Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
World J Clin Oncol ; 13(6): 496-504, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35949428

RESUMEN

BACKGROUND: It is known that p53 suppression is an important marker of poor prognosis of cancers, especially in solid tumors of the breast, lung, stomach, and esophagus; liposarcomas, glioblastomas, and leukemias. Because p53 has mouse double minute 2 (MDM2) as its primary negative regulator, this molecular docking study seeks to answer the following hypotheses: Is the interaction between DS-3032B and MDM2 stable enough for this drug to be considered as a promising neoplastic inhibitor? AIM: To analyze, in silico, the chemical bonds between the antagonist DS-3032B and its binding site in MDM2. METHODS: For molecular docking simulations, the file containing structures of MDM2 (receptor) and the drug DS-3032B (ligand) were selected. The three-dimensional structure of MDM2 was obtained from Protein Data Bank, and the one for DS-3032B was obtained from PubChem database. The location and dimensions of the Grid box was determined using AutoDock Tools software. In this case, the dimensions of the Grid encompassed the entire receptor. The ligand DS-3032B interacts with the MDM2 receptor in a physiological environment with pH 7.4; thus, to simulate more reliably, its interaction was made with the calculation for the prediction of its protonation state using the MarvinSketch® software. Both ligands, with and without the protonation, were prepared for molecular docking using the AutoDock Tools software. This software detects the torsion points of the drug and calculates the angle of the torsions. Molecular docking simulations were performed using the tools of the AutoDock platform connected to the Vina software. The analyses of the amino acid residues involved in the interactions between the receptor and the ligand as well as the twists of the ligand, atoms involved in the interactions, and type, strength, and length of the interactions were performed using the PyMol software (pymol.org/2) and Discovery Studio from BIOVIA®. RESULTS: The global alignment indicated crystal structure 5SWK was more suitable for docking simulations by presenting the p53 binding site. The three-dimensional structure 5SWK for MDM2 was selected from Protein Data Bank and the three-dimensional structure of DS-3032B was selected from PubChem (Compound CID: 73297272; Milademetan). After molecular docking simulations, the most stable conformer was selected for both protonated and non-protonated DS-3032B. The interaction between MDM2 and DS-3032B occurs with high affinity; no significant difference was observed in the affinity energies between the MDM2/pronated DS-3032B (-9.9 kcal/mol) and MDM2/non-protonated DS-3032B conformers (-10.0 kcal/mol). Sixteen amino acid residues of MDM2 are involved in chemical bonds with the protonated DS-3032B; these 16 residues of MDM2 belong to the p53 biding site region and provide high affinity to interaction and stability to drug-protein complex. CONCLUSION: Molecular docking indicated that DS-3032B antagonist binds to the same region of the p53 binding site in the MDM2 with high affinity and stability, and this suggests therapeutic efficiency.

2.
Clin Transl Oncol ; 22(4): 546-554, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31201607

RESUMEN

PURPOSE: Dedifferentiated liposarcoma (DDLPS) is a soft tissue malignancy characterized by amplification of the mouse double minute 2 homolog (MDM2) gene. MDM2 is a negative regulator of tumor protein 53 (TP53). We tested the in vivo efficacy of BI-907828, a small molecule inhibitor of the MDM2-TP53 interaction, in two DDLPS patient-derived xenografts (PDX). METHODS: Partially immunodeficient mice were bilaterally engrafted with UZLX-STS3 (n = 24) and UZLX-STS5 (n = 24) human DDLPS tissue harboring MDM2 amplifications. Mice were grouped as follows: (a) vehicle (0.5% hydroxyethylcellullose) 10 ml/kg daily per os (p.o.); (b) doxorubicin 5 mg/kg weekly intraperitoneally (i.p.); (c) BI-907828 2.5 mg/kg daily p.o. and (d) BI-907828 10 mg/kg daily p.o. The treatment lasted for 15 days, all mice treated with BI-907828 were followed for 37 days post-treatment. Efficacy was assessed by tumor volume and histopathological evaluation. RESULTS: The 15-day treatment with 2.5 mg/kg and 10 mg/kg BI-907828 significantly inhibited tumor growth in UZLX-STS5 and -STS3 (p < 0.0001 compared to control for both models). All UZLX-STS5 and -STS3 tumors treated with BI-907828 decreased in size during treatment, and BI-907828-treated UZLX-STS5 tumors even disappeared completely. During the follow-up period, no tumor regrowth was observed in the UZLX-STS5 model and both doses of BI-907828 led to a pathological complete response, whereas a dose-dependent regrowth was seen in the UZLX-STS3 model. CONCLUSION: BI-907828 showed significant anti-tumor activity in DDLPS PDX harboring MDM2 amplifications, providing a strong rationale for early clinical testing of BI-907828 in a DDLPS patient population.


Asunto(s)
Antineoplásicos/uso terapéutico , Amplificación de Genes , Liposarcoma/tratamiento farmacológico , Compuestos Orgánicos/uso terapéutico , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Doxorrubicina/efectos adversos , Doxorrubicina/uso terapéutico , Dosificación de Gen , Humanos , Liposarcoma/genética , Liposarcoma/patología , Ratones , Compuestos Orgánicos/farmacología , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Genet Mol Biol ; 33(4): 615-26, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21637567

RESUMEN

Research has been conducted to identify sequence polymorphisms of gene promoter regions in patients and control subjects, including normal individuals, and to determine the influence of these polymorphisms on transcriptional regulation in cells that express wild-type or mutant p53. In this study we isolated genomic DNA from whole blood of healthy Japanese individuals and sequenced the promoter regions of the MDM2, p53, and p16(INK4a) genes. We identified polymorphisms comprising 3 nucleotide substitutions at exon 1 and intron 1 regions of the MDM2 gene and 1 nucleotide insertion at a poly(C) nucleotide position in the p53 gene. The Japanese individuals also exhibited p16(INK4a) polymorphisms at several positions, including position -191. Reporter gene analysis by using luciferase revealed that the polymorphisms of MDM2, p53, and p16(INK4a) differentially altered luciferase activities in several cell lines, including the Colo320DM, U251, and T98G cell lines expressing mutant p53. Our results indicate that the promoter sequences of these genes differ among normal Japanese individuals and that polymorphisms can alter gene transcription activity.

4.
Genet. mol. biol ; Genet. mol. biol;33(4): 615-626, 2010. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-571512

RESUMEN

Research has been conducted to identify sequence polymorphisms of gene promoter regions in patients and control subjects, including normal individuals, and to determine the influence of these polymorphisms on transcriptional regulation in cells that express wild-type or mutant p53. In this study we isolated genomic DNA from whole blood of healthy Japanese individuals and sequenced the promoter regions of the MDM2, p53, and p16INK4a genes. We identified polymorphisms comprising 3 nucleotide substitutions at exon 1 and intron 1 regions of the MDM2 gene and 1 nucleotide insertion at a poly(C) nucleotide position in the p53 gene. The Japanese individuals also exhibited p16INK4a polymorphisms at several positions, including position -191. Reporter gene analysis by using luciferase revealed that the polymorphisms of MDM2, p53, and p16INK4a differentially altered luciferase activities in several cell lines, including the Colo320DM, U251, and T98G cell lines expressing mutant p53. Our results indicate that the promoter sequences of these genes differ among normal Japanese individuals and that polymorphisms can alter gene transcription activity.


Asunto(s)
Humanos , Genes p16 , Genes p53 , Polimorfismo Genético , Proteínas Proto-Oncogénicas c-mdm2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA