Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.281
Filtrar
1.
Arthritis Res Ther ; 26(1): 131, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010233

RESUMEN

BACKGROUND: Association of HLA-B27 with spondyloarthritis (SpA) has been known for 50 years, but still remains unexplained. We recently showed that HLA-B27 expressed in wing imaginal disc from HLA-B27/human-ß2 microglobulin (hß2m) transgenic Drosophila deregulated bone morphogenetic protein (BMP) pathway by interacting physically with type I BMP receptor (BMPR1) Saxophone (Sax), leading to crossveinless phenotype. METHODS: Genetic interaction was studied between activin/transforming growth factor ß (TGFß) pathway and HLA-B27/hß2m in transgenic Drosophila wings. The HLA-B27-bound peptidome was characterized in wing imaginal discs. In mesenteric lymph node (mLN) T cells from HLA-B27/hß2m rat (B27 rat), physical interaction between HLA-B27 and activin receptor-like kinase-2 (ALK2), ALK3 and ALK5 BMPR1s, phosphorylation of small mothers against decapentaplegic (SMADs) and proteins of the non-canonical BMP/TGFß pathways induced by its ligands, and the transcript level of target genes of the TGFß pathway, were evaluated. RESULTS: In HLA-B27/hß2m transgenic Drosophila, inappropriate signalling through the activin/TGFß pathway, involving Baboon (Babo), the type I activin/TGFß receptor, contributed to the crossveinless phenotype, in addition to deregulated BMP pathway. We identified peptides bound to HLA-B27 with the canonical binding motif in HLA-B27/hß2m transgenic Drosophila wing imaginal disc. We demonstrated specific physical interaction, between HLA-B27/hß2m and mammalian orthologs of Sax and Babo, i.e. ALK2 and ALK5 (i.e. TGFß receptor I), in the mLN cells from B27 rat. The magnitude of phosphorylation of SMAD2/3 in response to TGFß1 was increased in T cells from B27 rats, showing evidence for deregulated TGFß pathway. Accordingly, expression of several target genes of the pathway was increased in T cells from B27 rats, in basal conditions and/or after TGFß exposure, including Foxp3, Rorc, Runx1 and Maf. Interestingly, Tgfb1 expression was reduced in naive T cells from B27 rats, even premorbid, an observation consistent with a pro-inflammatory pattern. CONCLUSIONS: This study shows that HLA-B27 alters the TGFß pathways in Drosophila and B27 rat. Given the importance of this pathway in CD4 + T cells differentiation and regulation, its disturbance could contribute to the abnormal expansion of pro-inflammatory T helper 17 cells and altered regulatory T cell phenotype observed in B27 rats.


Asunto(s)
Animales Modificados Genéticamente , Antígeno HLA-B27 , Transducción de Señal , Espondiloartritis , Factor de Crecimiento Transformador beta , Animales , Transducción de Señal/fisiología , Espondiloartritis/metabolismo , Espondiloartritis/inmunología , Humanos , Antígeno HLA-B27/genética , Antígeno HLA-B27/metabolismo , Antígeno HLA-B27/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Ratas , Drosophila , Drosophila melanogaster , Alas de Animales/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(30): e2319958121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008673

RESUMEN

Neuropeptides (NPs) and their cognate receptors are critical effectors of diverse physiological processes and behaviors. We recently reported of a noncanonical function of the Drosophila Glucose-6-Phosphatase (G6P) gene in a subset of neurosecretory cells in the central nervous system that governs systemic glucose homeostasis in food-deprived flies. Here, we show that G6P-expressing neurons define six groups of NP-secreting cells, four in the brain and two in the thoracic ganglion. Using the glucose homeostasis phenotype as a screening tool, we find that neurons located in the thoracic ganglion expressing FMRFamide NPs (FMRFaG6P neurons) are necessary and sufficient to maintain systemic glucose homeostasis in starved flies. We further show that G6P is essential in FMRFaG6P neurons for attaining a prominent Golgi apparatus and secreting NPs efficiently. Finally, we establish that G6P-dependent FMRFa signaling is essential for the build-up of glycogen stores in the jump muscle which expresses the receptor for FMRFamides. We propose a general model in which the main role of G6P is to counteract glycolysis in peptidergic neurons for the purpose of optimizing the intracellular environment best suited for the expansion of the Golgi apparatus, boosting release of NPs and enhancing signaling to respective target tissues expressing cognate receptors.


Asunto(s)
Drosophila melanogaster , FMRFamida , Glucosa-6-Fosfatasa , Glucógeno , Neuronas , Neuropéptidos , Transducción de Señal , Animales , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , FMRFamida/metabolismo , Glucosa/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Glucosa-6-Fosfatasa/genética , Glucógeno/metabolismo , Aparato de Golgi/metabolismo , Homeostasis , Músculos/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/genética
3.
Wellcome Open Res ; 9: 56, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015613

RESUMEN

We present a genome assembly from an individual female Drosophila histrio (the drosophilid fruit fly; Arthropoda; Insecta; Diptera; Drosophilidae). The genome sequence is 189.2 megabases in span. Most of the assembly is scaffolded into 5 chromosomal pseudomolecules, including the X sex chromosome. The mitochondrial genome has also been assembled and is 16.02 kilobases in length.

4.
Dev Cell ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38971155

RESUMEN

CRISPR-Cas greatly facilitated the integration of exogenous sequences into specific loci. However, knockin generation in multicellular animals remains challenging, partially due to the complexity of insertion screening. Here, we describe SEED/Harvest, a method to generate knockins in Drosophila, based on CRISPR-Cas and the single-strand annealing (SSA) repair pathway. In SEED (from "scarless editing by element deletion"), a switchable cassette is first integrated into the target locus. In a subsequent CRISPR-triggered repair event, resolved by SSA, the cassette is seamlessly removed. Germline excision of SEED cassettes allows for fast and robust knockin generation of both fluorescent proteins and short protein tags in tandem. Tissue-specific expression of Cas9 results in somatic cassette excision, conferring spatiotemporal control of protein labeling and the conditional rescue of mutants. Finally, to achieve conditional protein labeling and manipulation of short tag knockins, we developed a genetic toolbox by functionalizing the ALFA nanobody.

5.
G3 (Bethesda) ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989890

RESUMEN

Mistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In Drosophila melanogaster, a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently. The mechanisms behind this discrepancy are currently unknown. Here, we compare the transcriptional response of male and female flies to P→S mistranslation to identify genes and cellular processes that underlie sex-specific differences. Both males and females downregulate genes associated with various metabolic processes in response to P→S mistranslation. Males downregulate genes associated with extracellular matrix organization and response to negative stimuli such as wounding, whereas females downregulate aerobic respiration and ATP synthesis genes. Both sexes upregulate genes associated with gametogenesis, but females also upregulate cell cycle and DNA repair genes. These observed differences in the transcriptional response of male and female flies to P→S mistranslation have important implications for the sex-specific impact of mistranslation on disease and tRNA therapeutics.

6.
Chemosphere ; 363: 142821, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986775

RESUMEN

Geometric morphometrics analysis (GMA) is a well-known technique to identify minute changes in Drosophila wings. This study aimed to determine potential changes in Drosophila wings shape and size after exposure to polystyrene nanoplastics (NPs) (50 nm) and microplastics (MPs) (1 µm). Flies were exposed from eggs to pupal eclosion and analyzed using GMA. Results revealed a difference in shape and size between male and female wings, as expected, due to sexual dimorphism. Therefore, wings were analyzed by sex. Wings of MPs and NPs treated females were elongated compared to controls and had a constriction of the wing joint. Additionally, MPs treated female flies had the most dissimilar shape compared to controls. In male flies, NPs flies had smaller wings compared to MPs and control flies. Compared to control, NPs wings of males were shrunken at the joint and in the entire proximal region of the wing. However, male MPs wings had a narrower anal region and were slightly elongated. These results reveal that wing shape and size can change in a different way based on the sex of the flies and size of plastic particles that larvae interacted with. All the changes in the wings occurred only within the normally allowed wing variation and treatment with NPs/MPs did not cause development of the aberrant phenotypes. Results can pave the way for further understanding of how MPs and NPs can alter phenotypes of flies.

7.
Ecol Evol ; 14(7): e11622, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38979002

RESUMEN

Torinido-shoujoubae, as it is called in Japanese, is a flightless Drosophila sp. that is sold commercially in Japan. This Drosophila sp. is often used as feeds for model organisms such as reptiles and spiders. There is no scientific name provided for the fruit fly that is known as Torinido-shoujoubae, as well as any historical background or data behind this species. There has been a previous study that was conducted through morphological characteristics analysis of the body as well as the male copulatory organ and has been estimated as Drosophila hydei. The objective of this study was to determine the species of this unidentified fly known as Torinido-shoujoubae based on a molecular evidence with a DNA barcoding. Samples were purchased from four separate suppliers to examine whether there are any differences between them. COI regions were amplified using PCR and the sequenced results were aligned against two databases, NCBI and BOLD. Torinido-shoujoubae samples provided from all suppliers were confirmed to be D. hydei.

8.
Open Biol ; 14(7): 230355, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38981515

RESUMEN

Epigenetic regulation is important for circadian rhythm. In previous studies, multiple histone modifications were found at the Period (Per) locus. However, most of these studies were not conducted in clock neurons. In our screen, we found that a CoREST mutation resulted in defects in circadian rhythm by affecting Per transcription. Based on previous studies, we hypothesized that CoREST regulates circadian rhythm by regulating multiple histone modifiers at the Per locus. Genetic and physical interaction experiments supported these regulatory relationships. Moreover, through tissue-specific chromatin immunoprecipitation assays in clock neurons, we found that the CoREST mutation led to time-dependent changes in corresponding histone modifications at the Per locus. Finally, we proposed a model indicating the role of the CoREST complex in the regulation of circadian rhythm. This study revealed the dynamic changes of histone modifications at the Per locus specifically in clock neurons. Importantly, it provides insights into the role of epigenetic factors in the regulation of dynamic gene expression changes in circadian rhythm.


Asunto(s)
Ritmo Circadiano , Proteínas Co-Represoras , Epigénesis Genética , Neuronas , Proteínas Circadianas Period , Animales , Neuronas/metabolismo , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Ratones , Proteínas Co-Represoras/metabolismo , Proteínas Co-Represoras/genética , Histonas/metabolismo , Código de Histonas , Mutación , Relojes Circadianos/genética , Regulación de la Expresión Génica
9.
Neurotoxicology ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38981577

RESUMEN

The Advanced Oxidative Processes have demonstrated potential for application in the degradation of organic pollutants, such as Paraquat (PQ) from water and wastewater, due to their low price, high efficiency, and non-toxic properties. In this study, we investigated whether the photodegradation of PQ with TiO2 nanotubes reduced its toxicity in Drosophila melanogaster. However, dietary ingestion of degradation products PQ for larvae resulted in a low axial ratio (pupal volume). In the adults, products of photodegradation of PQ exposure markedly diminished climbing ability in a time-dependent manner after 10 days of feeding. In addition, exposure of D. melanogaster to photodegradation of PQ reduced acetylcholinesterase and citrate synthase activities but improved oxidative stress, as evidenced by oxide nitric, protein carbonyl, and lactate production. These results suggest that the photodegradation of PQ with TiO2 nanotubes produced PQ fragments with higher toxicity than PQ, while the precise mechanism of its action needs further investigation.

10.
Front Neurosci ; 18: 1384336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994271

RESUMEN

Data-driven spiking neuronal network (SNN) models enable in-silico analysis of the nervous system at the cellular and synaptic level. Therefore, they are a key tool for elucidating the information processing principles of the brain. While extensive research has focused on developing data-driven SNN models for mammalian brains, their complexity poses challenges in achieving precision. Network topology often relies on statistical inference, and the functions of specific brain regions and supporting neuronal activities remain unclear. Additionally, these models demand huge computing facilities and their simulation speed is considerably slower than real-time. Here, we propose a lightweight data-driven SNN model that strikes a balance between simplicity and reproducibility. The model is built using a qualitative modeling approach that can reproduce key dynamics of neuronal activity. We target the Drosophila olfactory nervous system, extracting its network topology from connectome data. The model was successfully implemented on a small entry-level field-programmable gate array and simulated the activity of a network in real-time. In addition, the model reproduced olfactory associative learning, the primary function of the olfactory system, and characteristic spiking activities of different neuron types. In sum, this paper propose a method for building data-driven SNN models from biological data. Our approach reproduces the function and neuronal activities of the nervous system and is lightweight, acceleratable with dedicated hardware, making it scalable to large-scale networks. Therefore, our approach is expected to play an important role in elucidating the brain's information processing at the cellular and synaptic level through an analysis-by-construction approach. In addition, it may be applicable to edge artificial intelligence systems in the future.

11.
Cells ; 13(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38994975

RESUMEN

Mating in female Drosophila melanogaster causes midgut hypertrophy and reduced lifespan, and these effects are blocked by the drug mifepristone. Eip75B is a transcription factor previously reported to have pleiotropic effects on Drosophila lifespan. Because Eip75B null mutations are lethal, conditional systems and/or partial knock-down are needed to study Eip75B effects in adults. Previous studies showed that Eip75B is required for adult midgut cell proliferation in response to mating. To test the possible role of Eip75B in mediating the lifespan effects of mating and mifepristone, a tripartite FLP-recombinase-based conditional system was employed that provides controls for genetic background. Expression of a Hsp70-FLP transgene was induced in third instar larvae by a brief heat pulse. The FLP recombinase catalyzed the recombination and activation of an Actin5C-GAL4 transgene. The GAL4 transcription factor in turn activated expression of a UAS-Eip75B-RNAi transgene. Inhibition of Eip75B activity was confirmed by loss of midgut hypertrophy upon mating, and the lifespan effects of both mating and mifepristone were eliminated. In addition, the negative effects of mifepristone on egg production were eliminated. The data indicate that Eip75B mediates the effects of mating and mifepristone on female midgut hypertrophy, egg production, and lifespan.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Longevidad , Mifepristona , Factores de Transcripción , Animales , Mifepristona/farmacología , Femenino , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Longevidad/efectos de los fármacos , Longevidad/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Masculino , Conducta Sexual Animal/efectos de los fármacos
12.
Cells ; 13(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38994985

RESUMEN

The Notch communication pathway, discovered in Drosophila over 100 years ago, regulates a wide range of intra-lineage decisions in metazoans. The division of the Drosophila mechanosensory organ precursor is the archetype of asymmetric cell division in which differential Notch activation takes place at cytokinesis. Here, we review the molecular mechanisms by which epithelial cell polarity, cell cycle and intracellular trafficking participate in controlling the directionality, subcellular localization and temporality of mechanosensitive Notch receptor activation in cytokinesis.


Asunto(s)
Drosophila melanogaster , Receptores Notch , Animales , Drosophila melanogaster/metabolismo , Receptores Notch/metabolismo , Epitelio/metabolismo , Polaridad Celular , Proteínas de Drosophila/metabolismo , Órganos de los Sentidos/metabolismo , Órganos de los Sentidos/citología , Transducción de Señal , Células Epiteliales/metabolismo , Células Epiteliales/citología
13.
G3 (Bethesda) ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001868

RESUMEN

Drosophila prolongata is a member of the melanogaster species group and rhopaloa subgroup native to the subtropical highlands of southeast Asia. This species exhibits an array of recently evolved male-specific morphological, physiological, and behavioral traits that distinguish it from its closest relatives, making it an attractive model for studying the evolution of sexual dimorphism and testing theories of sexual selection. The lack of genomic resources has impeded the dissection of the molecular basis of sex-specific development and behavior in this species. To address this, we assembled the genome of D. prolongata using long-read sequencing and Hi-C scaffolding, resulting in a highly complete and contiguous (scaffold N50 2.2Mb) genome assembly of 220Mb. The repetitive content of the genome is 24.6%, the plurality of which are LTR retrotransposons (33.2%). Annotations based on RNA-seq data and homology to related species revealed a total of 19,330 genes, of which 16,170 are protein-coding. The assembly includes 98.5% of Diptera BUSCO genes, including 93.8% present as a single copy. Despite some likely regional duplications, the completeness of this genome suggests that it can be readily used for gene expression, GWAS, and other genomic analyses.

14.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000597

RESUMEN

Drosophila spermatogenesis involves the renewal of germline stem cells, meiosis of spermatocytes, and morphological transformation of spermatids into mature sperm. We previously demonstrated that Ocnus (ocn) plays an essential role in spermatogenesis. The ValRS-m (Valyl-tRNA synthetase, mitochondrial) gene was down-regulated in ocn RNAi testes. Here, we found that ValRS-m-knockdown induced complete sterility in male flies. The depletion of ValRS-m blocked mitochondrial behavior and ATP synthesis, thus inhibiting the transition from spermatogonia to spermatocytes, and eventually, inducing the accumulation of spermatogonia during spermatogenesis. To understand the intrinsic reason for this, we further conducted transcriptome-sequencing analysis for control and ValRS-m-knockdown testes. The differentially expressed genes (DEGs) between these two groups were selected with a fold change of ≥2 or ≤1/2. Compared with the control group, 4725 genes were down-regulated (dDEGs) and 2985 genes were up-regulated (uDEGs) in the ValRS-m RNAi group. The dDEGs were mainly concentrated in the glycolytic pathway and pyruvate metabolic pathway, and the uDEGs were primarily related to ribosomal biogenesis. A total of 28 DEGs associated with mitochondria and 6 meiosis-related genes were verified to be suppressed when ValRS-m was deficient. Overall, these results suggest that ValRS-m plays a wide and vital role in mitochondrial behavior and spermatogonia differentiation in Drosophila.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Infertilidad Masculina , Espermatogénesis , Animales , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/deficiencia , Espermatogénesis/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Testículo/metabolismo , Meiosis/genética , Espermatogonias/metabolismo , Perfilación de la Expresión Génica , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Espermatocitos/metabolismo , Transcriptoma
15.
Res Sq ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38946980

RESUMEN

Wolbachia is an obligate intracellular α-proteobacterium which commonly infects arthropods and filarial nematodes. Different strains of Wolbachia are capable of a wide range of regulatory manipulations in many hosts and modulate host cellular differentiation to influence host reproduction. The genetic basis for the majority of these phenotypes is unknown. The wWil strain from the neotropical fruit fly, Drosophila willistoni, exhibits a remarkably high affinity for host germline-derived cells relative to the soma. This trait could be leveraged for understanding how Wolbachia influences the host germline and for controlling host populations in the field. To further the use of this strain in biological and biomedical research, we sequenced the genome of the wWil strain isolated from host cell culture cells. Here, we present the first high quality nanopore assembly of wWil, the Wolbachia endosymbiont of D. willistoni. Our assembly resulted in a circular genome of 1.27 Mb with a BUSCO completeness score of 99.7%. Consistent with other insect-associated Wolbachia strains, comparative genomic analysis revealed that wWil has a highly mosaic genome relative to the closely related wMel strain from Drosophila melanogaster.

16.
Development ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958007

RESUMEN

Transcription initiates at the core promoter, which contains distinct core promoter elements. Here, we highlight the complexity of transcriptional regulation by outlining the effect of core promoter-dependent regulation on embryonic development and the proper function of an organism. We demonstrate in vivo the importance of the downstream core promoter element (DPE) in complex heart formation in Drosophila. Pioneering a novel approach utilizing both CRISPR and nascent transcriptomics, we show the effects of mutating a single core promoter element within the natural context. Specifically, we targeted the downstream core promoter element (DPE) of the endogenous tin gene, encoding the Tinman transcription factor, a homologue of human NKX2-5 associated with congenital heart diseases. The 7bp substitution mutation results in massive perturbation of the Tinman regulatory network orchestrating dorsal musculature, manifested as physiological and anatomical changes in the cardiac system, impaired specific activity features and significantly compromised viability of adult flies. Thus, a single motif can have a critical impact on embryogenesis and, in the case of DPE, functional heart formation.

17.
Dev Comp Immunol ; 159: 105223, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960294

RESUMEN

Consideration is given to previous and more recent protocols for harvesting arthropod haemocytes from Galleria, Drosophila, mosquitoes, Limulus and crustaceans. The optimal harvesting of these cells is essential for meaningful studies of invertebrate immunity in vitro. The results of such experiments, however, have often been flawed due to a lack of understanding of the fragile nature of arthropod haemocytes on exposure to bacterial lipopolysaccharides, resulting in the aggregation and loss of cell types during haemolymph clotting. This article emphasizes that although there are similarities between mammalian neutrophils and arthropod haemocytes, the protocols required for the successful harvesting of these cells vary significantly. The various stages for the successful harvesting of arthropod haemocytes are described in detail and should provide invaluable advice to those requiring both high cell viability and recovery of the different cell types for subsequent experimentation.

18.
Genes Brain Behav ; 23(1): e12884, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38968320

RESUMEN

Tolerance occurs when, following an initial experience with a substance, more of the substance is required subsequently to induce identical behavioral effects. Tolerance is not well-understood, and numerous researchers have turned to model organisms, particularly Drosophila melanogaster, to unravel its mechanisms. Flies have high translational relevance for human alcohol responses, and there is substantial overlap in disease-causing genes between flies and humans, including those associated with Alcohol Use Disorder. Numerous Drosophila tolerance mutants have been described; however, approaches used to identify and characterize these mutants have varied across time and labs and have mostly disregarded any impact of initial resistance/sensitivity to ethanol on subsequent tolerance development. Here, we analyzed our own, as well as data published by other labs to uncover an inverse correlation between initial ethanol resistance and tolerance phenotypes. This inverse correlation suggests that initial resistance phenotypes can explain many 'perceived' tolerance phenotypes, thus classifying such mutants as 'secondary' tolerance mutants. Additionally, we show that tolerance should be measured as a relative increase in time to sedation between an initial and second exposure rather than an absolute change in time to sedation. Finally, based on our analysis, we provide a method for using a linear regression equation to assess the residuals of potential tolerance mutants. These residuals provide predictive insight into the likelihood of a mutant being a 'primary' tolerance mutant, where a tolerance phenotype is not solely a consequence of initial resistance, and we offer a framework for understanding the relationship between initial resistance and tolerance.


Asunto(s)
Drosophila melanogaster , Tolerancia a Medicamentos , Etanol , Fenotipo , Animales , Drosophila melanogaster/genética , Etanol/farmacología , Tolerancia a Medicamentos/genética , Mutación
19.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000124

RESUMEN

Over the years, comprehensive explorations of the model organisms Caenorhabditis elegans (elegant worm) and Drosophila melanogaster (vinegar fly) have contributed substantially to our understanding of complex biological processes and pathways in multicellular organisms generally. Extensive functional genomic-phenomic, genomic, transcriptomic, and proteomic data sets have enabled the discovery and characterisation of genes that are crucial for life, called 'essential genes'. Recently, we investigated the feasibility of inferring essential genes from such data sets using advanced bioinformatics and showed that a machine learning (ML)-based workflow could be used to extract or engineer features from DNA, RNA, protein, and/or cellular data/information to underpin the reliable prediction of essential genes both within and between C. elegans and D. melanogaster. As these are two distantly related species within the Ecdysozoa, we proposed that this ML approach would be particularly well suited for species that are within the same phylum or evolutionary clade. In the present study, we cross-predicted essential genes within the phylum Nematoda (evolutionary clade V)-between C. elegans and the pathogenic parasitic nematode H. contortus-and then ranked and prioritised H. contortus proteins encoded by these genes as intervention (e.g., drug) target candidates. Using strong, validated predictors, we inferred essential genes of H. contortus that are involved predominantly in crucial biological processes/pathways including ribosome biogenesis, translation, RNA binding/processing, and signalling and which are highly transcribed in the germline, somatic gonad precursors, sex myoblasts, vulva cell precursors, various nerve cells, glia, or hypodermis. The findings indicate that this in silico workflow provides a promising avenue to identify and prioritise panels/groups of drug target candidates in parasitic nematodes for experimental validation in vitro and/or in vivo.


Asunto(s)
Caenorhabditis elegans , Genes Esenciales , Haemonchus , Aprendizaje Automático , Animales , Haemonchus/genética , Caenorhabditis elegans/genética , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Biología Computacional/métodos , Drosophila melanogaster/genética
20.
Biochem Biophys Res Commun ; 727: 150311, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38950494

RESUMEN

In human Alzheimer's disease (AD), the aggregation of tau protein is considered a significant hallmark, along with amyloid-beta. The formation of neurofibrillary tangles due to aberrant phosphorylation of tau disrupts microtubule stability, leading to neuronal toxicity, dysfunction, and subsequent cell death. Nesfatin-1 is a neuropeptide primarily known for regulating appetite and energy homeostasis. However, the function of Nesfatin-1 in a neuroprotective role has not been investigated. In this study, we aimed to elucidate the effect of Nesfatin-1 on tau pathology using the Drosophila model system. Our findings demonstrate that Nesfatin-1 effectively mitigates the pathological phenotypes observed in Drosophila human Tau overexpression models. Nesfatin-1 overexpression rescued the neurodegenerative phenotypes in the adult fly's eye and bristle. Additionally, Nesfatin-1 improved locomotive behavior, neuromuscular junction formation, and lifespan in the hTau AD model. Moreover, Nesfatin-1 controls tauopathy by reducing the protein level of hTau. Overall, this research highlights the potential therapeutic applications of Nesfatin-1 in ameliorating the pathological features associated with Alzheimer's disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...