Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 44(8)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-38952005

RESUMEN

Forest ecosystems face increasing drought exposure due to climate change, necessitating accurate measurements of vegetation water content to assess drought stress and tree mortality risks. Although Frequency Domain Reflectometry offers a viable method for monitoring stem water content by measuring dielectric permittivity, challenges arise from uncertainties in sensor calibration linked to wood properties and species variability, impeding its wider usage. We sampled tropical forest trees and palms in eastern Amazônia to evaluate how sensor output differences are controlled by wood density, temperature and taxonomic identity. Three individuals per species were felled and cut into segments within a diverse dataset comprising five dicotyledonous tree and three monocotyledonous palm species on a wide range of wood densities. Water content was estimated gravimetrically for each segment using a temporally explicit wet-up/dry-down approach and the relationship with the dielectric permittivity was examined. Woody tissue density had no significant impact on the calibration, but species identity and temperature significantly affected sensor readings. The temperature artefact was quantitatively important at large temperature differences, which may have led to significant bias of daily and seasonal water content dynamics in previous studies. We established the first tropical tree and palm calibration equation which performed well for estimating water content. Notably, we demonstrated that the sensitivity remained consistent across species, enabling the creation of a simplified one-slope calibration for accurate, species-independent measurements of relative water content. Our one-slope calibration serves as a general, species-independent standard calibration for assessing relative water content in woody tissue, offering a valuable tool for quantifying drought responses and stress in trees and forest ecosystems.


Asunto(s)
Bosques , Árboles , Clima Tropical , Agua , Madera , Madera/química , Agua/metabolismo , Árboles/fisiología , Ecosistema , Sequías , Arecaceae/fisiología , Arecaceae/metabolismo , Brasil
2.
Proc Natl Acad Sci U S A ; 121(22): e2316924121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768350

RESUMEN

Dynamic ecosystems, such as the Amazon forest, are expected to show critical slowing down behavior, or slower recovery from recurrent small perturbations, as they approach an ecological threshold to a different ecosystem state. Drought occurrences are becoming more prevalent across the Amazon, with known negative effects on forest health and functioning, but their actual role in the critical slowing down patterns still remains elusive. In this study, we evaluate the effect of trends in extreme drought occurrences on temporal autocorrelation (TAC) patterns of satellite-derived indices of vegetation activity, an indicator of slowing down, between 2001 and 2019. Differentiating between extreme drought frequency, intensity, and duration, we investigate their respective effects on the slowing down response. Our results indicate that the intensity of extreme droughts is a more important driver of slowing down than their duration, although their impacts vary across the different Amazon regions. In addition, areas with more variable precipitation are already less ecologically stable and need fewer droughts to induce slowing down. We present findings indicating that most of the Amazon region does not show an increasing trend in TAC. However, the predicted increase in extreme drought intensity and frequency could potentially transition significant portions of this ecosystem into a state with altered functionality.


Asunto(s)
Sequías , Bosques , Ecosistema , Brasil , Árboles/fisiología , Árboles/crecimiento & desarrollo , Cambio Climático
3.
Ecol Appl ; 29(2): e01834, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30536477

RESUMEN

This research investigates ecological responses to drought by developing a conceptual framework of vegetation response and investigating how multiple measures of drought can improve regional drought monitoring. We apply this approach to a case study of a recent drought in Guanacaste, Costa Rica. First, we assess drought severity with the Standard Precipitation Index (SPI) based on a 64-yr precipitation record derived from a combination of Global Precipitation Climatology Center data and satellite observations from Tropical Rainfall Measuring Mission and Global Precipitation Measurement. Then, we examine spatial patterns of precipitation, vegetation greenness, evapotranspiration (ET), potential evapotranspiration (PET), and evaporative stress index (ESI) during the drought years of 2013, 2014, and 2015 relative to a baseline period (2002-2012). We compute wet season (May-October) anomalies for precipitation at 0.25° spatial resolution, normalized difference vegetation index (NDVI) at 30-m spatial resolution, and ET, PET and ESI derived with the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model at 1-km spatial resolution. We assess patterns of landscape response across years and land cover types including three kinds of forest (deciduous, old growth, and secondary), grassland, and cropland. Results show that rainfall in Guanacaste reached an all-time low in 2015 over a 64-yr record (wet season SPI = -3.46), resulting in NDVI declines. However, ET and ESI did not show significant anomalies relative to a baseline, drought-free period. Forests in the region exhibited lower water stress compared to grasslands and had smaller declines, and even some increases, in NDVI and ET during the drought period. This work highlights the value of using multiple measures to assess ecosystem responses to drought. It also suggests that agricultural land management has an opportunity to integrate these findings by emulating some of the characteristics of drought-resilient ecosystems in managed systems.


Asunto(s)
Sequías , Ecosistema , Costa Rica , Bosques , Estaciones del Año
4.
Artículo en Inglés | MEDLINE | ID: mdl-30297473

RESUMEN

The tropical carbon balance dominates year-to-year variations in the CO2 exchange with the atmosphere through photosynthesis, respiration and fires. Because of its high correlation with gross primary productivity (GPP), observations of sun-induced fluorescence (SIF) are of great interest. We developed a new remotely sensed SIF product with improved signal-to-noise in the tropics, and use it here to quantify the impact of the 2015/2016 El Niño Amazon drought. We find that SIF was strongly suppressed over areas with anomalously high temperatures and decreased levels of water in the soil. SIF went below its climatological range starting from the end of the 2015 dry season (October) and returned to normal levels by February 2016 when atmospheric conditions returned to normal, but well before the end of anomalously low precipitation that persisted through June 2016. Impacts were not uniform across the Amazon basin, with the eastern part experiencing much larger (10-15%) SIF reductions than the western part of the basin (2-5%). We estimate the integrated loss of GPP relative to eight previous years to be 0.34-0.48 PgC in the three-month period October-November-December 2015.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Asunto(s)
El Niño Oscilación del Sur , Fluorescencia , Tecnología de Sensores Remotos/métodos , Luz Solar , Árboles/fisiología , Brasil , Sequías , Bosques
5.
Tree Physiol ; 35(5): 521-34, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25939867

RESUMEN

Climate is a major selective force in nature. Exploring patterns of inter- and intraspecific genetic variation in functional traits may explain how species have evolved and may continue evolving under future climate change. Photoprotective pigments play an important role in short-term responses to climate stress in plants but knowledge of their long-term role in adaptive processes is lacking. In this study, our goal was to determine how photoprotective mechanisms, morphological traits and their plasticity have evolved in live oaks (Quercus series Virentes) in response to different climatic conditions. For this purpose, seedlings originating from 11 populations from four live oak species (Quercus virginiana, Q. geminata, Q. fusiformis and Q. oleoides) were grown under contrasting common environmental conditions of temperature (tropical vs temperate) and water availability (droughted vs well-watered). Xanthophyll cycle pigments, anthocyanin accumulation, chlorophyll fluorescence parameters and leaf anatomical traits were measured. Seedlings originating from more mesic source populations of Q. oleoides and Q. fusiformis increased the xanthophyll de-epoxidation state under water-limiting conditions and showed higher phenotypic plasticity for this trait, suggesting adaptation to local climate. Likewise, seedlings originating from warmer climates had higher anthocyanin concentration in leaves under cold winter conditions but not higher de-epoxidation state. Overall, our findings suggest that (i) climate has been a key factor in shaping species and population differences in stress tolerance for live oaks, (ii) anthocyanins are used under cold stress in species with limited freezing tolerance and (iii) xanthophyll cycle pigments are used when photoprotection under drought conditions is needed.


Asunto(s)
Frío , Sequías , Pigmentos Biológicos/metabolismo , Hojas de la Planta/fisiología , Quercus/fisiología , Adaptación Fisiológica , Antocianinas/metabolismo , América Central , Clorofila/metabolismo , Cambio Climático , Variación Genética , América del Norte , Hojas de la Planta/anatomía & histología , Quercus/anatomía & histología , Quercus/genética , Especificidad de la Especie , Xantófilas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA