Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.634
Filtrar
1.
FEBS J ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298503

RESUMEN

Stromal interaction molecule 1 (STIM1) is the endoplasmic reticulum Ca2+ sensor for store-operated calcium entry and is closely associated with carcinogenesis and tumor progression. Previously, we found that STIM1 is upregulated in melanoma cells resistant to the serine/threonine-protein kinase B-raf inhibitor vemurafenib, although the mechanism underlying this upregulation is unknown. Here, we show that vemurafenib resistance upregulates STIM1 through an epidermal growth factor (EGF)/epidermal growth factor receptor (EGFR)-Yes-associated protein 1 (YAP1)/TEA domain transcription factor 2 (TEAD2) signaling axis. Vemurafenib resistance can lead to an increase in EGF and EGFR levels, causing activation of the EGFR signaling pathway, which promotes YAP1 nuclear localization to increase the expression of STIM1. Our findings not only reveal the mechanism by which vemurafenib resistance promotes STIM1 upregulation, but also provide a rationale for combined targeting of the EGF/EGFR-YAP1/TEAD2-STIM1 axis to improve the therapeutic efficacy of BRAF inhibitor in melanoma patients.

2.
J Gastroenterol ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305336

RESUMEN

BACKGROUND: Intestinal fibrosis is one of the most frequent and severe complications of Crohn's disease. Accumulating studies have reported that adipose mesenchymal stem cell-derived small extracellular vesicles (AMSC-sEVs) could alleviate renal fibrosis, hepatic fibrosis, etc., while their potential for treating intestinal fibrosis remains uncertain. Therefore, this study aims to determine the therapeutic effects of AMSC-sEVs on intestinal fibrosis and identify the mechanisms underlying these effects. METHODS: AMSC-sEVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and western blot. Whether AMSC-sEVs exert antifibrotic effects was investigated in two different murine models of intestinal fibrosis. Besides, AMSC-sEVs were co-cultured with primary human fibroblasts and CCD18co during transforming growth factor (TGF)-ß1 stimulation. Label-free proteomics and rescue experiments were performed to identify candidate molecules in AMSC-sEVs. Transcriptome sequencing revealed changes in mRNA levels among different groups. Lastly, proteins related to relevant signaling pathways were identified by western blotting, and their expression and activation status were assessed. RESULTS: AMSC-sEVs positively expressed CD63 and Alix and presented a classical "rim of a cup" and granule shape with approximately 43-100 nm diameter. AMSCs significantly alleviated intestinal fibrosis through secreted sEVs in vitro and in vivo. The milk fat globule-EGF factor 8 (MFGE8) was stably enriched in AMSC-sEVs and was an active compound contributing to the treatment of intestinal fibrosis by AMSCs. Mechanistically, AMSC-sEV-based therapies attenuated intestinal fibrosis by inhibiting the FAK/Akt signaling pathway. CONCLUSIONS: MFGE8-containing AMSC-sEVs attenuate intestinal fibrosis, partly through FAK/Akt pathway inhibition.

3.
Exp Cell Res ; : 114267, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39313176

RESUMEN

The EGF receptors (EGFRs) signaling pathway is essential for tumorigenesis and progression of cancer. Emerging evidence suggests that miRNAs are essential regulators of EGF signaling, influencing various pathway components and tumor behavior. This article discusses the underlying mechanisms and clinical implications of miRNA-mediated regulation of EGF signaling in cancer. miRNAs utilize multiple mechanisms to exert their regulatory effects on EGF signaling. They can target EGF ligands, including EGF and TGF-directly, inhibiting their expression and secretion. In addition, miRNAs can modulate EGF signaling indirectly by targeting EGF receptors, downstream signaling molecules, and transcription factors implicated in regulating the EGF pathway. These miRNAs can disrupt the delicate equilibrium of EGF signaling, resulting in aberrant activation and fostering tumor cell proliferation, survival, angiogenesis, and metastasis. The dysregulation of the expression of specific miRNAs has been linked to clinical outcomes in numerous types of cancer. Specific profiles of miRNA expression have been identified as prognostic markers, reflecting tumor characteristics, invasiveness, metastatic potential, and therapeutic response. These miRNAs can serve as potential therapeutic targets for interventions that modulate EGF signaling and improve patient outcomes. Understanding the intricate relationship between miRNAs and EGF signaling in cancer can transform cancer diagnosis, prognosis, and treatment. The identification of specific miRNAs involved in the regulation of the EGF pathway opens the door to the development of targeted therapies and personalized medicine approaches. In addition, miRNA-based interventions promise to overcome therapeutic resistance and improve the efficacy of existing treatments. miRNAs are crucial regulators of EGF signaling in cancer, affecting tumor behavior and clinical outcomes. Further research is required to decipher the complex network of miRNA-mediated EGF signaling regulation and translate these findings into clinically applicable strategies for enhanced cancer treatment.

4.
Int Immunopharmacol ; 142(Pt B): 113170, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39288626

RESUMEN

Activin A, a member of the transforming growth factor ß (TGF-ß) superfamily, is involved in tumorigenesis and tumor progression. However, it remains unclear whether activin A can affect the migration of lung adenocarcinoma (LUAD) cells. In this study, the results of differentially expressed genes (DEGs) identification revealed that lung adenocarcinoma tissues exhibited lower expression of activin ßA mRNA, but higher expression of epidermal growth factor (EGF) and MMP9 mRNA compared to nontumor tissues. Moreover, we found that activin A inhibited human LUAD A549 cell proliferation promoted by EGF. Additionally, EGF induced A549 cell migration in microfluidic device, while activin A attenuated EGF actions. Simultaneously, EGF increased the levels of migration-related proteins, but activin A played the opposite role. Furthermore, the study revealed that EGF upregulated the ratio of p-ERK/ERK in A549 cells, which was weakened by activin A, and A549 cell migration regulated by activin A was not related to calcium signaling. In addition, the inhibitory effect of activin A on EGF-induced A549 cell migration was attenuated by the ERK inhibitor FR180204. These findings demonstrate that activin A effectively hinders the migration of A549 cells induced by EGF through ERK1/2 signaling, suggesting that targeting activin A may hold promise in the treatment of EGF-dependent LUAD growth and metastasis.

5.
bioRxiv ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39257814

RESUMEN

EGF-CFC proteins are obligate coreceptors for Nodal signaling and are thus required for gastrulation and left-right patterning. Species with multiple family members show evidence of specialization. For example, mouse Cripto is required for gastrulation, whereas Cryptic is involved in left-right patterning. However, the members of the family across model organisms have little sequence conservation beyond the EGF-CFC domain, posing challenges for determining their evolutionary history and functional conservation. In this study we outline the evolutionary history of the EGF-CFC family of proteins. We traced the EGF-CFC gene family from a single gene in the deuterostome ancestor through its expansion and functional specialization in tetrapods, and subsequent gene loss and translocation in eutherian mammals. Mouse Cripto and Cryptic, zebrafish Tdgf1, and all three Xenopus EGF-CFC genes (Tdgf1, Tdgf1.2 and Cripto.3) and are all descendants of the ancestral Tdgf1 gene. We propose that subsequent to the family expansion in tetrapods, Tdgf1B (Xenopus Tdgf1.2) acquired specialization in the left-right patterning cascade, and after its translocation in eutherians to a different chromosomal location, Cfc1/Cryptic has maintained that specialization.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39219221

RESUMEN

Loss of osteogenic differentiation potential of osteoblasts has been associated with the pathogenesis of osteoporosis. Thus, stimulation of osteoblastic differentiation is a therapeutic strategy for osteoporosis. Relaxin-2 is a peptide hormone with potent biological functions. However, the effects of Relaxin-2 in osteoblastic differentiation and osteoporosis have not been reported before. Here, we report a novel physiological role of Relaxin-2 in promoting osteoblastic differentiation and mineralization of MC3T3-E1 cells. Our results indicate that exposure to Relaxin-2 upregulated the expression, and elevated the activity of alkaline phosphatase (ALP) when MC3T3-E1 cells were cultured in osteogenic differentiation medium (OM). Additionally, Relaxin-2 upregulated the mRNA levels of osteocalcin (ocn), osteopontin (opn), and collagen type I alpha 1 (Col1a1). The alizarin red S staining assay revealed that Relaxin-2 promoted the mineralization of MC3T3-E1 cells. We also found that Relaxin-2 increased the expression of Runx-2 as well as the epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR). Importantly, silencing of EGF abolished the effects of Relaxin-2 in osteoblastic differentiation and related gene expression. These findings suggest that Relaxin-2 stimulates osteogenic differentiation through activating EGF/EGFR signaling.

7.
Vaccines (Basel) ; 12(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39203959

RESUMEN

BACKGROUND: EGFR has been suggested to contribute to COPD development and progression. Excessive ligand activation of the receptor leads to epithelial hyperproliferation and increased production of mucus, together with alterations in the primary cilia. The present study was designed to evaluate the safety and effect of depleting EGF in moderate-to-severe COPD patients, with an EGF-based vaccine. PATIENTS AND METHODS: A phase I trial was conducted in subjects with moderate or severe COPD. The anti-EGF vaccine schedule consisted of 4 biweekly doses followed by 4 monthly boosters. The primary endpoint was the evaluation of the safety and immunogenicity of the vaccine, together with the change in FEV1 and physical function at week 24. RESULTS: Twenty-six patients with moderate or severe COPD were included in the trial. The vaccine was well tolerated and no serious related adverse events were reported. Ninety percent of the individuals developed a protective antibody response. The specific anti-EGF antibodies had high avidity and were able to inhibit EGFR phosphorylation. At the end of vaccination, serum EGF became undetectable. At week 24, there was a clinically significant improvement in lung function, with a mean change in trough FEV1 of 106 mL. Patients also increased their physical functioning. CONCLUSIONS: The EGF-based vaccine was immunogenic and provoked an EGF exhaustion in patients with moderate-to-severe COPD. Depleting EGF might result in a meaningful increase in FEV1, with good tolerability. The current results provide new avenues to treat chronic inflammatory lung diseases associated with EGFR aberrant signaling.

8.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119805, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159682

RESUMEN

Epithelial ovarian cancer (EOC), a leading cause of gynecological cancer-related morbidity and mortality and the most common type of ovarian cancer (OC), is widely characterized by alterations in the Epidermal Growth Factor (EGF) signaling pathways. The phenomenon of metastasis is largely held accountable for the majority of EOC-associated deaths. Existing literature reports substantiate evidence on the indispensable role of metabolic reprogramming, particularly the phenomenon of the 'Warburg effect' or aerobic glycolysis in priming the cancer cells towards Epithelial to Mesenchymal transition (EMT), subsequently facilitating EMT. Considering the diverse roles of growth factor signaling across different stages of oncogenesis, our prime emphasis was laid on unraveling mechanistic details of EGF-induced 'Warburg effect' and resultant metastasis in EOC cells. Our study puts forth Ets1, an established oncoprotein and key player in OC progression, as the prime metabolic sensor to EGF-induced cues from the tumor microenvironment (TME). EGF treatment has been found to induce Ets1 expression in OC cells predominantly through the Extracellular Signal-Regulated Kinase1/2 (ERK1/2) pathway activation. This subsequently results in pronounced glycolysis, characterized by an enhanced lactate production through transcriptional up-regulation of key determinant genes of the central carbon metabolism namely, hexokinase 2 (HK2) and monocarboxylate transporter 4 (MCT4). Furthermore, this study reports an unforeseen combinatorial blockage of HK2 and MCT4 as an effective approach to mitigate cellular metastasis in OC. Collectively, our work proposes a novel mechanistic insight into EGF-induced glycolytic bias in OC cells and also sheds light on an effective therapeutic intervention approach exploiting these insights.

9.
J Clin Med ; 13(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39200991

RESUMEN

Background/Objectives: Various biological response modifiers play important roles in the immunopathogenesis of chronic hepatitis C (CHC). While serum levels of cytokines and growth factors change with the disease severity and treatment responses, the impact of concomitant liver steatosis on systemic inflammatory response is largely unknown. The aim of this study was to analyze the characteristics and kinetics of serum profiles of interleukins and growth factors in CHC patients with steatotic liver disease (SLD). Methods: Serum concentrations of 12 cytokines (IL-5, IL-13, IL-2, IL-6, IL-9, IL-10, IFN-γ, TNF-α, IL-17A, IL-17F, IL-4 and IL-22) and 6 growth factors (Angiopoietin-2, EGF, EPO, HGF, SCF, VEGF) were analyzed in 56 CHC patients at four time points (baseline, week 4, week 8 and SVR12) with bead-based flow cytometry assay. Results: At baseline, patients with SLD had significantly lower IL-9, IL-10, IL-13 and IL-22 and higher serum concentrations of EGF, VEGF and ANG. In a subgroup of patients with advanced liver fibrosis, SLD was linked with lower serum concentrations of IL-4, IL-5, IL-9, IL-10, IL-13 and IL-22 and higher concentrations of HGH and VEGF. Distinct cytokine kinetics during DAA treatment was observed, and SLD was identified as the main source of variation for IL-5, IL-9, IL-10, IL-13, IL-17A, IL-22, EGF, VEGF and ANG. Patients with SLD at SVR12 had significantly higher VEGF and HGF serum concentrations. Conclusions: SLD is associated with distinct cytokine and growth factor profiles and kinetics during CHC treatment, which might be associated with disease severity and the capacity for liver regeneration and contribute to fibrosis persistence.

10.
bioRxiv ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39149265

RESUMEN

Meibomian glands secrete lipid-rich meibum, which prevents tear evaporation. Aging-related Meibomian gland shrinkage may result in part from stem cell exhaustion and is associated with evaporative dry eye disease, a common condition lacking effective treatment. The identities and niche of Meibomian gland stem cells and the signals controlling their activity are poorly defined. Using snRNA-seq, in vivo lineage tracing, ex vivo live imaging, and genetic studies in mice, we identified markers for stem cell populations that maintain distinct regions of the gland and uncovered Hh signaling as a key regulator of stem cell proliferation. Consistent with this, human Meibomian gland carcinoma exhibited increased Hh signaling. Aged glands displayed decreased Hh and EGF signaling, deficient innervation, and loss of collagen I in niche fibroblasts, indicating that alterations in both glandular epithelial cells and their surrounding microenvironment contribute to age-related degeneration. These findings suggest new approaches to treat aging-associated Meibomian gland loss.

11.
J Neurochem ; 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183510

RESUMEN

Epidermal growth factor (EGF) is known to be a critical stimulant for inducing the proliferation of glioma cancer cells. In our study, we observed that GST-RhoA binds to pyruvate kinase M2 (PKM2) in vitro. While EGF reduced the levels of RhoA protein, it significantly increased p-Y42 RhoA, as well as PKM1 and PKM2 in LN18 glioma cell line. We determined that RhoA undergoes degradation through ubiquitination involving SCF1 and Smurf1. Interestingly, we observed that p-Y42 RhoA binds to PKM2, while the dephosphomimetic form, RhoA Y42F, did not. Additionally, our observation revealed that PKM2 stabilized both RhoA and p-Y42 RhoA. Importantly, RhoA, p-Y42 RhoA, and PKM2, but not RhoA-GTP, were localized in the nucleus upon EGF stimulation. Knockdown of RhoA with siRNA resulted in the reduced levels of phosphoglycerate kinase1 (PGK1) and microtubule affinity-regulating kinase 4 (MARK). Furthermore, we found that the promoter of PGK1 was associated with ß-catenin and YAP. Notably, p-Y42 RhoA and PKM2 co-immunoprecipitated with ß-catenin and YAP. Based on these findings, we proposed a novel mechanism by which p-Y42 RhoA and PKM2, in conjunction with ß-catenin and YAP, regulate PGK1 expression, contributing to the progression of glioma upon EGF.

12.
J Sex Med ; 21(9): 751-761, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39033084

RESUMEN

BACKGROUND: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) serves as a pro-angiogenic factor; however, there is to our knowledge currently no reported research on the relationship between HB-EGF and diabetic erectile dysfunction (ED). AIM: In this study we aimed to determine whether HB-EGF can improve the erectile function of streptozotocin-induced diabetic mice and to explore the related mechanisms. METHODS: Eight-week-old male C57BL/6 mice were used for diabetes induction. Diabetes mellitus (DM) was induced by low-dose injections of streptozotocin (50 mg/kg) for 5 consecutive days. Eight weeks after streptozotocin injections, DM was determined by measuring blood glucose and body weight. Diabetic mice were treated with two intracavernous administrations of phosphate-buffered saline (20 µL) or various doses of HB-EGF (days -3 and 0; 1, 5, and 10 µg in 20 µL of phosphate-buffered saline). The angiogenesis effect of HB-EGF was confirmed by tube formation and migration assays in mouse cavernous endothelial cells and mouse cavernous pericytes under high-glucose conditions. Erectile function was measured by electrical stimulation of the cavernous nerve, as well as histological examination and Western blot analysis for mechanism assessment. OUTCOMES: In vitro angiogenesis, cell proliferation, in vivo intracavernous pressure, neurovascular regeneration, cavernous permeability, and survival signaling were the outcomes measured. RESULTS: Expression of HB-EGF was reduced under diabetic conditions. Exogenous HB-EGF induced angiogenesis in mouse cavernous endothelial cells and mouse cavernous pericytes under high-glucose conditions. Erectile function was decreased in the DM group, whereas administration of HB-EGF resulted in a significant improvement of erectile function (91% of the age-matched control group) in association with increased neurovascular content, including cavernous endothelial cells, pericytes, and neuronal cells. Histological and Western blot analyses revealed a significant increase in the permeability of the corpus cavernosum in DM mice, which was attenuated by HB-EGF treatment. The protein expression of phospho-Akt Ser473 and phosphorylated endothelial nitric oxide synthase Ser1177 increased after HB-EGF treatment. CLINICAL IMPLICATIONS: The use of HB-EGF may be an effective strategy to treat ED associated with DM or other neurovascular diseases. STRENGTHS AND LIMITATIONS: Similarly to other pro-angiogenic factors, HB-EGF has dual roles in vascular and neuronal development. Our study focused on broadly evaluating the role of HB-EGF in diabetic ED. In view of the properties of HB-EGF as an angiogenic factor, its dose concentration should be strictly controlled to avoid potential side effects. CONCLUSION: In the diabetic ED mouse model in this study erectile function was improved by HB-EGF, which may provide new treatment strategies for patients with ED who do not respond to phosphodiesterase 5 Inhibitors.


Asunto(s)
Diabetes Mellitus Experimental , Disfunción Eréctil , Factor de Crecimiento Similar a EGF de Unión a Heparina , Ratones Endogámicos C57BL , Erección Peniana , Animales , Masculino , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratones , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/etiología , Erección Peniana/efectos de los fármacos , Pene/efectos de los fármacos , Pene/irrigación sanguínea , Pene/inervación , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Células Endoteliales/efectos de los fármacos
13.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000275

RESUMEN

In tumor cells, interleukin-6 (IL-6) signaling can lead to activation of the epidermal growth factor receptor (EGFR), which prolongs Stat3 activation. In the present experiments, we tested the hypothesis that IL-6 signaling activates EGFR signaling in peripheral and spinal nociception and examined whether EGFR localization and activation coincide with pain-related behaviors in arthritis. In vivo in anesthetized rats, spinal application of the EGFR receptor blocker gefitinib reduced the responses of spinal cord neurons to noxious joint stimulation, but only after spinal pretreatment with IL-6 and soluble IL-6 receptor. Using Western blots, we found that IL-6-induced Stat3 activation was reduced by gefitinib in microglial cells of the BV2 cell line, but not in cultured DRG neurons. Immunohistochemistry showed EGFR localization in most DRG neurons from normal rats, but significant downregulation in the acute and most painful arthritis phase. In the spinal cord of mice, EGFR was highly activated mainly in the chronic phase of inflammation, with localization in neurons. These data suggest that spinal IL-6 signaling may activate spinal EGFR signaling. Downregulation of EGFR in DRG neurons in acute arthritis may limit nociception, but pronounced delayed activation of EGFR in the spinal cord may be involved in chronic inflammatory pain.


Asunto(s)
Receptores ErbB , Interleucina-6 , Células Receptoras Sensoriales , Médula Espinal , Animales , Femenino , Ratones , Ratas , Artritis/metabolismo , Artritis Experimental/metabolismo , Línea Celular , Receptores ErbB/metabolismo , Ganglios Espinales/metabolismo , Gefitinib/farmacología , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal , Médula Espinal/metabolismo , Factor de Transcripción STAT3/metabolismo
14.
Kidney Med ; 6(7): 100846, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38966683

RESUMEN

Rationale & Objective: The diagnosis and prognostication of chronic kidney disease (CKD) largely rely on glomerular measures that may not reflect tubular damage. We investigated the associations of urine kidney tubule biomarkers with estimated glomerular filtration rate (eGFR) change among middle-aged adults, when chronic diseases typically emerge. Study Design: An observational cohort study. Setting & Participants: A total of 1,145 participants of the Coronary Artery Risk Development in Young Adults (CARDIA) study without CKD, hypertension, or cardiovascular disease at the year 20 visit. Exposures: Seven different biomarkers of tubular health: urine epidermal growth factor (EGF), alpha-1-microglobulin (α1m), interleukin-18, kidney injury molecule-1, monocyte chemoattractant protein-1, uromodulin, and chitinase-3-like protein 1. Outcomes: Ten-year eGFR change and incident reduced eGFR (new onset of eGFR < 60 mL/min/1.73 m2). Analytical Approach: We examined associations of tubular health biomarkers with 10-year eGFR change and incident reduced eGFR with linear mixed models and interval-censored proportional hazards regression models, respectively. Both minimally and fully adjusted models were controlled for urine creatinine levels. Results: The mean age of participants was 44.8 ± 3.7 years, with 39% African American and 56% female. The average 10-year change in eGFR was -18.6 mL/min/1.73 m2 (95% CI, -19.4 to -17.8). In contrast to the other tubular biomarkers, which showed conflicting results, EGF demonstrated strong, consistent associations with both kidney outcomes. Each 1-standard deviation (SD) higher EGF was associated with a 2.37 mL/min/1.73 m2 (95% CI, 0.64-4.10) smaller 10-year decrease in eGFR and a 42% (95% CI, 4%-64%) lower risk of incident reduced eGFR in the fully adjusted model. Limitations: Observational design, measurements of eGFR were done only at 5-year intervals during follow-up. Conclusions: In middle-aged, community-dwelling adults without hypertension, cardiovascular disease or CKD, higher urine EGF concentrations are associated with slower eGFR decline, whereas other kidney tubule biomarkers lacked a consistent association with kidney function decline.


Current measures of chronic kidney disease (CKD) rely on markers of glomerular health and function. This approach inadequately captures the role of kidney tubule health, a known histopathological predictor of CKD development. We investigated associations of 7 biomarkers of kidney tubule health with 10-year estimated glomerular filtration rate (eGFR) change and incident reduced eGFR. Among 7 biomarkers, only epidermal growth factor showed persistent and inverse associations with both 10-year eGFR change and incident reduced eGFR. These findings suggest that epidermal growth factor has an association with kidney function changes and might play a protective role in kidney disease development.

15.
Biomed Pharmacother ; 177: 117058, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968797

RESUMEN

The NF-κB pathway plays a pivotal role in impeding the diabetic wound healing process, contributing to prolonged inflammation, diminished angiogenesis, and reduced proliferation. In contrast to modern synthetic therapies, naturally occurring phytoconstituents are well-studied inhibitors of the NF-κB pathway that are now attracting increased attention in the context of diabetic wound healing because of lower toxicity, better safety and efficacy, and cost-effectiveness. This study explores recent research on phytoconstituent-based therapies and delve into their action mechanisms targeting the NF-κB pathway and potential for assisting effective healing of diabetic wounds. For this purpose, we have carried out surveys of recent literature and analyzed studies from prominent databases such as Science Direct, Scopus, PubMed, Google Scholar, EMBASE, and Web of Science. The classification of phytoconstituents into various categorie such as: alkaloids, triterpenoids, phenolics, polyphenols, flavonoids, monoterpene glycosides, naphthoquinones and tocopherols. Noteworthy phytoconstituents, including Neferine, Plumbagin, Boswellic acid, Genistein, Luteolin, Kirenol, Rutin, Vicenin-2, Gamma-tocopherol, Icariin, Resveratrol, Mangiferin, Betulinic acid, Berberine, Syringic acid, Gallocatechin, Curcumin, Loureirin-A, Loureirin-B, Lupeol, Paeoniflorin, and Puerarin emerge from these studies as promising agents for diabetic wound healing through the inhibition of the NF-κB pathway. Extensive research on various phytoconstituents has revealed how they modulate signalling pathways, including NF-κB, studies that demonstrate the potential for development of therapeutic phytoconstituents to assist healing of chronic diabetic wounds.


Asunto(s)
FN-kappa B , Fitoquímicos , Transducción de Señal , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Humanos , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Fitoquímicos/farmacología , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Fitoterapia/métodos
16.
J Gastrointest Oncol ; 15(3): 1035-1049, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38989423

RESUMEN

Background: B7-H3 (or CD276) represents an important costimulatory molecule expressed in many malignant solid tumors, including colorectal cancer (CRC). The receptor of B7-H3 is not known, and the intracellular function of B7-H3 remains obscure. Herein, we report that B7-H3 upregulated the epidermal growth factor heparin-binding epidermal growth factor (HB-EGF), likely by regulating hypoxia-inducible factor 1α (HIF-1α) and thereby promoting the progression of CRC. Methods: Lentiviral transfection was performed on CRC cells to establish stable low-B7-H3 expression cells. A mechanistic analysis with an Agilent human gene expression profiling chip was conducted on them. Clinical data and specimens were collected to detect the connection between B7-H3 and HB-EGF in CRC. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the messenger RNA (mRNA) level of B7-H3, HB-EGF, and HIF-1α. Chromatin immunoprecipitation (ChIP) quantitative real-time PCR was conducted. The protein level of HIF-1α and the phosphatidylinositide 3-kinases (PI3K)-protein kinase B (AKT) pathway were detected by western blot. HIF-1α was recovered by lentiviral transfection, and the HB-EGF mRNA levels, proliferation, invasion, and angiogenesis ability were detected. Results: B7-H3 promoted tumor progression through HB-EGF and the PI3K-AKT pathway. As B7-H3 was downregulated, HB-EGF levels were significantly reduced simultaneously, a growth trend that was shown by both CRC cell lines and cancer tissues. In addition, B7-H3 and HB-EGF had significant associations with tumor-node-metastasis (TNM) stage and lymph node metastasis in 50 CRC patients. The binding ability of HIF-1α to the HB-EGF promoter region was significantly decreased in the shB7-H3 RKO group. Western blot revealed that PI3K, AKT, and mammalian target of rapamycin (mTOR) protein amounts and p-AKT and p-mTOR phosphorylation were also downregulated in shB7-H3 RKO cells, suggesting that B7-H3 may regulate HIF-1α via PI3K-AKT signaling. After recovery of the HIF-1α level by lentiviral transfection, the HB-EGF mRNA levels, proliferation, invasion, and angiogenesis in CRC cells recovered as well. Conclusions: B7-H3 may transmit intracellular signals through PI3K-AKT-mTOR-HIF-1α signaling, upregulating HB-EGF. As the final transcription factor of the pathway, HIF-1α regulates the transcription of the HB-EGF gene, thereby promoting HB-EGF expression, which eventually mediates cell proliferation, invasion, and angiogenesis and promotes the progression of CRC.

17.
Sci Total Environ ; 947: 174766, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004367

RESUMEN

In the real environment, some chemical functional groups are unavoidably combined on the nanoplastic surface. Reportedly, amino-modified polystyrene nanoparticles (PS-A NPs) exposure in parents can induce severe transgenerational toxicity, but the underlying molecular mechanisms remain largely unclear. Using Caenorhabditis elegans as the animal model, this study was performed to investigate the role of germline epidermal growth factor (EGF) signal on modulating PS-A NPs' transgenerational toxicity. As a result, 1-10 µg/L PS-A NPs exposure transgenerationally enhanced germline EGF ligand/LIN-3 and NSH-1 levels. Germline RNAi of lin-3 and nsh-1 was resistant against PS-A NPs' transgenerational toxicity, implying the involvement of EGF ligand activation in inducing PS-A NPs' transgenerational toxicity. Furthermore, LIN-3 overexpression transgenerationally enhanced EGF receptor/LET-23 expression in the progeny, and let-23 RNAi in F1-generation notably suppressed PS-A NPs' transgenerational toxicity in the exposed worms overexpressing germline LIN-3 at P0 generation. Finally, LET-23 functioned in neurons and intestine for regulating PS-A NPs' transgenerational toxicity. LET-23 acted at the upstream DAF-16/FOXO within the intestine in response to PS-A NPs' transgenerational toxicity. In neurons, LET-23 functioned at the upstream of DAF-7/DBL-1, ligands of TGF-ß signals, to mediate PS-A NPs' transgenerational toxicity. Briefly, this work revealed the exposure risk of PS-A NPs' transgenerational toxicity, which was regulated through activating germline EGF signal in organisms.


Asunto(s)
Caenorhabditis elegans , Factor de Crecimiento Epidérmico , Células Germinativas , Animales , Caenorhabditis elegans/efectos de los fármacos , Factor de Crecimiento Epidérmico/metabolismo , Células Germinativas/efectos de los fármacos , Nanopartículas/toxicidad , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Transducción de Señal/efectos de los fármacos
18.
Exp Dermatol ; 33(8): e15143, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39073059

RESUMEN

Immortalized keratinocytes can offer a low-cost experimental platform for human skin research, with increased cell yield compared to primary cultures. However, the usefulness of these surrogate cell models is highly dependent on their ability to retain the phenotypic attributes of the parent cells. Keratins K14 and K5 are the hallmarks of undifferentiated, mitotically active basal keratinocytes. We observed occasional progressive loss of K14 expression in growing keratinocyte cell lines, with persistent retention of K5 and an epithelial phenotype, and investigated possible reasons for this. We show that K14 repression occurs by DNA promoter methylation of KRT14 gene and is compounded by histone deacetylation and by the presence of EGF. In vivo, keratinocytes shut down K14 synthesis as they commit to terminal differentiation and move from the basal to spinous layer, but by laser-capture microdissection of human epidermis we could detect no evidence of increased selective KRT14 methylation in this normal process. Loss of K14 expression suggests that epidermal identity of cultured keratinocytes can be compromised in certain tissue culture situations, possibly due to the immortalization method and persistent EGF supplementation.


Asunto(s)
Metilación de ADN , Queratina-14 , Queratinocitos , Regiones Promotoras Genéticas , Queratinocitos/metabolismo , Humanos , Queratina-14/genética , Queratina-14/metabolismo , Diferenciación Celular , Queratina-5/genética , Queratina-5/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Epidermis/metabolismo , Histonas/metabolismo
19.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39071333

RESUMEN

Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase that is frequently modified by glycosylation post-translationally. In cancer, EGFR amplifications and hotspot mutations such as L858R that promote proliferation have been detected in a significant fraction of non-small cell lung carcinomas and breast adenocarcinomas. Molecular dynamic simulations suggested that glycosylation at asparagine residue 361 (N361) promotes dimerization and ligand binding. We stably expressed glycosylation-deficient mutant EGFR N361A, with or without the oncogenic mutation L858R. Immunofluorescence and flow cytometry demonstrated that the mutants were each well expressed at the cell membrane. N361A decreased proliferation relative to wild-type EGFR as well as decreased sensitivity to ligands. Proximity ligation assays measuring co-localization of EGFR with its binding partner HER2 in cells revealed that N361A mutations increased co-localization. N361A, located near the binding interface for the EGFR inhibitor necitumumab, desensitized cells expressing the oncogenic EGFR L858R to antibody-based inhibition. These findings underline the critical relevance of post-translational modifications on oncogene function.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39042852

RESUMEN

OBJECTIVES: Metastasis in breast cancer is the first cause of death in patients. The epidermal growth factor (EGF) increases cancer cells' invasion, and migration. Melatonin's inhibitory effects on various types of cancer were confirmed. This study aimed to investigate whether melatonin could apply its impact through the EGF-related pathways or not. METHODS: First, MDA-MB-231 and MCF7 cells were cultured, and then melatonin effects on cell viability were determined by MTT assay. Transwell invasion assay was applied to identify the invasiveness of these breast cancer cell lines under treatment of EGF and melatonin. Real-time RT-PCR then investigated the expression of MMP9 and MMP2 in determined groups. Cell proliferation was also assayed under EGF and melatonin treatment using Ki67 assessment by flow cytometry. RESULTS: The rate of invasion and migration of EGF-treated cells increased in both groups, in which melatonin caused increased invasion by EGF just in MCF7 cells. MMP9 and MMP2 expression increased significantly in both cell lines under EGF treatment, and melatonin increased these genes' expression in both cell lines (p<0.05). EGF increased the MMP9 and MMP2 gene expression, and melatonin increased EGF-induced expression (p<0.05). The EGF reduced the expression of the Ki67 protein in the MCF7 cell line, which was negatively affected by melatonin and EGF. In contrast, along with melatonin, EGF did not affect the proliferation of the MDA-MB-231 cell line. CONCLUSIONS: The results of this study show that melatonin in the presence of EGF does not show the anti-cancer properties previously described for this substance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA