RESUMEN
PURPOSE: The activation of cGAS-STING pathway can be triggered by cytosolic double-stranded DNA (dsDNA) in tumor and non-tumor compartments. We aim to assess the constitutive expression of dsDNA-cGAS-STING axis in different cellular contexts and compare their relative contribution to clinical outcomes. METHODS: A cohort of 154 cases of patients with newly diagnosed gastric cancer were enrolled in this study to evaluate the histo-score of cytosolic dsDNA, cGAS, and STING via immunohistochemistry as well as the types and densities of tumor-infiltrating immune cells. Kaplan-Meier method, multivariable regression, and receiver operating characteristic curve were implemented to analyze the prognostic efficacy of dsDNA-cGAS-STING axis in distinct compartments. RESULTS: The supra-normal concentration of cytosolic dsDNA correlated with the constitutive expression of cGAS-STING pathway in tumor compartments. In contrast to the lack of STING within cancer cells, the higher STING expression in non-tumor compartments indicated a transcellular cGAS-STING activation. Cancer cell-extrinsic STING was supported to potentiate nucleic acid immunity by sensing tumor-derived dsDNA fragments. Compartmental analyses also confirmed that the level of STING expressed in non-tumor cells was associated with the infiltration of protective immune cells, leading to the prolonged overall survival. Multivariate analysis further identified the independent prognostic value of cancer cell-extrinsic STING and its predictive accuracy could be significantly improved in combination with the immune cell infiltration. CONCLUSIONS: Cancer cell-extrinsic STING facilitates the remodeling of immune-active tumor microenvironment and acts as an independent prognostic factor in gastric cancer.
RESUMEN
Producing double-stranded RNA (dsRNA) represents a bottleneck for the adoption of RNA interference technology in agriculture, and the main hurdles are related to increases in dsRNA yield, production efficiency, and purity. Therefore, this study aimed to optimize dsRNA production in E. coli HT115 (DE3) using an in vivo system. To this end, we designed a new vector, pCloneVR_2, which resulted in the efficient production of dsRNA in E. coli HT115 (DE3). We performed optimizations in the culture medium and expression inducer in the fermentation of E. coli HT115 (DE3) for the production of dsRNA. Notably, the variable that had the greatest effect on dsRNA yield was cultivation in TB medium, which resulted in a 118% increase in yield. Furthermore, lactose induction (6 g/L) yielded 10 times more than IPTG. Additionally, our optimized up-scaled protocol of the TRIzol™ extraction method was efficient for obtaining high-quality and pure dsRNA. Finally, our optimized protocol achieved an average yield of 53.3 µg/mL after the production and purification of different dsRNAs, reducing production costs by 72%.
Asunto(s)
Medios de Cultivo , Escherichia coli , Fermentación , ARN Bicatenario , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Bicatenario/genética , Medios de Cultivo/química , Vectores Genéticos , Ingeniería Metabólica/métodos , Interferencia de ARN , Lactosa/metabolismoRESUMEN
Immature hematopoietic progenitors are a constant source for renewal of hemocyte populations and the basic component of the tissue and cell repair apparatus. A unique property of these cells of internalizing extracellular double-stranded DNA has been previously shown. The leukostimulatory effect demonstrated in our pioneering studies was considered to be due to the feature of this cell. In the present research, we have analyzed the effects of DNA genome reconstructor preparation (DNAgr), DNAmix, and human recombinant angiogenin on both hematopoietic stem cells and multipotent progenitors. Treatment with bone marrow cells of experimental mice with these preparations stimulates colony formation by hematopoietic stem cells and proliferation of multipotent descendants. The main lineage responsible for this is the granulocyte-macrophage hematopoietic lineage. Using fluorescent microscopy as well as FACS assay, co-localization of primitive c-Kit- and Sca-1-positive progenitors and the TAMRA-labeled double-stranded DNA has been shown. Human recombinant angiogenin was used as a reference agent. Cells with specific markers were quantified in intact bone marrow and colonies grown in the presence of inducers. Quantitative analysis revealed that a total of 14,000 fragment copies of 500 bp, which is 0.2% of the haploid genome, can be delivered into early progenitors. Extracellular double-stranded DNA fragments stimulated the colony formation in early hematopoietic progenitors from the bone marrow, which assumed their effect on cells in G0. The observed number of Sca1+/c-Kit+ cells in colonies testifies to the possibility of both symmetrical and asymmetrical division of the initial hematopoietic stem cell and its progeny.
RESUMEN
BACKGROUND: Mosquito borne viruses, such as dengue, Zika, yellow fever and Chikungunya, cause millions of infections every year. These viruses are mostly transmitted by two urban-adapted mosquito species, Aedes aegypti and Aedes albopictus. Although mechanistic understanding remains largely unknown, Aedes mosquitoes may have unique adaptations that lower the impact of viral infection. Recently, we reported the identification of an Aedes specific double-stranded RNA binding protein (dsRBP), named Loqs2, that is involved in the control of infection by dengue and Zika viruses in mosquitoes. Preliminary analyses suggested that the loqs2 gene is a paralog of loquacious (loqs) and r2d2, two co-factors of the RNA interference (RNAi) pathway, a major antiviral mechanism in insects. RESULTS: Here we analyzed the origin and evolution of loqs2. Our data suggest that loqs2 originated from two independent duplications of the first double-stranded RNA binding domain of loqs that occurred before the origin of the Aedes Stegomyia subgenus, around 31 million years ago. We show that the loqs2 gene is evolving under relaxed purifying selection at a faster pace than loqs, with evidence of neofunctionalization driven by positive selection. Accordingly, we observed that Loqs2 is localized mainly in the nucleus, different from R2D2 and both isoforms of Loqs that are cytoplasmic. In contrast to r2d2 and loqs, loqs2 expression is stage- and tissue-specific, restricted mostly to reproductive tissues in adult Ae. aegypti and Ae. albopictus. Transgenic mosquitoes engineered to express loqs2 ubiquitously undergo developmental arrest at larval stages that correlates with massive dysregulation of gene expression without major effects on microRNAs or other endogenous small RNAs, classically associated with RNA interference. CONCLUSIONS: Our results uncover the peculiar origin and neofunctionalization of loqs2 driven by positive selection. This study shows an example of unique adaptations in Aedes mosquitoes that could ultimately help explain their effectiveness as virus vectors.
Asunto(s)
Aedes , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Aedes/genética , Proteínas Portadoras/genética , Mosquitos Vectores/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Virus Zika/genética , Virus Zika/metabolismoRESUMEN
The 70th anniversary of the publication of the double helix model for the structure of deoxyribonucleic acid has oppened the opportunity for reflections and to debate the specific role of each of the original protagonists. Here we review how this discovery has lead to our current medical knowledge and practice, and discuss what we think were the actual contributions of each of these scientists.
El 70 aniversario de la publicación del modelo de doble hélice para la estructura del ácido desoxirribonucleico abre la oportunidad de reflexionar y debatir el papel específico de cada uno de los protagonistas originales. Aquí revisamos las consecuencias de este descubrimiento en nuestro conocimiento y práctica médica actuales, y discutimos lo que creemos que fueron las contribuciones reales de cada uno de estos científicos.
Asunto(s)
Biología , ADN , Medicina , Humanos , Aniversarios y Eventos Especiales , ADN/química , Conocimiento , Conformación de Ácido NucleicoRESUMEN
Fijiviruses replicate and package their genomes within viroplasms in a process involving RNA-RNA and RNA-protein interactions. Here, we demonstrate that the 24 C-terminal residues (C-arm) of the P9-1 major viroplasm protein of the mal de Río Cuarto virus (MRCV) are required for its multimerization and the formation of viroplasm-like structures. Using an integrative structural approach, the C-arm was found to be dispensable for P9-1 dimer assembly but essential for the formation of pentamers and hexamers of dimers (decamers and dodecamers), which favored RNA binding. Although both P9-1 and P9-1ΔC-arm catalyzed ATP with similar activities, an RNA-stimulated ATPase activity was only detected in the full-length protein, indicating a C-arm-mediated interaction between the ATP catalytic site and the allosteric RNA binding sites in the (do)decameric assemblies. A stronger preference to bind phosphate moieties in the decamer was predicted, suggesting that the allosteric modulation of ATPase activity by RNA is favored in this structural conformation. Our work reveals the structural versatility of a fijivirus major viroplasm protein and provides clues to its mechanism of action. IMPORTANCE The mal de Río Cuarto virus (MRCV) causes an important maize disease in Argentina. MRCV replicates in several species of Gramineae plants and planthopper vectors. The viral factories, also called viroplasms, have been studied in detail in animal reovirids. This work reveals that a major viroplasm protein of MRCV forms previously unidentified structural arrangements and provides evidence that it may simultaneously adopt two distinct quaternary assemblies. Furthermore, our work uncovers an allosteric communication between the ATP and RNA binding sites that is favored in the multimeric arrangements. Our results contribute to the understanding of plant reovirids viroplasm structure and function and pave the way for the design of antiviral strategies for disease control.
Asunto(s)
Reoviridae , Compartimentos de Replicación Viral , Animales , ARN/metabolismo , Reoviridae/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismoRESUMEN
Powdery mildew severely affects several important crops and cash plants. Disruption of mildew resistance locus O (MLO) genes elevates resistance against powdery mildew in several plants. However, whether rubber tree (Heveae brasiliensis) MLO proteins are linked to susceptibility remains unknown, owing to technical limitations in the genetic manipulation of this woody plant. A previous study showed that the H. brasiliensis MLO-like protein HbMLO12 demonstrates high amino acid sequence similarity with the known Arabidopsis MLO protein AtMLO12. In this study, we investigated whether HbMLO12 regulates susceptibility to powdery mildew. H. brasiliensis leaves take up exogenously synthesized double-stranded RNAs (dsRNAs), and foliar application of dsRNA homologous to HbMLO12 gene specifically induces HbMLO12 silencing in H. brasiliensis leaf tissues. Notably, HbMLO12 silencing inhibited fungal infection and elevated the immune response during interaction with the rubber tree powdery mildew fungus. Furthermore, the heterologous expression of HbMLO12 suppressed bacterial flg22- and fungal chitin-induced immune responses and enhanced bacterial infection in Arabidopsis. Our study provides evidence that HbMLO12 contributes to susceptibility to powdery mildew. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Hevea , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hevea/genética , Hevea/metabolismo , Ascomicetos/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genéticaRESUMEN
RNA interference (RNAi) is a natural mechanism of gene regulation, highly conserved in eukaryotes. Since the elucidation of the gene silencing mechanism, RNAi became an important tool used in insect reverse genetics. The demonstration of effective target-gene silencing by ingestion of double-stranded RNA (dsRNA) produced by transgenic plants indicated the RNAi potential to be used in insect pest management, particularly in agriculture. However, the efficiency of gene silencing by RNAi in insects may vary according to the target taxa, and lepidopteran species have been shown to be quite recalcitrant to RNAi. Developing transgenic plants is a time-consuming and labor-intensive process, so alternative oral delivery systems are required to develop and optimize RNAi settings, such as selecting an efficient target gene, and dsRNA design, length, and stability, among other features. We have developed delivery systems to evaluate dsRNAs to silence genes from two important lepidopteran crop pests of tomato (Solanum lycopersicum) and sugarcane (Saccharum × officinarum): Tuta absoluta (Meyrick), the South American Tomato Pinworm, and Diatraea saccharalis (Fabricius), the Sugarcane Borer, respectively. The protocol described here can be used in similar species and includes (a) direct oral delivery by droplets containing dsRNA; (b) oral delivery by tomato leaflets that absorbed dsRNA solution; (c) delivery by Escherichia coli expressing dsRNA; and (d) delivery by transgenic plants expressing dsRNA.
Asunto(s)
ARN Bicatenario/genética , Agricultura , Animales , Silenciador del Gen , Insectos/genética , Solanum lycopersicum/genética , Mariposas Nocturnas/genética , Plantas Modificadas Genéticamente/genética , Interferencia de ARNRESUMEN
2A is an oligopeptide sequence that mediates a ribosome "skipping" effect and can mediate a co-translation cleavage of polyproteins. These sequences are widely distributed from insect to mammalian viruses and could act by accelerating adaptive capacity. These sequences have been used in many heterologous co-expression systems because they are versatile tools for cleaving proteins of biotechnological interest. In this work, we review and update the occurrence of 2A/2A-like sequences in different groups of viruses by screening the sequences available in the National Center for Biotechnology Information database. Interestingly, we reported the occurrence of 2A-like for the first time in 69 sequences. Among these, 62 corresponded to positive single-stranded RNA species, six to double stranded RNA viruses, and one to a negative-sense single-stranded RNA virus. The importance of these sequences for viral evolution and their potential in biotechnological applications are also discussed.
Asunto(s)
Biotecnología , Virus ARN , Proteínas Virales , Animales , Cisteína Endopeptidasas/metabolismo , Evolución Molecular , Picornaviridae/genética , Poliproteínas , Totiviridae/genética , Proteínas Virales/genéticaRESUMEN
There is a growing evidence describing a decline in adaptive homeostasis in aging-related diseases affecting the central nervous system (CNS), many of which are characterized by the appearance of non-native protein aggregates. One signaling pathway that allows cell adaptation is the integrated stress response (ISR), which senses stress stimuli through four kinases. ISR activation promotes translational arrest through the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and the induction of a gene expression program to restore cellular homeostasis. However, depending on the stimulus, ISR can also induce cell death. One of the ISR sensors is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially described as a viral infection sensor, and now a growing evidence supports a role for PKR on CNS physiology. PKR has been largely involved in the Alzheimer's disease (AD) pathological process. Here, we reviewed the antecedents supporting the role of PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR's contribution to AD and discuss the possible participation of PKR as a player in the neurodegenerative process involved in aging-related pathologies affecting the CNS.
RESUMEN
Chikungunya virus (CHIKV) is a zoonotic arthropod-borne virus that has caused several outbreaks in tropical and subtropical areas worldwide during the last 50 years. The virus is known to target different human cell types throughout the course of infection including epithelial and endothelial cells, fibroblasts, primary monocytes and monocyte-derived macrophages (MDMs). The two latter are phagocytic cell populations of the innate immune system which are involved in some aspects of CHIKV pathogenesis. However, monocytes and macrophages also potentially contribute to the control of viral replication through the expression of different pattern recognition receptors sensing viral pathogens and subsequently, inducing an type I interferone (IFN-I)-dependent antiviral immune response. The aim of this study was to determine the modulation of the expression of Toll-like receptors (TLRs), cytokine secretion capabilities and antiviral factor production in monocytes and MDMs following infection with CHIKV. Moreover, we sought to determine the replication kinetics of CHIKV in these two cell populations. We found that the maximum peak of CHIKV replication was observed between 18- and 24-hours post-infection (hpi), while after that the is strongly reduced. Furthermore, CHIKV infection induced the pro-inflammatory cytokine production starting from the first 6 hpi in both monocytes and MDMs, with similar kinetics but different protein levels. In contrast, the kinetics of transcriptional expression of some TLRs were different between both cell types. In addition, IFN-I, 2',5'-oligoadenylate synthetase 1 (OAS1), and double-stranded RNA-activated protein kinase R (PKR) mRNA levels were detected in response to CHIKV infection of monocytes and MDMs, resulting the highest expression levels at 48 hpi. In conclusion, our data provides evidence that CHIKV infection activates the TLR pathways in primary monocytes and MDMs, which play a crucial role in CHIKV pathogenesis and/or host defense, differentially. However, additional studies are required to determine the functional role of TLRs in monocytes and MDMs.
Asunto(s)
Fiebre Chikungunya/inmunología , Citocinas/biosíntesis , Macrófagos/metabolismo , Monocitos/metabolismo , Animales , Fiebre Chikungunya/virología , Células Endoteliales/metabolismo , Fibroblastos , Humanos , Interferones/biosíntesis , Replicación ViralRESUMEN
Background: Alopecia areata (AA) is a typical hair issue, which may have obliterating mental and social outcomes and is portrayed by the nearness of nonscarring alopecia. Objective: This examination has targets to assess the serum nutrient D levels , with AA; contrast the outcome and clearly sound control; and confirm relationship between AA types and serum nutrient D levels. Patients Also Methods: the examine might have been led clinched alongside Tikrit educating healing facility throughout those time starting with June 2019 of the limit for January 2020. Irrefutably the quantity of subjects associated with the assessment was ninety individuals isolated in two social events; the patients bundle were forty five the people who whimper of AA while the resulting gathering including a forty five age and sex-made solid volunteers were picked as a benchmark gathering. The degree and movement of the alopecia were noted and the patients were meticulously broke down for signs of various ailments. Research center assessments were led to patients and also to those control population, these included serum vitamin D levels were measured as 25-hydroxyvitamin D {25(OH)D} using a chemiluminescence microparticle immunoassay. Blood models were gotten starting with patients and control subjects after totally taught consent was gotten. Results : An essential complexity may have been found for serum 25-OH Vit D levels between patients other than controls. Vitamin D sufficiency were more common in controls than in patients. Serum Vitamin D was deficient in both cases and controls group; but, the deficiency was significantly more throughout AA group (35. 6%) compared to the handle group (11. 1%). Among the list patients gathering, levels associated with nutrient D were totally higher in guys in contrast with females. Conclusions: AA might be related with nutrient D deficiency as mean degrees of nutrient D of patients were seen as fundamentally lower than typical sound controls.
Asunto(s)
Humanos , Deficiencia de Vitamina D/complicaciones , Prueba de Inmovilización del Treponema , Nutrientes/deficiencia , Anticuerpos Antinucleares/inmunología , Alopecia Areata/diagnóstico , Estudios de Casos y ControlesRESUMEN
Dengue, caused by dengue virus (DENV) infection, is a public health problem worldwide. Although DENV pathogenesis has not yet been fully elucidated, the inflammatory response is a hallmark feature in severe DENV infection. Although vitamin D (vitD) can promote the innate immune response against virus infection, no studies have evaluated the effects of vitD on DENV infection, dendritic cells (DCs), and inflammatory response regulation. This study aimed to assess the impact of oral vitD supplementation on DENV-2 infection, Toll-like receptor (TLR) expression, and both pro- and anti-inflammatory cytokine production in monocyte-derived DCs (MDDCs). To accomplish this, 20 healthy donors were randomly divided into two groups and received either 1000 or 4000 international units (IU)/day of vitD for 10 days. During pre- and post-vitD supplementation, peripheral blood samples were taken to obtain MDDCs, which were challenged with DENV-2. We found that MDDCs from donors who received 4000 IU/day of vitD were less susceptible to DENV-2 infection than MDDCs from donors who received 1000 IU/day of vitD. Moreover, these cells showed decreased mRNA expression of TLR3, 7, and 9; downregulation of IL-12/IL-8 production; and increased IL-10 secretion in response to DENV-2 infection. In conclusion, the administration of 4000 IU/day of vitD decreased DENV-2 infection. Our findings support a possible role of vitD in improving the innate immune response against DENV. However, further studies are necessary to determine the role of vitD on DENV replication and its innate immune response modulation in MDDCs.
Asunto(s)
Citocinas/inmunología , Células Dendríticas/inmunología , Virus del Dengue/fisiología , Dengue/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Receptores Toll-Like/inmunología , Replicación Viral/efectos de los fármacos , Vitamina D/farmacología , Adulto , Células Dendríticas/patología , Células Dendríticas/virología , Dengue/tratamiento farmacológico , Dengue/patología , Femenino , Regulación de la Expresión Génica/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Masculino , Replicación Viral/inmunologíaRESUMEN
Transfection of small non-coding RNAs (sncRNAs) molecules has become a routine technique widely used for silencing gene expression by triggering post-transcriptional and transcriptional RNA interference (RNAi) pathways. Moreover, in the past decade, small activating (saRNA) sequences targeting promoter regions were also reported, thereby a RNA-based gene activation (RNAa) mechanism has been proposed. In this regard, Turner and colleagues recently discovered an endogenous microRNA (miRNA) which binds its promoter in order to upregulate its own expression. Interestingly, several miRNA-induced RNA activation (miRNAa) phenomena have since then been identified. My objective here is to introduce the reader into the emergent miRNAa research field, as well as bring together important discoveries about this unexplored transcriptional activation pathway.
Asunto(s)
MicroARNs , Regiones Promotoras Genéticas , Iniciación de la Transcripción Genética , Regulación hacia Arriba , Células HEK293 , Humanos , MicroARNs/genética , MicroARNs/metabolismoRESUMEN
The ability to develop efficient and versatile technologies for manipulating gene expression is a fundamental issue both in biotechnology and therapeutics. The endogenous RNA interference (RNAi) pathway which mediates gene silencing was discovered at the end of the 20th century and it is nowadays considered as an essential strategy for knockdown of specific genes and for studying gene function. Remarkably, during the past decade, a RNA-induced mechanism of gene activation has also been reported. Likewise RNAi, the RNA activation (RNAa) process is also mediated by sequence-specific double-stranded RNA (dsRNA) molecules, and interesting resemblances between both RNA-based transcriptional mechanisms have been described. Small activating RNAs (saRNAs) and related molecules have been used for targeting of genes in species that are as different as nematodes and humans, and similar dsRNA-induced activation phenomena have also been observed in plants. The aim of this letter is to highlight recent molecular insights into yet unexplored RNAa mechanism and its potential for manipulating transcriptional activity. J. Cell. Biochem. 119: 247-249, 2018. © 2017 Wiley Periodicals, Inc.
Asunto(s)
Ingeniería Genética/métodos , Genoma Humano , Interferencia de ARN , Animales , HumanosRESUMEN
Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi-based products are already available for farmers and more are expected to reach the market soon. Tailor-made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence-dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest-insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide-resistant weeds and insects. Finally, this review reports on the advances in non-transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry.
Asunto(s)
Protección de Cultivos/métodos , Control de Plagas/métodos , Interferencia de ARN , ARN Bicatenario/genética , Animales , Artrópodos , Bacterias , Hongos , NematodosRESUMEN
A modification of the original comet assay was developed for the simultaneous evaluation of DNA single strand breaks (SSBs) and double strand breaks (DSBs) in human spermatozoa. The two-dimensional perpendicular tail comet assay (2T-comet) combines non-denaturing and denaturant conditions to the same sperm nucleoid. In this case, the species-specific deproteinized sperm is first subjected to an electrophoretic field under non-denaturing conditions to mobilize isolated free discrete DNA fragments produced from DSBs; this is then followed by a second electrophoresis running perpendicular to the first one but under alkaline conditions to produce DNA denaturation, exposing SSBs on the same linear DNA chain or DNA fragments flanked by DSBs. This procedure results in a two dimensional comet tail emerging from the core where two types of original DNA affected molecule can be simultaneously discriminated. The 2T-comet is a fast, sensitive, and reliable procedure to distinguish between single and double strand DNA damage within the same cell. It is an innovative method for assessing sperm DNA integrity, which has important implications for human fertility and andrological pathology. This technique may be adapted to assess different DNA break types in other species and other cell types.
Asunto(s)
Ensayo Cometa/métodos , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Fragmentación del ADN , Humanos , Hibridación Fluorescente in Situ , Masculino , Microscopía Fluorescente , EspermatozoidesRESUMEN
El presente reporte de caso se hace con la finalidad de mejorar la valoración del paciente con esta enfermedad, así de esta manera realizar un diagnóstico precoz, porque que es una enfermedad autoinmune muy poco frecuente en pacientes pediátricos. Además, debido a que no se entienden por completo las causas del lupus eritematoso sistémico, no se sabe cómo prevenirlo pero los brotes de la enfermedad se pueden reducir. Actualmente existe una guía de práctica clínica para el tratamiento a partir de las conclusiones acordadas en la Federación Española de lupus eritematoso sistémico en 2017, pero la valoración del impacto en los resultados de los tratamientos depende de su cumplimiento, los cuales aún se encuentran en estudios
The present case report is made with the purpose of improving the assessment of the patient with this pathology, thus making an early diagnosis, because it is a very rare autoimmune disease in pediatric patients. In addition, because the causes of systemic lupus erythematosus are not fully understood, it is not known how to prevent it, but outbreaks of the disease can be reduced. Currently there is a clinical practice guide for treatment based on the conclusions agreed in the Spanish Federation of Systemic Lupus Erythematosus in 2017, but the assessment of the impact on the results of treatments depends on their compliance, which are still found in studies
RESUMEN
As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual-site comparisons (94.6 %) of NTA pest damage to the crop. In each case where a significant difference was observed in arthropod abundance or damage, the mean value for MON 87411 was within the reference range and/or the difference was not consistently observed across collection methods and/or sites. Thus, the differences were not representative of an adverse effect unfamiliar to maize and/or were not indicative of a consistent plant response associated with the GM traits. Results from this study support a conclusion of no adverse environmental impact of MON 87411 on NTAs compared to conventional maize and demonstrate the utility of relevant transportable data across regions for the ERA of GM crops.
Asunto(s)
Artrópodos/fisiología , Plantas Modificadas Genéticamente , Medición de Riesgo/métodos , Zea mays/genética , Animales , Argentina , Bacillus thuringiensis/genética , Brasil , Productos Agrícolas , Ecosistema , Ambiente , Glicina/análogos & derivados , Glicina/farmacología , Insecticidas/farmacología , Densidad de Población , ARN Bicatenario , Estados Unidos , GlifosatoRESUMEN
Trichomonas vaginalis is the etiological agent of trichomoniasis, the most common non-viral sexually transmitted disease (STD) in world, with 276.4 million new cases each year. T. vaginalis can be naturally infected with Mycoplasma hominis and Trichomonasvirus species. This study aimed to evaluate the prevalence of T. vaginalis infected with four distinct T. vaginalis viruses (TVVs) and M. hominis among isolates from patients in Porto Alegre city, South Brazil. An additional goal of this study was to investigate whether there is association between metronidazole resistance and the presence of M. hominis during TVV infection. The RNA expression level of the pyruvate ferredoxin oxidoreductase (PFOR) gene was also evaluated among metronidazole-resistant and metronidazole-sensitive T. vaginalis isolates. A total of 530 urine samples were evaluated, and 5.7% samples were positive for T. vaginalis infection. Among them, 4.51% were isolated from female patients and 1.12% were from male patients. Remarkably, the prevalence rates of M. hominis and TVV-positive T. vaginalis isolates were 56.7% and 90%, respectively. Most of the T. vaginalis isolates were metronidazole-sensitive (86.7%), and only four isolates (13.3%) were resistant. There is no statistically significant association between infection by M. hominis and infection by TVVs. Our results refute the hypothesis that the presence of the M. hominis and TVVs is enough to confer metronidazole resistance to T. vaginalis isolates. Additionally, the role of PFOR RNA expression levels in metronidazole resistance as the main mechanism of resistance to metronidazole could not be established. This study is the first report of the T. vaginalis infection by M. hominis and TVVs in a large collection of isolates from South Brazil.