free extract (24.92 and 86.13 %), as well as some protection in the intestinal stage. The release of ACNs from the jellies enriched with PBLE-loaded emulgel beads only began in the intestinal stage and reached 66.34-70.75 % of the initial load. Compared to those of PBLE-loaded emulgel beads, the introduction of beads within the jelly matrix increased the in vitro release of ACNs. The jelly samples enriched with PBLE-loaded emulgel beads yielded higher hardness, adhesiveness, flexibility, and chewiness compared to samples with free PBLE. While the color and appearance of jellies fortified with encapsulated PBLE were impaired, they got the highest sensory acceptance scores due to the masking of the bitter taste of the free extract. ACNs-loaded emulgel beads could be a viable method for fortifying jelly candies.

2.
J Control Release ; 373: 837-852, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39059499

RESUMEN

mRNA delivery systems, such as lipid nanoparticle (LNP), have made remarkable strides in improving mRNA expression, whereas immune system activation operates on a threshold. Maintaining a delicate balance between antigen expression and dendritic cell (DC) activation is vital for effective immune recognition. Here, a water-in-oil-in-water (w/o/w) Pickering emulsion stabilized with calcium phosphate nanoparticles (CaP-PME) is developed for mRNA delivery in cancer vaccination. CaP-PME efficiently transports mRNA into the cytoplasm, induces pro-inflammatory responses and activates DCs by disrupting intracellular calcium/potassium ions balance. Unlike LNP, CaP-PME demonstrates a preference for DCs, enhancing their activation and migration to lymph nodes. It elicits interferon-γ-mediated CD8+ T cell responses and promotes NK cell proliferation and activation, leading to evident NK cells infiltration and ameliorated tumor microenvironment. The prepared w/o/w Pickering emulsion demonstrates superior anti-tumor effects in E.G7 and B16-OVA tumor models, offering promising prospects as an enhanced mRNA delivery vehicle for cancer vaccinations.

3.
Acta Biomater ; 184: 419-430, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936754

RESUMEN

Traditional cancer chemotherapy suffers from low efficacy and severe side effects, limiting its use as a first-line treatment. To address this issue, we investigated a novel way to induce lipid peroxidation (LPO), which plays an essential role in ferroptosis and may be useful against cancer cells and tumors. In this study, a pH-responsive synergistic cancer therapy nanoplatform was prepared using CaCO3 co-loaded with oleanolic acid (OA) and lipoxygenase (LOX), resulting in the formation OLCaP NP. This nanoplatform exhibited good drug release properties in an acidic tumor environment owing to the presence of CaCO3. As a result of acidic stimulation at tumor sites, the OLCaP NP released OA and LOX. OA, a chemotherapeutic drug with anticancer activity, is already known to promote the apoptosis of cancer cells, and LOX is a natural enzyme that catalyzes the oxidation of polyunsaturated fatty acids, leading to the accumulation of lipid peroxides and promoting the apoptosis of cancer cells. More importantly, OA upregulated the expression of acyl-coenzyme A synthetase long-chain family member 4 (ACSL4), which promoted enzyme-mediated LPO. Based on our combined chemotherapy and nanocatalytic therapy, the OLCaP NP not only had remarkable antitumor ability but also upregulated ACSL4 expression, allowing further amplification of LPO to inhibit tumor growth. These findings demonstrate the potential of this nanoplatform to enhance the therapeutic efficacy against tumors by inducing oxidative stress and disrupting lipid metabolism, highlighting its clinical potential for improved cancer treatment. STATEMENT OF SIGNIFICANCE: This study presents a novel nanoplatform that combines oleanolic acid (OA), a chemotherapeutic drug, and lipoxygenase (LOX), which oxidizes polyunsaturated fatty acids to trigger apoptosis, for targeted cancer therapy. Unlike traditional treatments, our nanoplatform exhibits pH-responsive drug release, specifically in acidic tumor environments. This innovation enhances the therapeutic effects of OA and LOX, upregulating acyl-CoA synthetase long-chain family member 4 expression and amplifying lipid peroxidation to promote tumor cell apoptosis. Our findings significantly advance the existing literature by demonstrating a synergistic approach that combines chemotherapy and nanocatalytic therapy. The scientific impact of this work lies in its potential to improve cancer treatment efficacy and specificity, offering a promising strategy for clinical applications and future research in cancer therapy.


Asunto(s)
Peroxidación de Lípido , Nanopartículas , Ácido Oleanólico , Peroxidación de Lípido/efectos de los fármacos , Humanos , Animales , Nanopartículas/química , Ácido Oleanólico/farmacología , Ácido Oleanólico/química , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Lipooxigenasa/metabolismo , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Ratones Desnudos , Ratones Endogámicos BALB C , Catálisis , Femenino
4.
Pharmaceutics ; 16(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38931917

RESUMEN

In the past several decades, polymeric microparticles (MPs) have emerged as viable solutions to address the limitations of standard pharmaceuticals and their corresponding delivery methods. While there are many preclinical studies that utilize polymeric MPs as a delivery vehicle, there are limited FDA-approved products. One potential barrier to the clinical translation of these technologies is a lack of understanding with regard to the manufacturing process, hindering batch scale-up. To address this knowledge gap, we sought to first identify critical processing parameters in the manufacturing process of blank (no therapeutic drug) and protein-loaded double-emulsion poly(lactic-co-glycolic) acid MPs through a quality by design approach. We then utilized the design of experiments as a tool to systematically investigate the impact of these parameters on critical quality attributes (e.g., size, surface morphology, release kinetics, inner occlusion size, etc.) of blank and protein-loaded MPs. Our results elucidate that some of the most significant CPPs impacting many CQAs of double-emulsion MPs are those within the primary or single-emulsion process (e.g., inner aqueous phase volume, solvent volume, etc.) and their interactions. Furthermore, our results indicate that microparticle internal structure (e.g., inner occlusion size, interconnectivity, etc.) can heavily influence protein release kinetics from double-emulsion MPs, suggesting it is a crucial CQA to understand. Altogether, this study identifies several important considerations in the manufacturing and characterization of double-emulsion MPs, potentially enhancing their translation.

5.
Gels ; 10(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38920927

RESUMEN

Due to their high surface area and low weight, silica aerogels are ideally suited for several uses, including drug delivery, catalysis, and insulation. Oil-water-oil (OWO) double emulsion is a simple and regulated technique for encasing a volatile oil phase in a silica shell to produce hollow silica (SiO2) aerogel particles by using hydrophilic and hydrophobic emulsifiers. In this study, the oil-water-oil (OWO) double emulsion method was implemented to synthesize surface-modified hollow silica (SiO2) aerogel particles in a facile and effective way. This investigation mainly focused on the influence of the N-hexane-to-water glass (OW) ratio (r) in the first emulsion, silica (water glass) content concentration (x), and surfactant concentration (s) variations. Furthermore, surface modification techniques were utilized to customize the aerogel's characteristics. The X-ray diffraction (XRD) patterns showed no imprints of impurities except SiO2. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images highlight the hollow microstructure of silica particles. Zeta potential was used to determine particle size analysis of hollow silica aerogel particles. The oil-water-oil (OWO) double emulsion approach was successfully employed to synthesize surface-modified hollow silica (SiO2) aerogel particles, providing precise control over the particle characteristics. By the influence of the optimization condition, this approach improves the aerogel's potential applications in drug delivery, catalysis, and insulation by enabling surface modifications.

6.
Int J Nanomedicine ; 19: 4429-4449, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784761

RESUMEN

Background: Therapeutic proteins and peptides offer great advantages compared to traditional synthetic molecular drugs. However, stable protein loading and precise control of protein release pose significant challenges due to the extensive range of physicochemical properties inherent to proteins. The development of a comprehensive protein delivery strategy becomes imperative accounting for the diverse nature of therapeutic proteins. Methods: Biodynamers are amphiphilic proteoid dynamic polymers consisting of amino acid derivatives connected through pH-responsive dynamic covalent chemistry. Taking advantage of the amphiphilic nature of the biodynamers, PNCs and DEs were possible to be prepared and investigated to compare the delivery efficiency in drug loading, stability, and cell uptake. Results: As a result, the optimized PNCs showed 3-fold encapsulation (<90%) and 5-fold loading capacity (30%) compared to DE-NPs. PNCs enhanced the delivery efficiency into the cells but aggregated easily on the cell membrane due to the limited stability. Although DE-NPs were limited in loading capacity compared to PNCs, they exhibit superior adaptability in stability and capacity for delivering a wider range of proteins compared to PNCs. Conclusion: Our study highlights the potential of formulating both PNCs and DE-NPs using the same biodynamers, providing a comparative view on protein delivery efficacy using formulation methods.


Asunto(s)
Emulsiones , Péptidos , Péptidos/química , Péptidos/administración & dosificación , Péptidos/farmacocinética , Emulsiones/química , Humanos , Proteínas/química , Proteínas/administración & dosificación , Proteínas/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Polímeros/química , Nanopartículas/química , Concentración de Iones de Hidrógeno , Aminoácidos/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberación de Fármacos , Supervivencia Celular/efectos de los fármacos
7.
Int J Biol Macromol ; 270(Pt 2): 132313, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740156

RESUMEN

The application of many hydrophilic and hydrophobic nutraceuticals is limited by their poor solubility, chemical stability, and/or bioaccessibility. In this study, a novel Pickering high internal phase double emulsion co-stabilized by modified pea protein isolate (PPI) and sodium alginate (SA) was developed for the co-encapsulation of model hydrophilic (riboflavin) and hydrophobic (ß-carotene) nutraceuticals. Initially, the effect of emulsifier type in the external water phase on emulsion formation and stability was examined, including commercial PPI (C-PPI), C-PPI-SA complex, homogenized and ultrasonicated PPI (HU-PPI), and HU-PPI-SA complex. The encapsulation and protective effects of these double emulsions on hydrophilic riboflavin and hydrophobic ß-carotene were then evaluated. The results demonstrated that the thermal and storage stabilities of the double emulsion formulated from HU-PPI-SA were high, which was attributed to the formation of a thick biopolymer coating around the oil droplets, as well as thickening of the aqueous phase. Encapsulation significantly improved the photostability of the two nutraceuticals. The double emulsion formulated from HU-PPI-SA significantly improved the in vitro bioaccessibility of ß-carotene, which was mainly attributed to inhibition of its chemical degradation under simulated acidic gastric conditions. The novel delivery system may therefore be used for the development of functional foods containing multiple nutraceuticals.


Asunto(s)
Alginatos , Emulsiones , Proteínas de Guisantes , Riboflavina , beta Caroteno , beta Caroteno/química , Alginatos/química , Riboflavina/química , Emulsiones/química , Proteínas de Guisantes/química , Composición de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Estabilidad de Medicamentos , Cápsulas
8.
Anal Chim Acta ; 1309: 342573, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772651

RESUMEN

BACKGROUND: Double emulsions (DEs) have attracted researchers' attention to be utilized as a promising platform in biomedical and chemical applications. Several actuation mechanisms have been proposed for the generation of DEs. The conventional DE formation approaches (e.g. two-stage emulsification) suffer from low monodispersity. The electric actuation (i.e. coaxial electrospray technology) has been demonstrated as a controllable method for the DE formation, while the capability of magnetic actuation has not been studied yet. RESULT: In the present study, the generation of ferrofluid double emulsions (FDEs), made from water-based ferrofluid as a core and oil as a shell, under the magnetic actuation of a permanent magnet with a steady magnetic field and an electromagnet with DC and pulse width modulation (PWM) magnetic fields was investigated with a simple controllable setup fabricated using 3D printing. The effect of various parameters affecting the FDE formation, such as the fluid flow rates, the magnetic field type, the magnetic flux density, and the PWM frequency and duty cycle, on the FDE formation characteristics, including the inner and outer equivalent diameters, and the formation frequency was studied. Under the steady magnetic field, two regimes of the FDE formation were identified: inertia-dominated and magnet-dominated. SIGNIFICANCE: Wireless power-free magnetic actuation provides better control over the FDE formation, enhancing this process by increasing the FDE formation frequency with high monodispersity. The PWM magnetic field offers excellent controllability over the FDE formation with low-volume or no, in some cases, satellite droplets by tuning the PWM frequency and the duty cycle.

9.
Food Res Int ; 184: 114269, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609247

RESUMEN

An O1/W/O2 double emulsion gel, as a functional fat substitute and based on nanoemulsions and hydrophobic Pickering particles, is prepared by two-step emulsification to co-encapsulate hydrophilic cyanidin and hydrophobic quercetin. Nanoemulsions loading quercetin are fabricated by Tween-80 and combining high-speed and high-pressure emulsification. Phytosterol nanoparticles stabilize the W-O2 interface of the secondary emulsion to load cyanidin in the W phase. The concentration of Tween-80 is optimized as 0.3% by the droplet size and viscosity of nanoemulsions. The structural stability of double emulsion gels will be weakened along with the increase of nanoemulsions, showing lower modulus and encapsulation efficiency (EE) and bigger droplets. In double emulsion gels, the EE of quercetin and cyanidin reaches 93% and 85.6%, respectively. Analysis of molecular interaction indicates that Tween-80 would decrease the in-situ hydrophobicity of phytosterol nanoparticles by hydrogen bonding adsorption, thereby weakening the emulsification. The pH-chromic 3D printing of double emulsion gels is designed according to the pH sensitivity of cyanidin. Texture profile analysis is performed to test the textural properties of 3D-printed objects. The simulated digestion is conducted on double emulsion gels. The double emulsion gel with fewer nanoemulsions is beneficial for protecting quercetin and improving the delivery due to the higher structural stability, while that with more nanoemulsions is conducive to the digestion of cyanidin and camellia oil due to weakened semi-solid properties. This double emulsion gel further simulates fat tissues by co-encapsulating hydrophilic and hydrophobic substances, promoting the application of fat substitutes in the food industry.


Asunto(s)
Antocianinas , Sustitutos de Grasa , Fitosteroles , Emulsiones , Polisorbatos , Quercetina , Geles
10.
Biosens Bioelectron ; 257: 116339, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688231

RESUMEN

Pairing droplet microfluidics and CRISPR/Cas12a techniques creates a powerful solution for the detection and quantification of nucleic acids at the single-molecule level, due to its specificity, sensitivity, and simplicity. However, traditional water-in-oil (W/O) single emulsion (SE) droplets often present stability issues, affecting the accuracy and reproducibility of assay results. As an alternative, water-in-oil-in-water (W/O/W) double emulsion (DE) droplets offer superior stability and uniformity for droplet digital assays. Moreover, unlike SE droplets, DE droplets are compatible with commercially available flow cytometry instruments for high-throughput analysis. Despite these advantages, no study has demonstrated the use of DE droplets for CRISPR-based nucleic acid detection. In our study, we conducted a comparative analysis to assess the performance of SE and DE droplets in quantitative detection of human papillomavirus type 18 (HPV18) DNA based on CRISPR/Cas12a. We evaluated the stability of SEs and DEs by examining size variation, merging extent, and content interaction before and after incubation at different temperatures and time points. By integrating DE droplets with flow cytometry, we achieved high-throughput and high-accuracy CRISPR/Cas12a-based quantification of target HPV18 DNA. The DE platform, when paired with CRISPR/Cas12a and flow cytometry techniques, emerges as a reliable tool for absolute quantification of nucleic acid biomarkers.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Emulsiones , Emulsiones/química , Humanos , Técnicas Biosensibles/métodos , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/aislamiento & purificación , Citometría de Flujo , ADN Viral/análisis , ADN Viral/genética , Ácidos Nucleicos/química , Ácidos Nucleicos/análisis
11.
Int J Biol Macromol ; 265(Pt 1): 130805, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490382

RESUMEN

In order to overcome the problem that traditional W1/O/W2 double emulsions do not have targeted release performance, thereby better meeting the health needs of consumers, ovalbumin fibrils/pectin-based bilayer-stabilized double emulsion (OP-BDE) co-encapsulated with Lactobacillus plantarum and curcumin was constructed with pectin as the outer protective shell, which was expected to be used in the development of novel functional foods. The effects of pectin coating on the viability of Lactobacillus plantarum under conditions including storage, pasteurization, freeze-thaw cycles and in vitro simulated digestion were investigated. Results showed that pectin as protective shell could significantly enhance the tolerance of Lactobacillus plantarum to various environmental factors. Besides, the adsorption of pectin endowed OP-BDE with higher lipolysis and stronger protective effect on curcumin, remarkably improving the photostability and bioaccessibility of curcumin. In addition, in vitro simulated gastrointestinal release study indicated that OP-BDE possessed programmed sequential release property, allowing curcumin and Lactobacillus plantarum to be released in small intestine and colon, respectively. OP-BDE is the first reported co-delivery emulsion system with programmed release characteristic. This study provides new insights into OP-BDE in constructing co-delivery systems and programmed sequential release of active substances, and has potential reference and application value in actual food production.


Asunto(s)
Curcumina , Lactobacillus plantarum , Emulsiones , Curcumina/farmacología , Pectinas , Tracto Gastrointestinal
12.
Int J Biol Macromol ; 264(Pt 1): 130562, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431022

RESUMEN

This study aims to formulate a stable high internal phase double emulsion (HIPDE) using soybean protein isolate (SPI), gallic acid (GA), and xanthan gum (XG). To prepare HIPDE, W1/O was formulated with the water phase dispersed in the oil phase using polyglycerol polyricinoleate (PGPR) as a stabilizer. Thereafter, W1/O dispersed in W2 (SPI solution) was used. To stabilize the HIPDE, GA was added in W1 (0 or 1 %), XG was added in W2 (0 or 1 %), and the pH of the W phases was adjusted to acidic, neutral, and basic. The samples containing GA in W1 and XG in W2 did not phase out during the storage periods and maintained a higher ζ-potential value, a higher apparent viscosity, and a more sustainable droplet compared to others. These results were derived by the interaction between SPI and XG, SPI and GA, or GA and PGPR. Physicochemical crosslinks were formed, such as gallate-derived groups, SPI-GA complexation (Michael addition, Shiff base reaction), and hydrogen bonding. In conclusion, applying the SPI, GA, and XG to HIPDE would contribute to various industries such as food, medicine, and cosmetics.


Asunto(s)
Ácido Gálico , Proteínas de Soja , Emulsiones/química , Polisacáridos Bacterianos/química , Agua/química
13.
Food Chem ; 445: 138828, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401311

RESUMEN

The aim of this study was to evaluate the bioaccessibility of chlorogenic acid (CA) and curcumin co-encapsulated in Pickering double emulsions (DEs) with the inner interface stabilized by hydrophobically modified silica nanoparticles with myristic acid (SNPs-C14) or tocopherol succinate (SNPs-TS). Both SNPs-C14 and SNPs-TS showed contact angles > 90°. Pickering W1/O emulsions were formulated with 4 % of both types of SNPs. Pickering DEs showed higher creaming stability (5-7 %, day 42) and higher CA encapsulation efficiency (EE; 80 %) than control DE. The EE of curcumin was > 98 % in all the DEs. CA was steadily released from Pickering DEs during digestion, achieving bioaccessibility values of 58-60 %. Curcumin was released during the intestinal phase (∼80 % bioaccessibility in all DEs). Co-loaded DEs showed similar bioaccessibility for CA and curcumin than single-loaded. SNPs-C14 and SNPs-TS were suitable to stabilize the W1:O interface of DEs as co-delivery systems of bioactive compounds with health-promoting properties.


Asunto(s)
Curcumina , Nanopartículas , Emulsiones , Ácido Clorogénico , Tamaño de la Partícula
14.
Micromachines (Basel) ; 15(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38398968

RESUMEN

This study includes an examination of the design, fabrication, and experimentation of a rudimentary droplet generator. The device has potential applications in on-demand double and higher-order emulsions as well as tailored emulsions with numerous cores. The phenomenon of a pendant double droplet creation is observed when an inner phase is transported through a capillary, while a middle phase envelops the external surface of the capillary. This leads to the occurrence of a pinching-off process at the tip of the pulled capillary. Following this, the double droplet is introduced into a container that is filled with the outer phase. The present study examines the force equilibrium throughout the droplet break-up process and aims to forecast the final morphology of the droplets within the container by considering the impact of interfacial tension ratios. The shell thickness in a core-shell formation can be calculated based on the inner and middle phase flow rates as well as the middle droplet formation period. The present platform, which enables the simple production of double and higher emulsions, exhibits promising prospects for the controlled manufacturing of complex emulsions. This technology holds potential for various applications, including the experimental exploration of collision behavior or electro-hydrodynamics in emulsions as well as millimeter-size engineered microparticle fabrication.

15.
Foods ; 13(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38338620

RESUMEN

Double emulsions (DEs) present promising applications as alternatives to conventional emulsions in the pharmaceutical, cosmetic, and food industries. However, most review articles have focused on the formulation, preparation approaches, physical stability, and release profile of encapsulants based on DEs, particularly water-in-oil-in-water (W1/O/W2), with less attention paid to specific food applications. Therefore, this review offers updated detailed research advances in potential food applications of both W1/O/W2 and oil-in-water-in-oil (O1/W/O2) DEs over the past decade. To this end, various food-relevant applications of DEs in the fortification; preservation (antioxidant and antimicrobial targets); encapsulation of enzymes; delivery and protection of probiotics; color stability; the masking of unpleasant tastes and odors; the development of healthy foods with low levels of fat, sugar, and salt; and design of novel edible packaging are discussed and their functional properties and release characteristics during storage and digestion are highlighted.

16.
Int J Pharm X ; 7: 100232, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38357578

RESUMEN

Diabetes mellitus (DM) is the most prevalent cause of diabetic retinopathy (DRP). DRP has been recognized for a long time as a microvascular disease. Many drugs were used to treat DRP, including vildagliptin (VLD). In addition to its hypoglycemic effect, VLD minimizes ocular inflammation and improves retinal blood flow for individuals with type 2 diabetes mellitus. Nevertheless, VLD can cause upper respiratory tract infections, diarrhea, nausea, hypoglycemia, and poor tolerability when taken orally regularly due to its high water solubility and permeability. Effective ocular administration of VLD is achieved using solid lipid nanoparticles (SLNPs), which improve corneal absorption, prolonged retention, and extended drug release. Ocuserts (OCUs) are sterile, long-acting ocular dosage forms that diminish the need for frequent dosing while improving residence time and stability. Therefore, this study intends to develop VLD solid lipid nanoparticle OCUs (VLD-SLNPs-OCUs) to circumvent the issues commonly associated with VLD. SLNPs were prepared using the double-emulsion/melt dispersion technique. The optimal formula has been implemented in OCUs. Optimization and development of VLD-SLNPs-OCUs were performed using a Box-Behnken Design (BBD). VLD-SLNPs-OCUs loading efficiency was 95.28 ± 2.87%, and differential scanning calorimetry data (DSC) showed the full transformation of VLD to an amorphous state and the excellent distribution in the prepared OCUs matrices. The in vivo release of VLD from the optimized OCUs after 24 h was 35.12 ± 2.47%, consistent with in vitro drug release data of 36.89 ± 3.11. The optimized OCUs are safe to use in the eye, as shown by the ocular irritation test. VLD-SLNPs-OCUs provide extended VLD release, an advantageous alternative to conventional oral dose forms, resulting in fewer systemic adverse effects and less variation in plasma drug levels. VLD-SLNPs-OCUs might benefit retinal microvascular blood flow beyond blood glucose control and may be considered a promising approach to treating diabetic retinopathy.

17.
Int J Biol Macromol ; 261(Pt 2): 129733, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307433

RESUMEN

The function of miRNAs in intestinal inflammatory injury regulation has been studied extensively. However, the targeted delivery of these functional nucleic acid molecules to specific organs through encapsulation carriers and exerting their functional effects remain critical challenges for further research. Here, we constructed miR-146a-5p overexpression plasmid and validated the anti-inflammatory properties in the cell model. Then, the plasmid was encapsulated by the Pickering double emulsion system to investigate the role of Pickering double emulsion system in LPS-induced acute intestinal inflammatory injury. The results showed that the Pickering double emulsion system could effectively protect the integrity of plasmids in the intestinal tract, alleviate intestinal inflammatory injury, and upregulate the relative abundance of Lactobacillus reuteri. Mechanically, in vivo and in vitro experiments have shown that miR-146a-5p inhibits TLR4/NF-κB pathway to alleviate intestinal inflammation. In addition, miR-146a-5p can also regulate intestinal homeostasis by targeting the RNA polymerase sigma factor RpoD and α-galactosidase A, thereby affecting the growth of Lactobacillus reuteri. Above all, this study reveals a potential mechanism for miR-146a-5p to treat intestinal inflammation and provides a new delivery strategy for miRNAs to regulate intestinal homeostasis.


Asunto(s)
Microbioma Gastrointestinal , MicroARNs , Humanos , Emulsiones , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética
18.
Adv Mater ; 36(19): e2311013, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38341656

RESUMEN

Stimulus-responsive membranes demonstrate promising applications in switchable oil/water emulsion separations. However, they are unsuitable for the treatment of double emulsions like oil-in-water-in-oil (O/W/O) and water-in-oil-in-water (W/O/W) emulsions. For efficient separation of these complicated emulsions, fine control over the wettability, response time, and aperture structure of the membrane is required. Herein, dual-coated fibers consisting of primary photothermal-responsive and secondary CO2-responsive coatings are prepared by two steps. Automated weaving of these fibers produces membranes with photothermal- and CO2-responsive characteristics and narrow pore size distributions. These membranes exhibit fast switching wettability between superhydrophilicity (under CO2 stimulation) and high hydrophobicity (under near-infrared stimulation), achieving on-demand separation of various O/W/O and W/O/W emulsions with separation efficiencies exceeding 99.6%. Two-dimensional low-field nuclear magnetic resonance and correlated spectra technique are used to clarify the underlying mechanism of switchable double emulsion separation. The approach can effectively address the challenges associated with the use of stimulus-responsive membranes for double emulsion separation and facilitate the industrial application of these membranes.

19.
Int J Biol Macromol ; 260(Pt 2): 129631, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253155

RESUMEN

The feasibility of 3D printing the color, aroma and shape changes of yam gel with microwave heating as stimulus and soybean protein isolate-chitosan-maltodextrin complex coacervated microcapsules rich in water-soluble betacyanin and rose essence as stimulus-response materials was discussed. The morphology of microcapsules presented irregular spherical structure, and the surface was relatively smooth and slightly concave. Microwave heating led to the gradual destruction of microcapsules in yam gel, releasing internal pigments and essence, and enhancing the redness and flavor of printed samples. The release of the water phase and oil phase of the microcapsules and the hot-spot expansion effect of the models made the 3D printed bird models bend and deform, realizing the deformation effect of "spreading of wings", which realized a three-response synchronous change in color, shape, and flavor of the printed samples within 45 s. In this study, a variety of 4D printed foods with synchronous changes in sensory characteristics were created, which increased sensory enjoyment on the basis of ensuring the nutritional needs of food.


Asunto(s)
Dioscorea , Animales , Emulsiones/química , Cápsulas/química , Microondas , Agua/química , Impresión Tridimensional
20.
Micromachines (Basel) ; 15(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38258228

RESUMEN

Hollow microspheres as the filler material of syntactic foams have been adopted in extensive practical applications, where the physical parameters and their homogeneity have been proven to be critical factors during the design process, especially for high-specification scenarios. Based on double-emulsion droplet templates, hollow microspheres derived from microfluidics-enabled soft manufacturing have been validated to possess well-controlled morphology and composition with a much narrower size distribution and fewer defects compared to traditional production methods. However, for more stringent requirements, the innate density difference between the core-shell solution of the double-emulsion droplet template shall result in the wall thickness heterogeneity of the hollow microsphere, which will lead to unfavorable mechanical performance deviations. To clarify the specific mechanical response of microfluidics-derived hollow silica microspheres with varying eccentricities, a hybrid method combining experimental nanoindentation and a finite element method (FEM) simulation was proposed. The difference in eccentricity can determine the specific mechanical response of hollow microspheres during nanoindentation, including crack initiation and the evolution process, detailed fracture modes, load-bearing capacity, and energy dissipation capability, which should shed light on the necessity of optimizing the concentricity of double-emulsion droplets to improve the wall thickness homogeneity of hollow microspheres for better mechanical performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA