Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38731395

RESUMEN

Climate change has been considered to pose critical threats for wildlife. During the past decade, species distribution models were widely used to assess the effects of climate change on the distribution of species' suitable habitats. Among all the vertebrates, amphibians are most vulnerable to climate change. This is especially true for salamanders, which possess some specific traits such as cutaneous respiration and low vagility. The Wushan salamander (Liua shihi) is a threatened and protected salamander in China, with its wild population decreasing continuously. The main objective of this study was to predict the distribution of suitable habitat for L. shihi using the ENMeval parameter-optimized MaxEnt model under current and future climate conditions. Our results showed that precipitation, cloud density, vegetation type, and ultraviolet radiation were the main environmental factors affecting the distribution of L. shihi. Currently, the suitable habitats for L. shihi are mainly concentrated in the Daba Mountains, including northeastern Chongqing and western Hubei Provinces. Under the future climate conditions, the area of suitable habitats increased, which mainly occurred in central Guizhou Province. This study provided important information for the conservation of L. shihi. Future studies can incorporate more species distribution models to better understand the effects of climate change on the distribution of L. shihi.

2.
Biology (Basel) ; 13(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38666852

RESUMEN

Climate change affects the geographical distribution of plant species. Rare Trachycarpus nanus with a narrow distribution range, high medicinal value and extremely small population is facing increasing extinction risks under global climate change. In this study, 96 recorded occurrences and 23 environmental factors are used to predict the potential suitable area of T. nanus based on the optimized MaxEnt (3.4.4) model and ArcGIS (10.7) software. The results show that when the parameters are FC = LQ and RM = 1, the MaxEnt model is optimal and AUC = 0.946. The distribution patterns were predicted in the past, present, and four future phases, i.e., 2021-2040 (2030), 2041-2060 (2050), 2061-2080 (2070), and 2081-2100 (2090). The main factors are the annual precipitation (bio12), mean temperature of the coldest quarter (bio11), temperature seasonality (bio4), precipitation of the wettest quarter (bio16), and isothermality (bio3). The potential distribution of T. nanus is primarily concentrated in central Chuxiong, encompassing a total potential suitable area of 5.65 × 104 km2. In historical periods, the total habitat area is smaller than that in the present. In the future, the potential suitable area is generally increased. The centroid analysis shows that T. nanus will move to a high-altitude area and to the southeast. But its dispersal capacity may not keep up with the climate change rate. Therefore, additional protection sites for this species should be appropriately established and the habitat connectivity should be enhanced.

3.
Front Plant Sci ; 15: 1304121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486852

RESUMEN

Chionanthus retusus (C. retusus) has a high economic and medicinal value, but in recent years it has been included in the list of China's major protected plants and China's Red List of Biodiversity due to the serious destruction of its wild germplasm resources. Based on 131 sample points of C. retusus, this study simulated potential habitats and spatial changes of C. retusus in the 21st century using the Maxent model combined with the geographic information system ArcGIS, predicted prioritized protected areas by the Marxan model, and assessed current conservation status through GAP analysis. The results showed that (1) when the regularization multiplier was 1.5 and the feature combinations were linear, quadratic, and fragmented, the area under the curve of the subjects in the training and test sets were both above 0.9, the true skill statistic value was 0.80, and the maximum Kappa value was 0.62, meaning that the model had high accuracy; (2) Temperature seasonality, annual precipitation, min temperature for coldest month, and precipitation of wettest month had relatively strong influences on species' ranges. (3) The moderately and optimally suitable habitats of C. retusus were primly located in the areas of southwestern Shanxi, central Hebei, western Henan, Shandong, Shaanxi, Anhui and Hubei; (4) Under different future climate scenarios, the area of each class of suitable habitat will increase for varied amounts compared to the current period, with a general trend of expansion to the south; (5) The C. retusus priority protected areas were mainly located in most of Shandong, southern Liaoning, southwestern Shanxi, western Henan, and central Hebei, and its conservation vacancy area was relatively large compared to its protected area. These results will provide scientific strategies for implementing long-term conservation of C. retusus in China and similar regions under warming conditions in the 21st century.

4.
Ecol Evol ; 13(10): e10597, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37869439

RESUMEN

Leonurus japonicus Houtt. is a traditional Chinese medicinal plant with high medicinal and edible value. Wild L. japonicus resources have reduced dramatically in recent years. This study predicted the response of distribution range of L. japonicus to climate change in China, which provided scientific basis for the conservation and utilization. In this study, 489 occurrence points of L. japonicus were selected based on GIS technology and spThin package. The default parameters of MaxEnt model were adjusted by using ENMeva1 package of R environment, and the optimized MaxEnt model was used to analyze the distribution of L. japonicus. When the feature combination in the model parameters is hing and the regularization multiplier is 1.5, the MaxEnt model has a higher degree of optimization. With the AUC of 0.830, our model showed a good predictive performance. The results showed that L. japonicus were widely distributed in the current period. The maximum temperature of warmest month, the min temperature of coldest month, the precipitation of wettest month, the precipitation of driest month, and altitude were the main environmental factors affecting the distribution of L. japonicus. Under the three climate change scenarios, the suitable distribution area of L. japonicus will range shift to high latitudes, indicating that the distribution of L. japonicus has a strong response to climate change. The regional change rate is the lowest under the SSP126-2090s scenario and the highest under the SSP585-2090s scenario.

5.
Trop Med Infect Dis ; 3(2)2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30274453

RESUMEN

Since 1998, Nipah virus (NiV) (genus: Henipavirus; family: Paramyxoviridae), an often-fatal and highly virulent zoonotic pathogen, has caused sporadic outbreak events. Fruit bats from the genus Pteropus are the wildlife reservoirs and have a broad distribution throughout South and Southeast Asia, and East Africa. Understanding the disease biogeography of NiV is critical to comprehending the potential geographic distribution of this dangerous zoonosis. This study implemented the R packages ENMeval and BIOMOD2 as a means of modeling regional disease transmission risk and additionally measured niche similarity between the reservoir Pteropus and the ecological characteristics of outbreak localities with the Schoener's D index and I statistic. Results indicate a relatively high degree of niche overlap between models in geographic and environmental space (D statistic, 0.64; and I statistic, 0.89), and a potential geographic distribution encompassing 19% (2,963,178 km²) of South and Southeast Asia. This study should contribute to current and future efforts to understand the critical ecological contributors and geography of NiV. Furthermore, this study can be used as a geospatial guide to identify areas of high disease transmission risk and to inform national public health surveillance programs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA