Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
Gene ; : 148786, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39047959

RESUMEN

Cysteine dioxygenase (CDO) is a rate-limiting enzyme in taurine biosynthesis. Taurine synthesis is limited in marine fish, and most taurine is provided by their diet. Although a nutritional study indicated that the transcription of ToCDO was significantly altered by treatment with 10.5 g/kg taurine in food, the regulatory mechanism of this biosynthesis has not been fully elucidated. In the present study, we identified the sequence features of Trachinotus ovatus cysteine dioxygenase (ToCDO), which consists of 201 amino acids. It is characterized by being a member of the cupin superfamily with two conserved cupin motifs located at amino acids 82-102 and 131-145 and with a glutamate residue substituted by a cysteine in its first motif. Moreover, phylogenetic analysis revealed that the similarity of the amino acid sequences between ToCDO and other species ranged from 84.58 % to 91.54 %. Furthermore, a high-performance liquid-phase assay of the activity of recombinantly purified ToCDO protein showed that ToCDO could catalyse the oxidation of cysteine to produce cysteine sulphite. Furthermore, the core promoter region of CDO was identified as -1182∼+1 bp. Mutational analysis revealed that the HNF4α and NF-κB sites significantly and actively affected the transcription of CDO. To further investigate the binding of these two loci to the CDO promoter, an electrophoretic shift assay (EMSA) was performed to verify that HNF4α-1 and NF-κB-1 interact with the binding sites of the promoter and promote CDO gene expression, respectively. Additionally, cotransfection experiments showed that HNF4α or both HNF4α and NF-κB can significantly influence CDO promoter activity, and HNF4α was the dominant factor. Thus, HNF4α and NF-κB play important roles in CDO expression and may influence taurine biosynthesis within T. ovatus by regulating CDO expression.

2.
Methods Mol Biol ; 2819: 381-419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028516

RESUMEN

Bacterial chromosomal DNA is structured and compacted by proteins known as bacterial chromatin proteins (i.e., nucleoid-associated proteins or NAPs). DNA-dependent RNA polymerase (RNAP) must frequently interact with bacterial chromatin proteins because they often bind DNA genome-wide. In some cases, RNAP must overcome barriers bacterial chromatin proteins impose on transcription. One key bacterial chromatin protein in Escherichia coli that influences transcription is the histone-like nucleoid structuring protein, H-NS. H-NS binds to DNA and forms nucleoprotein filaments. To investigate the effect of H-NS filaments on RNAP elongation, we developed an in vitro transcription assay to monitor RNAP progression on a DNA template bound by H-NS. In this method, initiation and elongation by RNAP are uncoupled by first initiating transcription in the presence of only three ribonucleoside triphosphates (rNTPs) to halt elongation just downstream of the promoter. Before elongation is restarted by addition of the fourth NTP, an H-NS filament is formed on the DNA so that transcript elongation occurs on an H-NS nucleoprotein filament template. Here, we provide detailed protocols for performing in vitro transcription through H-NS filaments, analysis of the transcription products, and visualization of H-NS filament formation on DNA by electrophoretic mobility shift assay (EMSA). These methods enable insight into how H-NS affects RNAP transcript elongation and provide a starting point to determine effects of other bacterial chromatin proteins on RNAP elongation.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Proteínas de Escherichia coli , Escherichia coli , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Transcripción Genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Elongación de la Transcripción Genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/genética
3.
J Virol ; : e0104624, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016557

RESUMEN

The respiratory syncytial virus (RSV) M2-1 protein is a transcriptional antitermination factor crucial for efficiently synthesizing multiple full-length viral mRNAs. During RSV infection, M2-1 exists in a complex with mRNA within cytoplasmic compartments called inclusion body-associated granules (IBAGs). Prior studies showed that M2-1 can bind along the entire length of viral mRNAs instead of just gene-end (GE) sequences, suggesting that M2-1 has more sophisticated RNA recognition and binding characteristics. Here, we analyzed the higher oligomeric complexes formed by M2-1 and RNAs in vitro using size exclusion chromatography (SEC), electrophoretic mobility shift assays (EMSA), negative stain electron microscopy (EM), and mutagenesis. We observed that the minimal RNA length for such higher oligomeric assembly is about 14 nucleotides for polyadenine sequences, and longer RNAs exhibit distinct RNA-induced binding modality to M2-1, leading to enhanced particle formation frequency and particle homogeneity as the local RNA concentration increases. We showed that particular cysteine residues of the M2-1 cysteine-cysteine-cystine-histidine (CCCH) zinc-binding motif are essential for higher oligomeric assembly. Furthermore, complexes assembled with long polyadenine sequences remain unaffected when co-incubated with ribonucleases or a zinc chelation agent. Our study provided new insights into the higher oligomeric assembly of M2-1 with longer RNA.IMPORTANCERespiratory syncytial virus (RSV) causes significant respiratory infections in infants, the elderly, and immunocompromised individuals. The virus forms specialized compartments to produce genetic material, with the M2-1 protein playing a pivotal role. M2-1 acts as an anti-terminator in viral transcription, ensuring the creation of complete viral mRNA and associating with both viral and cellular mRNA. Our research focuses on understanding M2-1's function in viral mRNA synthesis by modeling interactions in a controlled environment. This approach is crucial due to the challenges of studying these compartments in vivo. Reconstructing the system in vitro uncovers structural and biochemical aspects and reveals the potential functions of M2-1 and its homologs in related viruses. Our work may contribute to identifying targets for antiviral inhibitors and advancing RSV infection treatment.

4.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000352

RESUMEN

A novel MADS-box transcription factor from Pinus radiata D. Don was characterized. PrMADS11 encodes a protein of 165 amino acids for a MADS-box transcription factor belonging to group II, related to the MIKC protein structure. PrMADS11 was differentially expressed in the stems of pine trees in response to 45° inclination at early times (1 h). Arabidopsis thaliana was stably transformed with a 35S::PrMADS11 construct in an effort to identify the putative targets of PrMADS11. A massive transcriptome analysis revealed 947 differentially expressed genes: 498 genes were up-regulated, and 449 genes were down-regulated due to the over-expression of PrMADS11. The gene ontology analysis highlighted a cell wall remodeling function among the differentially expressed genes, suggesting the active participation of cell wall modification required during the response to vertical stem loss. In addition, the phenylpropanoid pathway was also indicated as a PrMADS11 target, displaying a marked increment in the expression of the genes driven to the biosynthesis of monolignols. The EMSA assays confirmed that PrMADS11 interacts with CArG-box sequences. This TF modulates the gene expression of several molecular pathways, including other TFs, as well as the genes involved in cell wall remodeling. The increment in the lignin content and the genes involved in cell wall dynamics could be an indication of the key role of PrMADS11 in the response to trunk inclination.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pinus , Proteínas de Plantas , Pinus/genética , Pinus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Tallos de la Planta/metabolismo , Tallos de la Planta/genética , Pared Celular/metabolismo , Pared Celular/genética , Perfilación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Lignina/metabolismo , Lignina/biosíntesis , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Plantas Modificadas Genéticamente/genética
5.
Methods Mol Biol ; 2832: 133-144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38869792

RESUMEN

Plant long non-coding RNAs (lncRNAs) have been implicated in many biological processes, including responses to abiotic stresses, yet their detailed functions and especially their modes of action are still underexplored. lncRNAs often interact with proteins to participate in multiple levels of gene regulation. Therefore, identifying the RNA-binding proteins and validating their interaction with lncRNAs will be instrumental in revealing the functions of lncRNAs. Here, we describe two major methods to determine the interaction between lncRNA and proteins in vitro, RNA pull-down, and RNA EMSA.


Asunto(s)
ARN Largo no Codificante , Proteínas de Unión al ARN , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Estrés Fisiológico/genética , Ensayo de Cambio de Movilidad Electroforética/métodos , ARN de Planta/genética , ARN de Planta/metabolismo , Unión Proteica
6.
J Biol Chem ; 300(7): 107457, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866324

RESUMEN

AT-rich interacting domain (ARID)-containing proteins, Arids, are a heterogeneous DNA-binding protein family involved in transcription regulation and chromatin processing. For the member Arid5a, no exact DNA-binding preference has been experimentally defined so far. Additionally, the protein binds to mRNA motifs for transcript stabilization, supposedly through the DNA-binding ARID domain. To date, however, no unbiased RNA motif definition and clear dissection of nucleic acid-binding through the ARID domain have been undertaken. Using NMR-centered biochemistry, we here define the Arid5a DNA preference. Further, high-throughput in vitro binding reveals a consensus RNA-binding motif engaged by the core ARID domain. Finally, transcriptome-wide binding (iCLIP2) reveals that Arid5a has a weak preference for (A)U-rich regions in pre-mRNA transcripts of factors related to RNA processing. We find that the intrinsically disordered regions flanking the ARID domain modulate the specificity and affinity of DNA binding, while they appear crucial for RNA interactions. Ultimately, our data suggest that Arid5a uses its extended ARID domain for bifunctional gene regulation and that the involvement of IDR extensions is a more general feature of Arids in interacting with different nucleic acids at the chromatin-mRNA interface.


Asunto(s)
Proteínas de Unión al ADN , ADN , Factores de Transcripción , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , ADN/metabolismo , ADN/química , ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/química , Dominios Proteicos , Regulación de la Expresión Génica , Unión Proteica , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN/metabolismo , ARN/química , ARN/genética
7.
New Phytol ; 243(4): 1424-1439, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38922886

RESUMEN

Acyl-CoA-Binding Proteins (ACBPs) bind acyl-CoA esters and function in lipid metabolism. Although acbp3-1, the ACBP3 mutant in Arabidopsis thaliana ecotype Col-0, displays normal floral development, the acbp3-2 mutant from ecotype Ler-0 characterized herein exhibits defective adaxial anther lobes and improper sporocyte formation. To understand these differences and identify the role of ERECTA in ACBP3 function, the acbp3 mutants and acbp3-erecta (er) lines were analyzed by microscopy for anther morphology and high-performance liquid chromatography for lipid composition. Defects in Landsberg anther development were related to the ERECTA-mediated pathway because the progenies of acbp3-2 × La-0 and acbp3-1 × er-1 in Col-0 showed normal anthers, contrasting to that of acbp3-2 in Ler-0. Polymorphism in the regulatory region of ACBP3 enabled its function in anther development in Ler-0 but not Col-0 which harbored an AT-repeat insertion. ACBP3 expression and anther development in acbp3-2 were restored using ACBP3pro (Ler)::ACBP3 not ACBP3pro (Col)::ACBP3. SPOROCYTELESS (SPL), a sporocyte formation regulator activated ACBP3 transcription in Ler-0 but not Col-0. For anther development, the ERECTA-related role of ACBP3 is required in Ler-0, but not Col-0. The disrupted promoter regulatory region for SPL binding in Col-0 eliminates the role of ACBP3 in anther development.


Asunto(s)
Alelos , Proteínas de Arabidopsis , Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inhibidor de la Unión a Diazepam/metabolismo , Inhibidor de la Unión a Diazepam/genética , Ecotipo , Flores/genética , Flores/crecimiento & desarrollo , Mutación/genética , Fenotipo , Polimorfismo Genético , Regiones Promotoras Genéticas/genética
8.
Plant Methods ; 20(1): 68, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735938

RESUMEN

BACKGROUND: The electrophoretic mobility shift assay (EMSA) is a common technology to detect DNA-protein interactions. However, in most cases, the protein used in EMSA is obtained via prokaryotic expression, and rarely from plants. At the same time, the proteins expressed from prokaryotic systems usually cannot fold naturally and have no post translationally modification, which may affect the binding of proteins to DNA. RESULTS: Here, we develop a technique to quickly isolate proteins of interest from host plants and then analyze them using fluorescent EMSA. This technology system is called: protein from plants fluorescent EMSA method (PPF-EMSA). In PPF-EMSA, a special transient transformation method is employed to transiently deliver genes into the plant, enabling efficient synthesis the encoded proteins. Then, the target protein is isolated using immunoprecipitation, and the DNA probes were labeled with cyanine 3 (Cy3). Both fluorescent EMSA and super-shift fluorescent EMSA can be performed using the proteins from plants. Three kinds of plants, Betula platyphylla, Populus. davidiana×P. bolleana and Arabidopsis thaliana, are used in this study. The proteins isolated from plants are in a natural state, can fold naturally and are posttranslationally modified, enabling true binding to their cognate DNAs. CONCLUSION: As transient transformation can be performed quickly and not depended on whether stable transformation is available or not, we believe this method will have a wide application, enabling isolation of proteins from host plant conveniently.

9.
Protein Expr Purif ; 220: 106500, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38718989

RESUMEN

CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated enzyme 9) is known for its simplicity, versatility, and scalability in genome editing applications. In vitro Cas9, when complexed with sgRNA, binds and cleaves the complementary target sequences with almost perfect precision. The enzyme is exploited for various applications in understanding and changing gene function. dCas9 (deactivated or dead Cas9) is a double mutated version of Cas9 that bears mutations in the nuclease domains of the enzyme and thus cannot cleave the target DNA. dCas9 is equally advantageous since it can alter gene expression using various transcriptional activators CRISPRa and repressors CRISPRi. Additionally, dCas9 can bind to the desired target gene without cleaving it, making it a unique reagent to study the kinetics and stability of RNA-protein-DNA interactions required to design more efficient and specific gene-editing nucleases. An appreciable quantity of pure and homogeneous protein is needed to characterise dCas9 for its structural and functional understanding. This study used an N-terminal acidic tag to express the dCas9 in an E. coli-bacterial host. A simple single-step protocol for robust and efficient production of dCas9 has been described. The study and methods are distinctive as the purification is performed in a single step using inexpensive multi-modal hydroxyapatite chromatography. The purified protein can be used in different in vitro and in vivo studies.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Edición Génica/métodos , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/metabolismo , Expresión Génica , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis
10.
Mol Biol Rep ; 51(1): 380, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429584

RESUMEN

BACKGROUND: Interferon regulatory factor 6 (IRF6) has a key function in palate fusion during palatogenesis during embryonic development, and mutations in IRF6 cause orofacial clefting disorders. METHODS AND RESULTS: The in silico analysis of IRF6 is done to obtain leads for the domain boundaries and subsequently the sub-cloning of the N-terminal domain of IRF6 into the pGEX-2TK expression vector and successfully optimized the overexpression and purification of recombinant glutathione S-transferase-fused NTD-IRF6 protein under native conditions. After cleavage of the GST tag, NTD-IRF6 was subjected to protein folding studies employing Circular Dichroism and Intrinsic fluorescence spectroscopy at variable pH, temperature, and denaturant. CD studies showed predominantly alpha-helical content and the highest stability of NTD-IRF6 at pH 9.0. A comparison of native and renatured protein depicts loss in the secondary structural content. Intrinsic fluorescence and quenching studies have identified that tryptophan residues are majorly present in the buried areas of the protein and a small fraction was on or near the protein surface. Upon the protein unfolding with a higher concentration of denaturant urea, the peak of fluorescence intensity decreased and red shifted, confirming that tryptophan residues are majorly present in a more polar environment. While regulating IFNß gene expression during viral infection, the N-terminal domain binds to the promoter region of Virus Response Element-Interferon beta (VRE-IFNß). Along with the protein folding analysis, this study also aimed to identify the DNA-binding activity and determine the binding affinities of NTD-IRF6 with the VRE-IFNß promoter region. The protein-DNA interaction is specific as demonstrated by gel retardation assay and the kinetics of molecular interactions as quantified by Biolayer Interferometry showed a strong affinity with an affinity constant (KD) value of 7.96 × 10-10 M. CONCLUSION: NTD-IRF6 consists of a mix of α-helix and ß-sheets that show temperature-dependent cooperative unfolding between 40 °C and 55 °C. Urea-induced unfolding shows moderate tolerance to urea as the mid-transition concentration of urea (Cm) is 3.2 M. The tryptophan residues are majorly buried as depicted by fluorescence quenching studies. NTD-IRF6 has a specific and high affinity toward the promoter region of VRE-IFNß.


Asunto(s)
Factores Reguladores del Interferón , Pliegue de Proteína , Triptófano , Humanos , ADN , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/fisiología , Triptófano/metabolismo , Urea
11.
Methods Enzymol ; 695: 193-219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38521585

RESUMEN

G-quadruplexes (G4s) are non-canonical nucleic acids secondary structures that can form at guanine-rich sequences of DNA and RNA in every kingdom of life. At the DNA level, G4s can form throughout genomes but they are prevalently found in promoter regions and at telomeres, and they have been attributed functions spanning from transcriptional regulation, to control of DNA replication, to maintenance of chromosome ends. Our understanding of the functions of G4s in cells has greatly improved with the development of specific anti-G4 antibodies, which allow the visualization of G4s by immunofluorescence but also the mapping of these secondary DNA structures genome wide. Whole genome identification of the location and abundance of G4s with techniques such as Chromatin Immunoprecipitation coupled with sequencing (ChIP-Seq) and Cleavage Under Target and Tagmentation (CUT&Tag) has allowed the profiling of G4 distribution across distinct cell types and deepen the understanding of G4 functions, particularly in the regulation of transcription. Crucial for these types of genome-wide studies is the availability of an anti-G4 antibody preparation with high affinity and specificity. Here, we describe a protocol for the expression and purification of the anti-DNA G4 structure antibody (BG4) first developed by the Balasubramanian group, which has been proven to selectively recognize G4 structures both in vitro and within cells, and which has great applicability in high-throughput techniques. We provide a detailed, step-by-step protocol to obtain active BG4 starting from a commercially available expression plasmid. We also describe three different approaches to validate the activity of the BG4 preparation.


Asunto(s)
ADN , G-Cuádruplex , ADN/genética , ADN/química , Genoma , Replicación del ADN , Plásmidos/genética , Anticuerpos
12.
Pest Manag Sci ; 80(6): 3035-3046, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38323683

RESUMEN

BACKGROUND: Glutathione transferases (GSTs) are enzymes with a wide range of functions, including herbicide detoxification. Up-regulation of GSTs and their detoxification activity enables the grass weed black-grass (Alopecurus myosuroides Huds.) to metabolize the very-long-chain fatty acid synthesis inhibitor flufenacet and other herbicides leading to multiple herbicide resistance. However, the genomic organization and regulation of GSTs genes is still poorly understood. RESULTS: In this genome-wide study the location and expression of 115 GSTs were investigated using a recently published black-grass genome. Particularly, the most abundant GSTs of class tau and phi were typically clustered and often followed similar expression patterns but possessed divergent upstream regulatory regions. Similarities were found in the promoters of the most up-regulated GSTs, which are located next to each other in a cluster. The binding motif of the E2F/DP transcription factor complex in the promoter of an up-regulated GST was identical in susceptible and resistant plants, however, adjacent sequences differed. This led to a stronger binding of proteins to the motif of the susceptible plant, indicating repressor activity. CONCLUSIONS: This study constitutes the first analysis dealing with the genomic investigation of GST genes found in black-grass and their transcriptional regulation. It highlights the complexity of the evolution of GSTs in black-grass, their duplication and divergence over time. The large number of GSTs allows weeds to detoxify a broad spectrum of herbicides. Ultimately, more research is needed to fully elucidate the regulatory mechanisms of GST expression. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Acetamidas , Regulación de la Expresión Génica de las Plantas , Glutatión Transferasa , Resistencia a los Herbicidas , Herbicidas , Poaceae , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Resistencia a los Herbicidas/genética , Poaceae/genética , Poaceae/enzimología , Herbicidas/farmacología , Acetamidas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Estudio de Asociación del Genoma Completo , Tiadiazoles
13.
Front Microbiol ; 15: 1326696, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322315

RESUMEN

While the primary pathogenic potential of torque teno viruses (TTVs) is yet to be defined, TTVs are often co-detected with other pathogens and are suspected of exacerbating clinical disease in coinfections. Swine TTVs (TTSuVs) enhance clinical signs of porcine circovirus type 2 (PCV2) in a gnotobiotic pig model. However, the mechanisms involved are unknown. In this study, we observed that co-culture of TTSuV1 and PCV1, and specifically supplementing TTSuV1 cultures with the PCV replicase protein in trans consistently resulted in higher levels of replication of TTSuV1 when compared to TTSuV1 cultured alone. Therefore, the hypothesis that the PCV replicase (rep) protein has trans-replicase helper activity for TTSuV1 was examined. Based on EMSA and reporter gene assays, it was determined that the PCV1 rep directly interacted with the TTSuV1 UTR. The TTSuV1 rep trans-complemented a PCV rep null mutant virus, indicating that the TTSuV1 and PCV1 replicase proteins supported the replication of both viruses. In mice, the administration of plasmids encoding the PCV1 rep and a TTSuV1 infectious clone resulted in the production of higher TTSuV1 genome copies in dually exposed mice when compared to singly exposed mice. Higher sero-conversion and lymphoid hyperplasia were also observed in the dually exposed experimental mice. Thus, this study provides evidence for trans-replicase activity of PCVs and TTVs as a novel mechanism of explaining enhanced viral replication in coinfections involving both viruses.

14.
Curr Res Microb Sci ; 6: 100224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371911

RESUMEN

Lactococcal conjugative plasmids are poorly characterized compared to those harbored by numerous other Gram-positive bacteria, despite their significance in dairy fermentations and starter culture development. Furthermore, the transcriptional landscape of these lactococcal conjugation systems and their regulation have not been studied in any detail. Lactococcal plasmids pNP40 and pUC11B possess two genetically distinct and prevalent conjugation systems. Here, we describe the detailed transcriptional analysis of the pNP40 and pUC11B conjugation-associated gene clusters, revealing three and five promoters, respectively, for which the corresponding transcriptional start sites were identified. Regulation of several of these promoters, and therefore conjugation, is shown to involve the individual or concerted activities of the corresponding relaxase and transcriptional repressor(s) encoded by each conjugative plasmid. This work highlights how the conjugative potential of these systems may be unlocked, with significant implications for the starter culture and food fermentation industry.

15.
Gene ; 909: 148322, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38423140

RESUMEN

Myocyte-specific enhancer binding factor 2 (MEF2), which belongs to the MADS superfamily, is a pivotal and conserved transcription factor that combines with the E-box motif to control the expression of muscle genes. Myostatin (mstn), a muscle growth inhibitor, is a vital member of the TGF-ß superfamily. Currently, an understanding of the mechanisms of A. latus mstn (Almstn) transcriptional regulation mediated by MEF2 in fish muscle development is lacking. In the present study, two AlMEF2s (AlMEF2A and AlMEF2B) and Almstn2a were characterized from Acanthopagrus latus. AlMEF2A and AlMEF2B had 456 and 315 amino acid (aa) residues, respectively. Two typical regions, a MADS-box, MEF2, and transcriptionally activated (TAD) domains, are present in both AlMEF2s. The expression profiles of the two AlMEF2 genes were similar. The AlMEF2 genes were mainly expressed in the brain, white muscle, and liver, while Almstn2a expression was higher in the brain than in other tissues. Moreover, the expression trends of AlMEF2s and Almstn2a were significantly changed after starvation and refeeding in the five groups. Additionally, truncation experiments showed that -987 to +168 and -105 to +168 were core promoters of Almstn2a that responded to AlMEF2A and AlMEF2B, respectively. The point mutation experiment confirmed that Almstn2a transcription relies on the mutation binding sites 1 or 5 (M1/5) and mutation binding sites 4 or 5 (M4/5) for AlMEF2A and AlMEF2B regulation, respectively. The electrophoretic mobile shift assay (EMSA) further verified that M1 (-527 to -512) was a pivotal site where AlMEF2A acted on the Almstn2a gene. Furthermore, a siRNA interference gene expression experiment showed that reduced levels of AlMEF2A or AlMEF2B could prominently increase Almstn2a transcription. These results provide new information about the regulation of Almstn2a transcriptional activity by AlMEF2s and a theoretical basis for the regulatory mechanisms involved in muscle development in fish.


Asunto(s)
Perciformes , Dorada , Animales , Dorada/genética , Dorada/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Músculos/metabolismo , Perciformes/genética , Perciformes/metabolismo
16.
Int J Biol Macromol ; 263(Pt 2): 130455, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417748

RESUMEN

Rv1176c of Mycobacterium tuberculosis H37Rv belongs to the PadR-s1 subfamily of the PadR family of protein. Rv1176c forms a stable dimer in solution. Its stability is characterized by a thermal melting transition temperature (Tm) of 39.4 °C. The crystal structure of Rv1176c was determined at a resolution of 2.94 Å, with two monomers in the asymmetric unit. Each monomer has a characteristic N-terminal winged-helix-turn-helix DNA-binding domain. Rv1176c C-terminal is a coiled-coil dimerization domain formed of α-helices α5 to α7. In the Rv1176c dimer, there is domain-swapping of the C-terminal domain in comparison to other PadR homologs. In the dimer, there is a long inter-subunit tunnel in which different ligands can bind. Rv1176c was found to bind to the promoter region of its own gene with high specificity. M. smegmatis MC2 155 genome lacks homolog of Rv1176c. Therefore, it was used as a surrogate to characterize the functional role of Rv1176c. Expression of Rv1176c in M. smegmatis MC2 155 cells imparted enhanced tolerance towards oxidative stress. Rv1176c expressing M. smegmatis MC2 155 cells exhibited enhanced intracellular survival in J774A.1 murine macrophage cells. Overall, our studies demonstrate Rv1176c to be a PadR-s1 subfamily transcription factor that can moderate the effect of oxidative stress.


Asunto(s)
Mycobacterium tuberculosis , Animales , Ratones , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Cristalografía por Rayos X , Factores de Transcripción/genética
17.
Methods Mol Biol ; 2741: 145-174, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38217652

RESUMEN

So far, in Bacillus subtilis, only four trans-encoded and 11 cis-encoded sRNAs and their targets have been investigated in detail, the majority of them in our group (rev. in 1, 2). Here, we describe in vitro methods for the analysis of sRNA/mRNA interactions. All these methods have been either elaborated or significantly improved in our group and successfully applied to characterize a number of sRNA/target mRNA systems in Bacillus subtilis for which we provide examples from our own work. The in vitro methods comprise the synthesis and purification of labeled and unlabeled RNA, the analysis of sRNA/mRNA interactions in electrophoretic mobility shift assays (EMSAs) including the calculation of their apparent binding rate constants (kapp) and equilibrium dissociation constants (Kd), the localization of minimal regulatory regions of an sRNA, the determination of the secondary structures of both interacting RNAs and their complex as well as the analysis of RNA chaperones that may promote the sRNA/mRNA interaction.


Asunto(s)
Bacillus subtilis , ARN Pequeño no Traducido , Secuencia de Bases , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , ARN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica
18.
Int J Biol Macromol ; 261(Pt 1): 129728, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272423

RESUMEN

The intracellular bacteria, Salmonella Typhi adapts to acidic conditions in the host cell by resetting the chromosomal DNA topology majorly controlled by DNA Gyrase, a Type II topoisomerase. DNA Gyrase forms a heterodimer A2B2 complex, which manages the DNA supercoiling and relaxation in the cell. DNA relaxation forms a part of the regulatory mechanism to activate the transcription of genes required to survive under hostile conditions. Acid-induced stress attenuates the supercoiling activity of the DNA Gyrase, resulting in DNA relaxation. Salmonella DNA becomes relaxed as the bacteria adapt to the acidified intracellular environment. Despite comprehensive studies on DNA Gyrase, the mechanism to control supercoiling activity needs to be better understood. A loss in supercoiling activity in E. coli was observed upon deletion of the non-conserved acidic C-tail of Gyrase A subunit. Salmonella Gyrase also contains an acidic tail at the C-terminus of Gyrase A, where its deletion resulted in reduced supercoiling activity compared to wild-type Gyrase. Interestingly, we also found that wild-type Gyrase compromises supercoiling activity at acidic pH 2-3, thereby causing DNA relaxation. The absence of a C-tail displayed DNA supercoiling to some extent between pH 2-9. Hence, the C-tail of Gyrase A might be one of the controlling factors that cause DNA relaxation in Salmonella at acidic pH conditions. We propose that the presence of the C-tail of GyraseA causes acid-mediated inhibition of the negative supercoiling activity of Gyrase, resulting in relaxed DNA that attracts DNA-binding proteins for controlling the transcriptional response.


Asunto(s)
Girasa de ADN , Salmonella typhi , Girasa de ADN/genética , Salmonella typhi/genética , Escherichia coli/genética , ADN , ADN Superhelicoidal/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo
19.
Int J Biol Macromol ; 260(Pt 2): 129541, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244746

RESUMEN

Haloferax mediterranei, an extreme halophilic archaeon thriving in hypersaline environments, has acquired significant attention in biotechnological and biochemical research due to its remarkable ability to flourish in extreme salinity conditions. Transcription factors, essential in regulating diverse cellular processes, have become focal points in understanding its adaptability. This study delves into the role of the Lrp transcription factor, exploring its modulation of glnA, nasABC, and lrp gene promoters in vivo through ß-galactosidase assays. Remarkably, our findings propose Lrp as the pioneering transcriptional regulator of nitrogen metabolism identified in a haloarchaeon. This study suggests its potential role in activating or repressing assimilatory pathway enzymes (GlnA and NasA). The interaction between Lrp and these promoters is analyzed using Electrophoretic Mobility Shift Assay and Differential Scanning Fluorimetry, highlighting l-glutamine's indispensable role in stabilizing the Lrp-DNA complex. Our research uncovers that halophilic Lrp forms octameric structures in the presence of l-glutamine. The study reveals the three-dimensional structure of the Lrp as a homodimer using X-ray crystallography, confirming this state in solution by Small-Angle X-ray Scattering. These findings illuminate the complex molecular mechanisms driving Hfx. mediterranei's nitrogen metabolism, offering valuable insights about its gene expression regulation and enriching our comprehension of extremophile biology.


Asunto(s)
Haloferax mediterranei , Haloferax mediterranei/genética , Glutamina/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Nitrógeno/metabolismo
20.
Mol Plant Microbe Interact ; 37(4): 357-369, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38105438

RESUMEN

Type IV pili (TFP) play a crucial role in the sensing of the external environment for several bacteria. This surface sensing is essential for the lifestyle transitions of several bacteria and involvement in pathogenesis. However, the precise mechanisms underlying TFP's integration of environmental cues, particularly in regulating the TFP-Chp system and its effects on Xanthomonas physiology, social behavior, and virulence, remain poorly understood. In this study, we focused on investigating Clp, a global transcriptional regulator similar to CRP-like proteins, in Xanthomonas oryzae pv. oryzae, a plant pathogen. Our findings reveal that Clp integrates environmental cues detected through diffusible signaling factor (DSF) quorum sensing into the TFP-Chp regulatory system. It accomplishes this by directly binding to TFP-Chp promoters in conjunction with intracellular levels of cyclic-di-GMP, a ubiquitous bacterial second messenger, thereby controlling TFP expression. Moreover, Clp-mediated regulation is involved in regulating several cellular processes, including the production of virulence-associated functions. Collectively, these processes contribute to host colonization and disease initiation. Our study elucidates the intricate regulatory network encompassing Clp, environmental cues, and the TFP-Chp system, providing insights into the molecular mechanisms that drive bacterial virulence in Xanthomonas spp. These findings offer valuable knowledge regarding Xanthomonas pathogenicity and present new avenues for innovative strategies aimed at combating plant diseases caused by these bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas Bacterianas , GMP Cíclico/análogos & derivados , Fimbrias Bacterianas , Regulación Bacteriana de la Expresión Génica , Enfermedades de las Plantas , Regiones Promotoras Genéticas , Xanthomonas , Xanthomonas/patogenicidad , Xanthomonas/genética , Xanthomonas/metabolismo , Xanthomonas/fisiología , Virulencia , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Regiones Promotoras Genéticas/genética , Enfermedades de las Plantas/microbiología , Percepción de Quorum , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Oryza/microbiología , GMP Cíclico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA