Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931751

RESUMEN

This work addresses the challenge of classifying multiclass visual EEG signals into 40 classes for brain-computer interface applications using deep learning architectures. The visual multiclass classification approach offers BCI applications a significant advantage since it allows the supervision of more than one BCI interaction, considering that each class label supervises a BCI task. However, because of the nonlinearity and nonstationarity of EEG signals, using multiclass classification based on EEG features remains a significant challenge for BCI systems. In the present work, mutual information-based discriminant channel selection and minimum-norm estimate algorithms were implemented to select discriminant channels and enhance the EEG data. Hence, deep EEGNet and convolutional recurrent neural networks were separately implemented to classify the EEG data for image visualization into 40 labels. Using the k-fold cross-validation approach, average classification accuracies of 94.8% and 89.8% were obtained by implementing the aforementioned network architectures. The satisfactory results obtained with this method offer a new implementation opportunity for multitask embedded BCI applications utilizing a reduced number of both channels (<50%) and network parameters (<110 K).


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Aprendizaje Profundo , Electroencefalografía , Redes Neurales de la Computación , Electroencefalografía/métodos , Humanos , Procesamiento de Señales Asistido por Computador
2.
Sci Rep ; 14(1): 10667, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724576

RESUMEN

The study introduces a new online spike encoding algorithm for spiking neural networks (SNN) and suggests new methods for learning and identifying diagnostic biomarkers using three prominent deep learning neural network models: deep BiLSTM, reservoir SNN, and NeuCube. EEG data from datasets related to epilepsy, migraine, and healthy subjects are employed. Results reveal that BiLSTM hidden neurons capture biological significance, while reservoir SNN activities and NeuCube spiking dynamics identify EEG channels as diagnostic biomarkers. BiLSTM and reservoir SNN achieve 90 and 85% classification accuracy, while NeuCube achieves 97%, all methods pinpointing potential biomarkers like T6, F7, C4, and F8. The research bears implications for refining online EEG classification, analysis, and early brain state diagnosis, enhancing AI models with interpretability and discovery. The proposed techniques hold promise for streamlined brain-computer interfaces and clinical applications, representing a significant advancement in pattern discovery across the three most popular neural network methods for addressing a crucial problem. Further research is planned to study how early can these diagnostic biomarkers predict an onset of brain states.


Asunto(s)
Biomarcadores , Encéfalo , Electroencefalografía , Epilepsia , Trastornos Migrañosos , Redes Neurales de la Computación , Humanos , Electroencefalografía/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Biomarcadores/análisis , Proyectos Piloto , Trastornos Migrañosos/diagnóstico , Trastornos Migrañosos/fisiopatología , Encéfalo/fisiopatología , Aprendizaje Profundo , Algoritmos , Masculino , Adulto , Femenino
3.
Front Hum Neurosci ; 18: 1369862, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660014

RESUMEN

Attention deficit/hyperactivity disorder (ADHD) is a neuropsychological disorder that occurs in children and is characterized by inattention, impulsivity, and hyperactivity. Early and accurate diagnosis of ADHD is very important for effective intervention. The aim of this study is to develop a computer-aided approach to detecting ADHD using electroencephalogram (EEG) signals. Specifically, we explore a Gabor filter-based statistical features approach for the classification of EEG signals into ADHD and healthy control (HC). The EEG signal is processed by a bank of Gabor filters to obtain narrow-band signals. Subsequently, a set of statistical features is extracted. The computed features are then subjected to feature selection. Finally, the obtained feature vector is given to a classifier to detect ADHD and HC. Our approach achieves the highest classification accuracy of 96.4% on a publicly available dataset. Furthermore, our approach demonstrates better classification accuracy than the existing methods.

4.
J Neurosci Methods ; 406: 110128, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554787

RESUMEN

BACKGROUND: In recent times, the expeditious expansion of Brain-Computer Interface (BCI) technology in neuroscience, which relies on electroencephalogram (EEG) signals associated with motor imagery, has yielded outcomes that rival conventional approaches, notably due to the triumph of deep learning. Nevertheless, the task of developing and training a comprehensive network to extract the underlying characteristics of motor imagining EEG data continues to pose challenges. NEW METHOD: This paper presents a multi-scale spatiotemporal self-attention (SA) network model that relies on an attention mechanism. This model aims to classify motor imagination EEG signals into four classes (left hand, right hand, foot, tongue/rest) by considering the temporal and spatial properties of EEG. It is employed to autonomously allocate greater weights to channels linked to motor activity and lesser weights to channels not related to movement, thus choosing the most suitable channels. Neuron utilises parallel multi-scale Temporal Convolutional Network (TCN) layers to extract feature information in the temporal domain at various scales, effectively eliminating temporal domain noise. RESULTS: The suggested model achieves accuracies of 79.26%, 85.90%, and 96.96% on the BCI competition datasets IV-2a, IV-2b, and HGD, respectively. COMPARISON WITH EXISTING METHODS: In terms of single-subject classification accuracy, this strategy demonstrates superior performance compared to existing methods. CONCLUSION: The results indicate that the proposed strategy exhibits favourable performance, resilience, and transfer learning capabilities.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Imaginación , Humanos , Electroencefalografía/métodos , Imaginación/fisiología , Atención/fisiología , Redes Neurales de la Computación , Actividad Motora/fisiología , Encéfalo/fisiología , Movimiento/fisiología , Procesamiento de Señales Asistido por Computador
5.
Brain Inform ; 10(1): 25, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689601

RESUMEN

Early identification of mental disorders, based on subjective interviews, is extremely challenging in the clinical setting. There is a growing interest in developing automated screening tools for potential mental health problems based on biological markers. Here, we demonstrate the feasibility of an AI-powered diagnosis of different mental disorders using EEG data. Specifically, this work aims to classify different mental disorders in the following ecological context accurately: (1) using raw EEG data, (2) collected during rest, (3) during both eye open, and eye closed conditions, (4) at short 2-min duration, (5) on participants with different psychiatric conditions, (6) with some overlapping symptoms, and (7) with strongly imbalanced classes. To tackle this challenge, we designed and optimized a transformer-based architecture, where class imbalance is addressed through focal loss and class weight balancing. Using the recently released TDBRAIN dataset (n= 1274 participants), our method classifies each participant as either a neurotypical or suffering from major depressive disorder (MDD), attention deficit hyperactivity disorder (ADHD), subjective memory complaints (SMC), or obsessive-compulsive disorder (OCD). We evaluate the performance of the proposed architecture on both the window-level and the patient-level. The classification of the 2-min raw EEG data into five classes achieved a window-level accuracy of 63.2% and 65.8% for open and closed eye conditions, respectively. When the classification is limited to three main classes (MDD, ADHD, SMC), window level accuracy improved to 75.1% and 69.9% for eye open and eye closed conditions, respectively. Our work paves the way for developing novel AI-based methods for accurately diagnosing mental disorders using raw resting-state EEG data.

6.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112452

RESUMEN

This paper presents a trainable hybrid approach involving a shallow autoencoder (AE) and a conventional classifier for epileptic seizure detection. The signal segments of a channel of electroencephalogram (EEG) (EEG epochs) are classified as epileptic and non-epileptic by employing its encoded AE representation as a feature vector. Analysis on a single channel-basis and the low computational complexity of the algorithm allow its use in body sensor networks and wearable devices using one or few EEG channels for wearing comfort. This enables the extended diagnosis and monitoring of epileptic patients at home. The encoded representation of EEG signal segments is obtained based on training the shallow AE to minimize the signal reconstruction error. Extensive experimentation with classifiers has led us to propose two versions of our hybrid method: (a) one yielding the best classification performance compared to the reported methods using the k-nearest neighbor (kNN) classifier and (b) the second with a hardware-friendly architecture and yet with the best classification performance compared to other reported methods in this category using a support-vector machine (SVM) classifier. The algorithm is evaluated on the Children's Hospital Boston, Massachusetts Institute of Technology (CHB-MIT), and University of Bonn EEG datasets. The proposed method achieves 98.85% accuracy, 99.29% sensitivity, and 98.86% specificity on the CHB-MIT dataset using the kNN classifier. The best figures using the SVM classifier for accuracy, sensitivity, and specificity are 99.19%, 96.10%, and 99.19%, respectively. Our experiments establish the superiority of using an AE approach with a shallow architecture to generate a low-dimensionality yet effective EEG signal representation capable of high-performance abnormal seizure activity detection at a single-channel EEG level and with a fine granularity of 1 s EEG epochs.


Asunto(s)
Epilepsia , Procesamiento de Señales Asistido por Computador , Niño , Humanos , Epilepsia/diagnóstico , Convulsiones/diagnóstico , Electroencefalografía/métodos , Máquina de Vectores de Soporte , Algoritmos
7.
Comput Methods Programs Biomed ; 231: 107380, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36745954

RESUMEN

BACKGROUND AND OBJECTIVE: Emotion classification tasks based on electroencephalography (EEG) are an essential part of artificial intelligence, with promising applications in healthcare areas such as autism research and emotion detection in pregnant women. However, the complex data acquisition environment provides a variable number of EEG channels, which interferes with the model to simulate the process of information transfer in the human brain. Therefore, this paper proposes an improved graph convolution model with dynamic channel selection. METHODS: The proposed model combines the advantages of 1D convolution and graph convolution to capture the intra- and inter-channel EEG features, respectively. We add functional connectivity in the graph structure that helps to simulate the relationship between brain regions further. In addition, an adjustable scale of channel selection can be performed based on the attention distribution in the graph structure. RESULTS: We conducted various experiments on the DEAP-Twente, DEAP-Geneva, and SEED datasets and achieved average accuracies of 90.74%, 91%, and 90.22%, respectively, which exceeded most existing models. Meanwhile, with only 20% of the EEG channels retained, the models achieved average accuracies of 82.78%, 84%, and 83.93% on the above three datasets, respectively. CONCLUSIONS: The experimental results show that the proposed model can achieve effective emotion classification in complex dataset environments. Also, the proposed channel selection method is informative for reducing the cost of affective computing.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Embarazo , Femenino , Humanos , Emociones , Encéfalo , Electroencefalografía
8.
Diagnostics (Basel) ; 12(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36428941

RESUMEN

Epileptic seizure is a neurological condition caused by short and unexpectedly occurring electrical disruptions in the brain. It is estimated that roughly 60 million individuals worldwide have had an epileptic seizure. Experiencing an epileptic seizure can have serious consequences for the patient. Automatic seizure detection on electroencephalogram (EEG) recordings is essential due to the irregular and unpredictable nature of seizures. By thoroughly analyzing EEG records, neurophysiologists can discover important information and patterns, and proper and timely treatments can be provided for the patients. This research presents a novel machine learning-based approach for detecting epileptic seizures in EEG signals. A public EEG dataset from the University of Bonn was used to validate the approach. Meaningful statistical features were extracted from the original data using discrete wavelet transform analysis, then the relevant features were selected using feature selection based on the binary particle swarm optimizer. This facilitated the reduction of 75% data dimensionality and 47% computational time, which eventually sped up the classification process. After having been selected, relevant features were used to train different machine learning models, then hyperparameter optimization was utilized to further enhance the models' performance. The results achieved up to 98.4% accuracy and showed that the proposed method was very effective and practical in detecting seizure presence in EEG signals. In clinical applications, this method could help relieve the suffering of epilepsy patients and alleviate the workload of neurologists.

9.
J Neural Eng ; 19(6)2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36270485

RESUMEN

Objective.Clinical diagnosis of epilepsy relies partially on identifying interictal epileptiform discharges (IEDs) in scalp electroencephalograms (EEGs). This process is expert-biased, tedious, and can delay the diagnosis procedure. Beyond automatically detecting IEDs, there are far fewer studies on automated methods to differentiate epileptic EEGs (potentially without IEDs) from normal EEGs. In addition, the diagnosis of epilepsy based on a single EEG tends to be low. Consequently, there is a strong need for automated systems for EEG interpretation. Traditionally, epilepsy diagnosis relies heavily on IEDs. However, since not all epileptic EEGs exhibit IEDs, it is essential to explore IED-independent EEG measures for epilepsy diagnosis. The main objective is to develop an automated system for detecting epileptic EEGs, both with or without IEDs. In order to detect epileptic EEGs without IEDs, it is crucial to include EEG features in the algorithm that are not directly related to IEDs.Approach.In this study, we explore the background characteristics of interictal EEG for automated and more reliable diagnosis of epilepsy. Specifically, we investigate features based on univariate temporal measures (UTMs), spectral, wavelet, Stockwell, connectivity, and graph metrics of EEGs, besides patient-related information (age and vigilance state). The evaluation is performed on a sizeable cohort of routine scalp EEGs (685 epileptic EEGs and 1229 normal EEGs) from five centers across Singapore, USA, and India.Main results.In comparison with the current literature, we obtained an improved Leave-One-Subject-Out (LOSO) cross-validation (CV) area under the curve (AUC) of 0.871 (Balanced Accuracy (BAC) of 80.9%) with a combination of three features (IED rate, and Daubechies and Morlet wavelets) for the classification of EEGs with IEDs vs. normal EEGs. The IED-independent feature UTM achieved a LOSO CV AUC of 0.809 (BAC of 74.4%). The inclusion of IED-independent features also helps to improve the EEG-level classification of epileptic EEGs with and without IEDs vs. normal EEGs, achieving an AUC of 0.822 (BAC of 77.6%) compared to 0.688 (BAC of 59.6%) for classification only based on the IED rate. Specifically, the addition of IED-independent features improved the BAC by 21% in detecting epileptic EEGs that do not contain IEDs.Significance.These results pave the way towards automated detection of epilepsy. We are one of the first to analyze epileptic EEGs without IEDs, thereby opening up an underexplored option in epilepsy diagnosis.


Asunto(s)
Electroencefalografía , Epilepsia , Humanos , Electroencefalografía/métodos , Epilepsia/diagnóstico
10.
J Neural Eng ; 19(4)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35985292

RESUMEN

Objective.Extracting reliable information from electroencephalogram (EEG) is difficult because the low signal-to-noise ratio and significant intersubject variability seriously hinder statistical analyses. However, recent advances in explainable machine learning open a new strategy to address this problem.Approach.The current study evaluates this approach using results from the classification and decoding of electrical brain activity associated with information retention. We designed four neural network models differing in architecture, training strategies, and input representation to classify single experimental trials of a working memory task.Main results.Our best models achieved an accuracy (ACC) of 65.29 ± 0.76 and Matthews correlation coefficient of 0.288 ± 0.018, outperforming the reference model trained on the same data. The highest correlation between classification score and behavioral performance was 0.36 (p= 0.0007). Using analysis of input perturbation, we estimated the importance of EEG channels and frequency bands in the task at hand. The set of essential features identified for each network varies. We identified a subset of features common to all models that identified brain regions and frequency bands consistent with current neurophysiological knowledge of the processes critical to attention and working memory. Finally, we proposed sanity checks to examine further the robustness of each model's set of features.Significance.Our results indicate that explainable deep learning is a powerful tool for decoding information from EEG signals. It is crucial to train and analyze a range of models to identify stable and reliable features. Our results highlight the need for explainable modeling as the model with the highest ACC appeared to use residual artifactual activity.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía/métodos , Aprendizaje Automático , Memoria a Corto Plazo , Redes Neurales de la Computación
11.
Biosensors (Basel) ; 12(6)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35735532

RESUMEN

To apply EEG-based brain-machine interfaces during rehabilitation, separating various tasks during motor imagery (MI) and assimilating MI into motor execution (ME) are needed. Previous studies were focusing on classifying different MI tasks based on complex algorithms. In this paper, we implement intelligent, straightforward, comprehensible, time-efficient, and channel-reduced methods to classify ME versus MI and left- versus right-hand MI. EEG of 30 healthy participants undertaking motional tasks is recorded to investigate two classification tasks. For the first task, we first propose a "follow-up" pattern based on the beta rebound. This method achieves an average classification accuracy of 59.77% ± 11.95% and can be up to 89.47% for finger-crossing. Aside from time-domain information, we map EEG signals to feature space using extraction methods including statistics, wavelet coefficients, average power, sample entropy, and common spatial patterns. To evaluate their practicability, we adopt a support vector machine as an intelligent classifier model and sparse logistic regression as a feature selection technique and achieve 79.51% accuracy. Similar approaches are taken for the second classification reaching 75.22% accuracy. The classifiers we propose show high accuracy and intelligence. The achieved results make our approach highly suitable to be applied to the rehabilitation of paralyzed limbs.


Asunto(s)
Interfaces Cerebro-Computador , Mano/fisiología , Algoritmos , Electroencefalografía/métodos , Estudios de Seguimiento , Humanos , Inteligencia , Modelos Logísticos , Parálisis/rehabilitación , Rehabilitación/métodos
12.
Math Biosci Eng ; 19(7): 6907-6922, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35730288

RESUMEN

Motor Imagery EEG (MI-EEG) classification plays an important role in different Brain-Computer Interface (BCI) systems. Recently, deep learning has been widely used in the MI-EEG classification tasks, however this technology requires a large number of labeled training samples which are difficult to obtain, and insufficient labeled training samples will result in a degradation of the classification performance. To address the degradation problem, we investigate a Self-Supervised Learning (SSL) based MI-EEG classification method to reduce the dependence on a large number of labeled training samples. The proposed method includes a pretext task and a downstream classification one. In the pretext task, each MI-EEG is rearranged according to the temporal characteristic. A network is pre-trained using the original and rearranged MI-EEGs. In the downstream task, a MI-EEG classification network is firstly initialized by the network learned in the pretext task and then trained using a small number of the labeled training samples. A series of experiments are conducted on Data sets 1 and 2b of BCI competition IV and IVa of BCI competition III. In the case of one third of the labeled training samples, the proposed method can obtain an obvious improvement compared to the baseline network without using SSL. In the experiments under different percentages of the labeled training samples, the results show that the designed SSL strategy is effective and beneficial to improving the classification performance.


Asunto(s)
Interfaces Cerebro-Computador , Algoritmos , Electroencefalografía , Aprendizaje Automático Supervisado
13.
Healthcare (Basel) ; 10(4)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35455821

RESUMEN

BACKGROUND AND PURPOSE: Machine learning models have been used to diagnose schizophrenia. The main purpose of this research is to introduce an effective schizophrenia hand-modeled classification method. METHOD: A public electroencephalogram (EEG) signal data set was used in this work, and an automated schizophrenia detection model is presented using a cyclic group of prime order with a modulo 17 operator. Therefore, the presented feature extractor was named as the cyclic group of prime order pattern, CGP17Pat. Using the proposed CGP17Pat, a new multilevel feature extraction model is presented. To choose a highly distinctive feature, iterative neighborhood component analysis (INCA) was used, and these features were classified using k-nearest neighbors (kNN) with the 10-fold cross-validation and leave-one-subject-out (LOSO) validation techniques. Finally, iterative hard majority voting was employed in the last phase to obtain channel-wise results, and the general results were calculated. RESULTS: The presented CGP17Pat-based EEG classification model attained 99.91% accuracy employing 10-fold cross-validation and 84.33% accuracy using the LOSO strategy. CONCLUSIONS: The findings and results depicted the high classification ability of the presented cryptologic pattern for the data set used.

14.
Diagnostics (Basel) ; 12(2)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35204415

RESUMEN

Brain Computer Interface technology enables a pathway for analyzing EEG signals for seizure detection. EEG signal decomposition, features extraction and machine learning techniques are more familiar in seizure detection. However, selecting decomposition technique and concatenation of their features for seizure detection is still in the state-of-the-art phase. This work proposes DWT-EMD Feature level Fusion-based seizure detection approach over multi and single channel EEG signals and studied the usability of discrete wavelet transform (DWT) and empirical mode decomposition (EMD) feature fusion with respect to individual DWT and EMD features over classifiers SVM, SVM with RBF kernel, decision tree and bagging classifier for seizure detection. All classifiers achieved an improved performance over DWT-EMD feature level fusion for two benchmark seizure detection EEG datasets. Detailed quantification results have been mentioned in the Results section.

15.
J Neurosci Methods ; 361: 109282, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34237382

RESUMEN

BACKGROUND: Parkinson's disease (PD) is expected to become more common, particularly with an aging population. Diagnosis and monitoring of the disease typically rely on the laborious examination of physical symptoms by medical experts, which is necessarily limited and may not detect the prodromal stages of the disease. NEW METHOD: We propose a lightweight (~20 K parameters) deep learning model to classify resting-state EEG recorded from people with PD and healthy controls (HC). The proposed CRNN model consists of convolutional neural networks (CNN) and a recurrent neural network (RNN) with gated recurrent units (GRUs). The 1D CNN layers are designed to extract spatiotemporal features across EEG channels, which are subsequently supplied to the GRUs to discover temporal features pertinent to the classification. RESULTS: The CRNN model achieved 99.2% accuracy, 98.9% precision, and 99.4% recall in classifying PD from HC. Interrogating the model, we further demonstrate that the model is sensitive to dopaminergic medication effects and predominantly uses phase information in the EEG signals. COMPARISON WITH EXISTING METHODS: The CRNN model achieves superior performance compared to baseline machine learning methods and other recently proposed deep learning model. CONCLUSION: The approach proposed in this study adequately extracts spatial and temporal features in multi-channel EEG signals that enable accurate differentiation between PD and HC. The CRNN model has excellent potential for use as an oscillatory biomarker for assisting in the diagnosis and monitoring of people with PD. Future studies to further improve and validate the model's performance in clinical practice are warranted.


Asunto(s)
Enfermedad de Parkinson , Anciano , Electroencefalografía , Humanos , Aprendizaje Automático , Redes Neurales de la Computación , Enfermedad de Parkinson/diagnóstico
16.
Int J Neural Syst ; 31(8): 2150032, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34278972

RESUMEN

Epilepsy diagnosis based on Interictal Epileptiform Discharges (IEDs) in scalp electroencephalograms (EEGs) is laborious and often subjective. Therefore, it is necessary to build an effective IED detector and an automatic method to classify IED-free versus IED EEGs. In this study, we evaluate features that may provide reliable IED detection and EEG classification. Specifically, we investigate the IED detector based on convolutional neural network (ConvNet) with different input features (temporal, spectral, and wavelet features). We explore different ConvNet architectures and types, including 1D (one-dimensional) ConvNet, 2D (two-dimensional) ConvNet, and noise injection at various layers. We evaluate the EEG classification performance on five independent datasets. The 1D ConvNet with preprocessed full-frequency EEG signal and frequency bands (delta, theta, alpha, beta) with Gaussian additive noise at the output layer achieved the best IED detection results with a false detection rate of 0.23/min at 90% sensitivity. The EEG classification system obtained a mean EEG classification Leave-One-Institution-Out (LOIO) cross-validation (CV) balanced accuracy (BAC) of 78.1% (area under the curve (AUC) of 0.839) and Leave-One-Subject-Out (LOSO) CV BAC of 79.5% (AUC of 0.856). Since the proposed classification system only takes a few seconds to analyze a 30-min routine EEG, it may help in reducing the human effort required for epilepsy diagnosis.


Asunto(s)
Aprendizaje Profundo , Epilepsia , Electroencefalografía , Epilepsia/diagnóstico , Humanos , Redes Neurales de la Computación , Cuero Cabelludo
17.
Sensors (Basel) ; 21(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802684

RESUMEN

Electroencephalography (EEG) signal classification is a challenging task due to the low signal-to-noise ratio and the usual presence of artifacts from different sources. Different classification techniques, which are usually based on a predefined set of features extracted from the EEG band power distribution profile, have been previously proposed. However, the classification of EEG still remains a challenge, depending on the experimental conditions and the responses to be captured. In this context, the use of deep neural networks offers new opportunities to improve the classification performance without the use of a predefined set of features. Nevertheless, Deep Learning architectures include a vast number of hyperparameters on which the performance of the model relies. In this paper, we propose a method for optimizing Deep Learning models, not only the hyperparameters, but also their structure, which is able to propose solutions that consist of different architectures due to different layer combinations. The experimental results corroborate that deep architectures optimized by our method outperform the baseline approaches and result in computationally efficient models. Moreover, we demonstrate that optimized architectures improve the energy efficiency with respect to the baseline models.


Asunto(s)
Interfaces Cerebro-Computador , Algoritmos , Artefactos , Electroencefalografía , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador
18.
Int J Neural Syst ; 31(6): 2150016, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33775230

RESUMEN

Pathological slowing in the electroencephalogram (EEG) is widely investigated for the diagnosis of neurological disorders. Currently, the gold standard for slowing detection is the visual inspection of the EEG by experts, which is time-consuming and subjective. To address those issues, we propose three automated approaches to detect slowing in EEG: Threshold-based Detection System (TDS), Shallow Learning-based Detection System (SLDS), and Deep Learning-based Detection System (DLDS). These systems are evaluated on channel-, segment-, and EEG-level. The three systems perform prediction via detecting slowing at individual channels, and those detections are arranged in histograms for detection of slowing at the segment- and EEG-level. We evaluate the systems through Leave-One-Subject-Out (LOSO) cross-validation (CV) and Leave-One-Institution-Out (LOIO) CV on four datasets from the US, Singapore, and India. The DLDS achieved the best overall results: LOIO CV mean balanced accuracy (BAC) of 71.9%, 75.5%, and 82.0% at channel-, segment- and EEG-level, and LOSO CV mean BAC of 73.6%, 77.2%, and 81.8% at channel-, segment-, and EEG-level. The channel- and segment-level performance is comparable to the intra-rater agreement (IRA) of an expert of 72.4% and 82%. The DLDS can process a 30 min EEG in 4 s and can be deployed to assist clinicians in interpreting EEGs.


Asunto(s)
Epilepsia , Procesamiento de Señales Asistido por Computador , Adulto , Electroencefalografía , Humanos , Cuero Cabelludo
19.
J Med Biol Eng ; 41(2): 155-164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33564280

RESUMEN

PURPOSE: Anxiety disorder is one of the psychiatric disorders that involves extreme fear or worry, which can change the balance of chemicals in the brain. To the best of our knowledge, the evaluation of anxiety state is still based on some subjective questionnaires and there is no objective standard assessment yet. Unlike other methods, our approach focuses on study the neural changes to identify and classify the anxiety state using electroencephalography (EEG) signals. METHODS: We designed a closed neurofeedback experiment that contains three experimental stages to adjust subjects' mental state. The EEG resting state signal was recorded from thirty-four subjects in the first and third stages while EEG-based mindfulness recording was recorded in the second stage. At the end of each stage, the subjects were asked to fill a Visual Analogue Scale (VAS). According to their VAS score, the subjects were classified into three groups: non-anxiety, moderate or severe anxiety groups. RESULTS: After processing the EEG data of each group, support vector machine (SVM) classifiers were able to classify and identify two mental states (non-anxiety and anxiety) using the Power Spectral Density (PSD) as patterns. The highest classification accuracies using Gaussian kernel function and polynomial kernel function are 92.48 ±  1.20% and 88.60  ±  1.32%, respectively. The highest average of the classification accuracies for healthy subjects is 95.31 ±  1.97% and for anxiety subjects is 87.18 ±  3.51%. CONCLUSIONS: The results suggest that our proposed EEG neurofeedback-based classification approach is efficient for developing affective BCI system for detection and evaluation of anxiety disorder states.

20.
Int J Neural Syst ; 31(5): 2050074, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33438530

RESUMEN

The diagnosis of epilepsy often relies on a reading of routine scalp electroencephalograms (EEGs). Since seizures are highly unlikely to be detected in a routine scalp EEG, the primary diagnosis depends heavily on the visual evaluation of Interictal Epileptiform Discharges (IEDs). This process is tedious, expert-centered, and delays the treatment plan. Consequently, the development of an automated, fast, and reliable epileptic EEG diagnostic system is essential. In this study, we propose a system to classify EEG as epileptic or normal based on multiple modalities extracted from the interictal EEG. The ensemble system consists of three components: a Convolutional Neural Network (CNN)-based IED detector, a Template Matching (TM)-based IED detector, and a spectral feature-based classifier. We evaluate the system on datasets from six centers from the USA, Singapore, and India. The system yields a mean Leave-One-Institution-Out (LOIO) cross-validation (CV) area under curve (AUC) of 0.826 (balanced accuracy (BAC) of 76.1%) and Leave-One-Subject-Out (LOSO) CV AUC of 0.812 (BAC of 74.8%). The LOIO results are found to be similar to the interrater agreement (IRA) reported in the literature for epileptic EEG classification. Moreover, as the proposed system can process routine EEGs in a few seconds, it may aid the clinicians in diagnosing epilepsy efficiently.


Asunto(s)
Epilepsia , Cuero Cabelludo , Adulto , Electroencefalografía , Epilepsia/diagnóstico , Humanos , Redes Neurales de la Computación , Convulsiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA